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 Abstract: The metabolic peptide hormone amylin, in concert with other metabolic peptides like in-

sulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to 

Alzheimer’s disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate 

much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabe-

tes mellitus (T2DM) and Alzheimer’s disease. The traditional “gain of toxic function” properties as-

signed to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective 

effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This 

suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeuti-

cally beneficial for AD development, as they already are for T2DMM. However, the nature of amy-

lin receptor signaling is highly complex and not well studied in the context of CNS function. There-

fore, to begin to address this pharmacological paradox in amylin research, the goal of this review is 

to summarize the current research on amylin signaling and CNS functions and critically address the 

paradoxical nature of this hormone's signaling in the context of AD pathogenesis. 
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1. INTRODUCTION  

Alzheimer’s disease (AD) is a form of dementia charac-
terized by progressive memory loss and changes in cognitive 
and neuropsychiatric behaviors that lead to the inability to 
perform everyday tasks and death [1, 2]. There are two clas-
sifications of AD, familial and sporadic. Familial AD, repre-
senting only <1% of all cases, is inherited through mutations 
in 3 genes which include: presenilin (PSEN-1 and -2) or am-
yloid precursor protein (APP) genes. These cause the over-
expression and cleavage of APP, producing excess amyloid 
beta (A�) peptide accumulation. Sporadic AD, also known 
as late onset AD, is a multifactorial form of neurodegenera-
tion where the cause is currently unknown.  

The main cellular hallmarks of AD include neurodegen-
eration of hippocampal neurons that progressively spread to 
other regions and two main pathological entities, extracellu-
lar Aβ plaques and intracellular tangles made of hyper-
phosphorylated tau protein [3-7]. The progressive accumula-
tion of these hallmarks is thought to lead to the progressive 
cognitive and neuropsychiatric decline observed in these 
patients [5]. However, despite both tau and Aβ pathology 
being hallmarks of AD, it is not yet fully clear whether in 
late-onset AD, pathology is the driver of cellular dysregula-
tion or rather a result of dyshomeostasis of more fundamen-
tal cellular processes. The latter suggests a more complex 
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AD development, likely associated with multiple independ-
ent insults to which we are exposed throughout our lifetime 
[8-10].  

1.1. The Exposome in Late Onset AD 

Although aging is the number one risk factor for the de-
velopment of sporadic AD [11], AD is not a normal conse-
quence of aging [1, 12]. A growing list of genes, the most 
prominent of which being APOE [13], are also being impli-
cated in late onset AD. However, several environmental ex-
posures throughout one’s lifespan can independently, or in 
combination with aging, drive AD development. These range 
from traumatic brain injury [14-18], viruses [19, 20] or tox-
ins [21-24] to socioeconomic aspects such as low education 
levels [25], or lifestyle choices such as a sedentary lifestyle 
[26, 27]. In fact, clinical outcomes associated with lack of 
exercise and poor diet, namely high blood pressure, cardio-
vascular disease and particularly Type II Diabetes Mellitus 
(T2DM), have all been linked to AD development [28-36].  

The exact mechanisms that underlie the relationship be-
tween AD and T2DM remain unknown, however, both dis-
eases share multiple commonalities as detailed previously 
[37]. T2DM is characterized by the presence of hyperglyce-
mia, hyperinsulinemia, and insulin resistance [38], both sys-
temically and centrally. In fact, a consequence of systemic 
hyperglycemia and hyperinsulinemia is the reduction of insu-
lin receptors within the blood-brain barrier (BBB), which in 
turn lead to decreased insulin and glucose signaling within 
the brain [39-42].  
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Importantly, clinical reports show that diabetic patients 

have reduced thickness of brain regions, or atrophy, in re-

gions affected in AD, such as the hippocampus [43-45]. 
Thus, not surprisingly, 70% of T2DM patients report cogni-

tive impairment [46, 47]. Like AD, T2DM is also associated 

with exacerbated reactive oxygen species (ROS) production 
linked with increased mitochondrial and ER stress [48-50], 

and activation of inflammatory cascades [51-54] within the 

brain. Also, of note, is the fact that T2DM and AD, albeit 
different amyloid proteins (amylin in T2DM and A� in AD) 

share amyloidogenesis and amyloid processing, clearing and 

aggregation changes as potential common pathogenic mech-
anisms, one in the pancreas and the other within the brain. 

The assessment of metabolic hormone levels throughout 
normal aging and during disease states and their impact on 

neuronal processes may offer new biomarkers and novel 

directions to target therapeutics for AD. In this regard, the 
common pathogenic mechanism between the two patholo-

gies and the potential relationship between the two amyloids 

(amylin and A�) in the initiation of both diseases has been 
the focus of increasing research in the last decade as will be 

discussed throughout this review. Interestingly, data supports 

both a pathogenic and therapeutic role of amylin for AD 
pathogenesis [55, 56]. This paradox highlights an incomplete 

understanding of mechanisms underlying this relationship. 

This is further exacerbated by the complex physiology of 
amyloids and receptor signaling system through which amy-

loids - like amylin - signal [57-59]. The latter is a potential 

source for further understanding the pathophysiology of both 
diseases as well as a fruitful pathway for novel pharmacolo-

gy development. Thus, here we summarize the current re-

search in the area of amylin and CNS function and AD, pro-
vide an up-to-date review of its receptor signaling mecha-

nisms, and critically discuss the pharmacological paradox 

associated with amylin pharmacological therapy in the con-
text of AD pathogenesis.  

Although peripheral mechanisms have been suggested, 

satiety, energy homeostasis, and newer signaling mecha-
nisms associated with amylin action are thought to be largely 

regulated via the central nervous system (CNS), as will be 

detailed in the sections to follow. 

2. AMYLIN AND THE AMYLIN RECEPTOR  

Amylin is 37 amino acid (aa) peptide, a part of the calci-

tonin family alongside calcitonin (Calc), two Calc related 
genes (aCGRP and bCGRP) and adrenomedullin (AM) [60]. 

Amylin is packaged and co-released with insulin in 1:100 

(15:1, insulin: amylin molar) ratio from �-islet cells of the 
pancreas after a meal consumption [61, 62].  

Amylin has an important role in energy homeostasis sys-
temically and centrally and acts as a satiety hormone [63-

66]. For example, amylin serves an important glucoregulato-

ry role by limiting insulin release from the pancreas [64, 67]. 
Similarly, amylin inhibits local glucagon secretion in the 

liver, stomach, and intestine, slowing gastric emptying and, 

thus, nutrient absorption [63, 64, 68-70]. In the CNS, amylin 
is known to sensitize leptin signaling [71, 72], thus, serving 

an important role in energy homeostasis acutely, during 

meals, and longer-term, through the hypothalamic processes. 

These findings have been further validated in animal models 

in which amylin is genetically deleted [72-75]. 

2.1. Amylin Receptor Expression & Signaling 

Amylin does not have a cognate receptor but rather sig-
nals through the native calcitonin receptor (CalcR), a class B, 
seven transmembrane spanning G-coupled protein receptor 
(GPCR). Specificity to amylin is conferred by the heterodi-
merization of CalcR with one of three receptor activity modi-
fying protein (RAMPs 1-3) [76]. Thus, the amylin receptor 
(AMYR) is accepted to be CalcR complexed with a RAMP 
[59, 76-81]. There are two isoforms of CalcR, alpha and beta 
[82, 83], as well as three known isoforms of RAMPs, named 
RAMP1, -2 and -3, providing a highly complex signaling 
network through AMYR subtypes: AMYR1a, AMYR1b, 
AMYR2a, AMYR2b, AMYR3a and AMYR3b [79, 83, 84].  

The different components that make up the AMYR have 
been reported in both the periphery, namely, the kidney, tes-
tes, skeletal muscle, pancreas, liver, stomach, small intestine, 
osteoclasts, and in dorsal root ganglia [85, 86], as well as the 
CNS. Radioligand binding studies suggest the brain to be a 
region of the highest level of amylin binding within the body 
[87]. Of note, early studies found amylin binding sites within 
the CNS in 1993, roughly six years before AMYR was fully 
characterized [59, 81]. To this end, dense binding sites were 
originally characterized within the area postrema (AP), nu-
cleus accumbens (NAc) and the hypothalamus. These brain 
regions are linked to amylin’s regulation of satiety. Addi-
tional sites of amylin of binding as well as amylin uptake, 
confirmed amylin-labeled radioactivity include: ventral teg-
mental area (VTA), hypothalamus, NAc, subfornical organ 
(SFO), amygdala, bed nucleus of the stria terminalis 
(BNST), locus coeruleus, thalamus pons, medulla, hippo-
campus, striatum, as well as frontal, occipital and parietal 
lobes [59, 85, 88-96]. 

CalcR and all three RAMPS have been shown to co-

localize in hindbrain and midbrain areas such the Nucleus 
Tractus Solitarii (NTS) within the brain stem and the lateral 

parabrachial nucleus (LBPN), part of the pons within the 

midbrain [59, 90-94]. Additionally, different RAMP sub-
types are known to localize to different areas. For example, 

along with CalcR, RAMP1 has been found in the area AP, 

ventromedial hypothalamus (VMH) and the NAc, caudate 
putamen and olfactory tubercles [91, 92, 97-99]. On the oth-

er hand, RAMP3 has been reported within the AP, dorsal 

thalamus, and SFO. In humans, RAMP2 is primarily ex-
pressed in the vasculature, and knockout of RAMP2 is lethal 

[77], thus, it is less commonly studied. Together, these data 

suggest that RAMPs may confer regional and signaling spec-
ificity. Importantly, the study of AMYR signaling in vivo is 

further complicated by the fact that no AMYR conformation 

is 100% specific to amylin binding [81, 82], and the fact that 
RAMPs are known to complex with nine different receptors, 

not just CalcR [100, 101]. Similarly, since CalcR signals for 

its native ligand calcitonin, unless it is coupled to RAMPs, 
knockout strategies for either RAMPs or CalcR are not use-

ful to determine AMYR signaling mechanisms [58, 102]. 

In vitro studies, which confer most of our understanding 
of AMYR signaling, demonstrate that ligand binding to the 
AMYR activates adenyl cyclase and phospholipase C path-
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ways (G�s and G�q, respectively) [80, 103-105]. Either cas-
cade is known to drive ERK phosphorylation (pERK), which 
has been established as a key signaling molecule in AMYR 
action [103, 106, 107]. When comparing the main AMYR 
subtypes, AMYR1 and AMYR3 have been reported to have 
similar binding affinity and dose-dependent response signal-
ing for amylin [108]. However, some studies have shown a 
more diverse signaling pattern depending on the cascade 
activated and the cell type studied. For example, both 
AMYR1 and AMYR3 were shown to increase second mes-
senger cAMP twenty-fold in Cos7 cells at similar doses. 
However, activation of these two receptor subtypes only led 
to a three to five-fold increase in intracellular Ca

2+
 and ERK 

phosphorylation (pERK) in Cos7 and HEK293 [105]. More-
over, this study also reported that AMYR3 preferentially 
signaled for through Gq, driving an increase of Ca

2+
 and 

pERK, over AMYR1 in Cos7 cells, but not HEK293 cells. 
Such studies highlight the complex nature of AMYR signal-
ing, even in vitro.  

Antagonists for the members of the calcitonin family (i.e., 
AC413, AC66, CGRP8-37, AC187, AC253) have been widely 
used to address the action of the AMYR. These antagonists are 
typically N-truncated isoforms of the native agonists that 
competitively inhibit receptor activation [109]. The most 
commonly used antagonist within this family, AC187, is mod-
eled after salmon CT (sCT), where aa 35-37 are homologous 
to rat amylin. sCT is known to activate AMYR second to 
CalcR (64); additionally, sCT and amylin share a 30% aa se-
quence similarity [110]. However, AC187 is missing the disul-
fide bridge found in amylin that is thought to be the biologi-
cally active portion of these peptides within the calcitonin 
family [111]. AC187 is found to be equally potent as an an-
tagonist of AMYR1a and AMYR3a receptor subtypes, sug-
gesting it cannot discriminate between the two [58, 102, 112]. 
Together, these data emphasize the need for developing new 
AMY receptor pharmacology to deepen the mechanistic un-
derstanding of this hormone peptide. 

3. AMYLIN CENTRAL NERVOUS SYSTEM FUNC-
TION 

3.1. Hindbrain Amylin Function 

Canonical amylin signaling within the CNS was first 
linked to the AP [103, 113, 114], a nucleus within the medul-
la oblongata, critical in the integration of neural inputs from 
the peripheral nervous system that allows larger peptides, 
like amylin, to access the CNS. AMYR activation within the 
AP reduces feeding behavior via the initiation of meal end-
ing signals [115, 116]. This effect is reversed by antagonist 
delivery [117, 118]. Amylin also serves as a modulator of 
energy intake through the regulation of glucagon secretion, 
processes that are reversed by delivery of the AC187 antago-
nist, particularly as they pertain to glucagon secretion [119], 
food consumption [120], and inhibition of gastric emptying 
largely suggested to be mediated through vagal stimulation 
from AP outputs [63, 65, 121].  

The CalcR and RAMP3 subtype most prominently co-
localize within the AP to form the AMYR3 [93, 122]. 
AMYR3 has been suggested to play a key role in amylin-
mediated effects on glucose regulation and satiety signaling, 
shown by altered glucose sensitization and decreased inter-

meal duration in the RAMP3 KO mouse [104]. These find-
ings seem to be restricted to AMYR3, as Zhang and col-
leagues (2011) showed that over-expression of RAMP1 does 
not alter feeding behaviors in mice [123]. However, as men-
tioned before, these results need to be weighed with caution 
since knockout or over-expression RAMPs may be driving 
changes beyond amylin signaling.  

3.2. Hypothalamic Amylin Function 

Amylin effects on long-term energy homeostasis, as well 

as additional regulation of satiety mechanisms, are also me-
diated through AMYR signaling in the hypothalamus [124]. 

A transporter-mediated mechanism enables amylin crossing 

across the BBB [96, 125] and allows amylin effects in brain 
regions independently of AP mechanisms.  

A key area in long-term energy regulation and body 
weight is the VMH. These aspects are primarily regulated 

via peripheral adiposity input signals. Similarly, amylin 

shows positive effects on overall energy balance and in-
creases energy expenditure [120, 126, 127]. In this regard, 

amylin is proposed to regulate energy expenditure by in-

creasing brown adipose tissue activity mediated through the 
sympathetic nervous system. Mediation of sympathetic out-

put in combination with amylin ability to reduce meal size is 

suggested to be the key component of amylin signaling abil-
ity to reduce adiposity [127]. This effect is blocked by 

AMYR antagonist administration, which markedly increases 

body adiposity [120]. Such changes are also seen in a human 
RAMP1 overexpression mouse model [128]. Specifically, 

Coester et al. (2020) reported that RAMP1 over-expressor 

male mice showed increased fat mass deposits, despite dis-
playing similar body weights to controls. Female RAMP1 

KO did not show changes in fat mass; however, they showed 

altered plasma leptin levels compared to controls. This work 
suggests that AMYR1 may be important for these amylin 

mechanisms [129].  

In fact, it has been hypothesized that functional amylin and 
leptin signaling are both required for these actions, suggesting 

a synergistic relationship. To this end, leptin sensitivity is lost 

during the obese and diabetic states, leading to the loss of sati-
ation and accumulation of fat mass over time; however, amy-

lin administration in combination with leptin in obese mice 

shows additive results on fat-specific weight loss over amylin 
or leptin therapy alone [72, 114, 130]. Furthermore, AMYR 

knockdown within the VMH results in reduced pSTAT3 sig-

naling, whereas amylin gene knockdown mice have signifi-
cantly less LepR mRNA within the VMH, as well as overall 

leptin insensitivity [71, 72], collectively elucidating important 

amylin sensitizing effect on leptin.  

Another important downstream target of leptin and amylin 
activation within the hypothalamus is proopiomelanocortin 
(POMC), a precursor protein important for satiety and body 
weight management that counteracts the orexigenic actions of 
agouti related peptide/ neuropeptide Y (AgRP/NPY) neurons 
[124, 131, 132]. The activation of POMC neurons within the 
ARC, causes POMC to be converted to one of several end 
products, including melanocyte-stimulating hormones (MSHs), 
corticotrophin (ACTH), and endorphins (i.e., �-endorphin). 
MSH subtype alpha (�MSH) activates the melanocortin recep-
tor subtype 4 (MC4R) receptors to mediate satiety [133, 134]. 
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A functional MC4R circuit has been suggested for amylin 
actions on satiety as MC4R

K314X/K314X
 mice, a receptor loss-of-

function model, showed a loss of responsiveness on feeding 
behaviors upon AMYR agonist therapy compared to WT mice 
[135]. More specifically, both LepR and AMYR have been 
suggested to trigger JAK/STAT3 or ERK signaling cascades 
within POMC neurons, respectively, to drive such effects [71, 
124].  

Altogether this body of work highlights the amylin ac-
tions in mediating metabolic homeostasis processes. Im-
portantly, however, amylin’s actions extend beyond metabol-
ic regulation to other processes that are relevant to aging and 
AD development, discussed in the section below. 

4. AMYLIN LEVELS AND ALZHEIMER’S DISEASE  

The current literature on amylin signaling is conflicting 
regarding its role in AD pathogenesis. On one end, amylin 
has been hypothesized to drive AD pathogenesis. As the 
name suggests, amylin is an amyloid peptide that aggregates 
in vivo during pathological states, thus, it is not surprising 
that its discovery was in aggregates in the pancreas of T2DM 
patients as well as diabetic cats [61, 136, 137]. Interestingly, 
amylin oligomers and plaques have been reported to be pre-
sent in temporal lobes and within arteriole walls of both dia-
betic and non-diabetic patients with AD, as well as cogni-
tively unimpaired patients. These aggregates have been re-
ported to be mixed amylin- A� plaques or amylin-only 
plaques [138-140]. Amylin fibrils, like A�, are toxic to �-
islet cells in late stage T2DM, as well as neurons in vitro 
[141-143]. Recent work suggests that amylin may be serving 
as a seeding mechanism for amyloid beta in diabetic patients, 
thus further linking T2DM to AD and supporting the tradi-
tional view of amyloid aggregation as a ‘gain of toxic func-
tion’ mechanism in disease etiology [138, 144].  

The above evidence, however, is contested by studies 
showing negative correlations between amylin levels and dis-
ease pathogenesis. For example, Adler et al. (2014) showed 
that plasma amylin levels were negatively correlated with 
cognitive impairment [145]. Both mild cognitive impairment 
(MCI) and AD patients showed significantly lower levels of 
circulating amylin than age-matched control subjects. These 
findings were confirmed by others [146] (after adjusting for 
APOE4 allele, diabetes, stroke, kidney function and lipid pro-
file [147]. An additional study from Zhu and colleagues [148] 
found that plasma amylin levels and AD risk might fall on an 
inverted U-shaped curve, where lower and extremely high 
plasma amylin concentrations were associated with increased 
AD risk, whereas high plasma amylin did not show this rela-
tionship. Interestingly, this study also reported that plasma 
amylin concentrations shared a positive correlation with tem-
poral gray matter volume [149]. Collectively, this work sug-
gests that, at least at the level of circulating amylin, the rela-
tionship is one that is beneficial, not pathogenetic, thus sup-
porting a “loss of native function” mechanism of pathogenesis 
in conditions such as T2DM, as well as AD.  

4.1. Amylin Receptor Modulation in AD Models: Cogni-
tion 

Several animal studies using native amylin preparations 
or non-aggregating forms of amylin (pramlintide acetate) 
[150], which shows similar pharmacokinetics and pharmaco-

dynamics as human amylin [108], support these conclusions. 
Of note, pramlintide acetate therapy has shown beneficial 
outcomes in T2DM patients receiving insulin therapy, such 
as improving glycemic index, increasing weight loss in obese 
patients, and improving cognitive decline [151]. Of im-
portance, and in addition, pramlintide lowers postprandial 
glucagon in T2DM patients [152] without inducing hypogly-
cemia [153]. These benefits also extend to cognition and 
mitigating AD-related pathogenesis.  

Adler et al. (2014) found that a five-week chronic infu-
sion of pramlintide in SAMP8 mice (a model of accelerated 
aging) improved novel object recognition, a hippocampal 
formation dependent memory test. These benefits were 
linked to increased expression of antioxidant enzymes and 
synaptic markers, including synapsin I and CDK5 [145]. 
This group extended this work to an APP/PS1 AD mouse 
model [154], where they showed that pramlintide therapy 
rescued hippocampal spatial memory deficits [155]. Addi-
tional studies have confirmed these findings in other mouse 
AD-mouse models. Both human amylin and pramlintide, in 
5XFAD and Tg2576 mice, improved Y maze and MWM 
performance [156], an aspect that was demonstrated to be 
AMYR dependent [157].  

As initially discussed, however, whether amylin receptor 
activation is beneficial or detrimental in AD is controversial. 
This is evidenced by data demonstrating that blocking recep-
tor activation, thus inhibiting amylin function, is beneficial 
in AD pathogenesis. AC253 or cyclic AC253(cAC253) an-
tagonists reportedly improved T-maze and MWM in 8 mos. 
TgCRND8 AD mice [56, 158]. AC253 and cAC253 were 
suggested to improve memory deficits through increased 
synaptic markers, synapsin I and synaptophysin [56, 158]. 
Kimura and colleagues (2016) demonstrated that high doses 
of (50nM) human amylin induce long-term depression 
(LTD) in CA1 hippocampal slices of older TgCRND8 mice, 
suggesting that amylin receptor antagonism would result in 
benefits [159]. However, it is important to note that the high 
dose and advanced stage of pathology in these mice could 
have confounded the resulting conclusions. Interestingly, the 
same authors reported that pramlintide application to CA1 in 
hippocampal slices induced long-term potentiation (LTP), 
important for memory formation, compared to controls, and 
suggested that pramlintide served an antagonist function, an 
aspect that is not well supported, at least in vitro [108].  

Genetic manipulation of amylin receptor components in 
AD models suggests that amylin receptor activation may be 
detrimental in AD models. For example, a recent study from 
Patel et al. (2020) [160] demonstrated that depletion of amy-
lin function via a 50% hemizygous CalcR knockdown in a 
TgCRND8 or 5XFAD rescued LTD and cognitive deficits in 
an MWM task observed in this mouse. However, it is im-
portant to note that the knockdown of the CalcR is not spe-
cific to amylin action.  

4.2. Amylin Receptor Modulation in AD Models: AD Pa-

thology 

Amylin and A�, both being amyloids, possess similar 
secondary beta-pleated sheet structures and are both degrad-
ed by insulin-degrading enzyme (IDE) [143, 161]; because 
of this, it has been suggested that A� can bind to and signal 
through AMYR, specifically, AMYR3 [143, 162]. A� bind-
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ing to AMYR has been proposed to be detrimental by 1) 
toxic intracellular signaling and 2) inhibiting amylin binding 
to its cognate receptor and driving accumulation of amylin 
extracellularly [162, 163]. Furthermore, Mousa et al. (2020) 
proposed that amylin and pramlintide alter �-secretase subu-
nits, increasing their translocation to lipid rafts and increas-
ing total A� in TgSwDI mice [55]. However, it is important 
to note that while in vitro and ex-vivo work suggest benefits 
of AMYR blockade on amyloid-related parameters, in vivo 
studies using amylin receptor antagonists [56, 158] reported 
the lack of changes in A� burden nor APP processing.  

Contrary to the above studies, others have reported that 
amylin and pramlintide administration reduce A� plaque 
burden, again supporting a neuroprotective action of amylin 
within the CNS. Patrick et al. (2019) saw that chronic pram-
lintide reduced plaque burden and formic acid-soluble frac-
tion (fibrillar A�) A�1-40 and A�1-42 compared to APP/PS1 
saline controls [155]. The same study showed that hippo-
campal and cortical ADAM10 protein expression was in-
creased in pramlintide-treated mice compared to saline con-
trols, concluding that mediation of alpha secretase could be a 
potential mechanism of action of pramlintide to reduce amy-
loidosis [155]. In parallel, Zhu et al. (2015) saw that both 
human amylin and pramlintide decreased A� plaque size and 
burden, and suggested decreased BACE1 activity as a mech-
anism due to findings that amylin treated Tg2576 mice had 
reduced CTF� cleavage products, confirmed through de-
creased BACE1 activity [156]. Overall alteration of APP-
processing enzymes may speak to amylin modulation of APP 
enzyme trafficking or availability, a theory that remains to be 
carefully tested. 

Amylin administration has also been suggested to regu-
late A� clearance from the brain [156]. To this end, a single 
injection of either human amylin or pramlintide via IP or 
ICV leads to increased serum A�1-40 and A� 1-42 24 hours 
later in both mouse models, suggesting changes in A� efflux 
by amylin [156]. This mechanism of A� clearance has been 
proposed to be via AMYR activation within cerebral arteries, 
causing vasodilation, increasing cerebral blood flow, thus 
increasing A� efflux from the brain [164, 165].  

Recent reports also suggest the ability of amylin to regu-
late tau pathology. For example, amylin has been shown to 
interact, via co-localization, with MAP2 and tau in hippo-
campal cells of individuals with AD, implicating negative 
protein-protein alterations that promote tau aggregation 
[166]. Conversely, Zhu et al. (2017) reported that amylin 
significantly decreased phosphorylated Ser396/Ser 404 Tau 
(PHF-1) and p25 in 3XFAD mice, compared to controls, 
thus reducing pathology. Additionally, this study also found 
that AC253 blockade of AMYR blocked these effects [157]. 
However, the relationship between amylin and tau and the 
impact of amylin receptor agonism or antagonism on tau 
pathology remains fully explored. Importantly, how such 
regulation or even which receptor subtype mediates A� and 
tau protein burden or clearance remains unknown.  

4.3. Amylin Receptor Modulation in AD Models: Oxida-

tive Stress & Inflammation 

As mentioned previously, oxidative stress and inflamma-
tion commonly seen in T2DM and AD are detrimental to 
neuronal function, contributing to cellular damage and syn-

aptic dysfunction [167, 168]. In vitro data also supports a 
potential antioxidant function for amylin [155]. Therefore, a 
mechanism of action of amylin/pramlintide associated with 
cognitive benefits in AD could also involve such a mecha-
nism. To this end, within the CNS, pramlintide treated 
SAMP8 [145] and APP/PS1 mice [155] showed a profound 
impact on stress-related enzymes including hemoxigenase-1 
(HO1) and glutathione (GPx) and manganese superoxide 
dismutase (MnSOD) in vivo and in vitro. 

A well-known source of oxidative stress stems from in-
flammatory processes. In connection with this, Fu et al. 
(2017) demonstrated that AMYR activation may be involved 
in microglial activation. Both CalcR and RAMP3 were 
shown to be expressed in human fetal microglia, and their 
activation results in increased intracellular Ca

2+
, an action 

associated with microglial activation. This effect was dimin-
ished by AMYR antagonism using cAC253. Nevertheless, 
like the findings for cognition and pathology, the above find-
ings have also been contradicted. To this end, Wang et al. 
(2015) demonstrated that amylin attenuated LPS induction of 
CD68, a proinflammatory marker, in a microglia BV2 cell 
line. Additionally, knockdown of RAMP3, via siRNA, abol-
ished amylin-mediated inhibition of CD68, suggesting that 
AMYR3 may be responsible for this relationship. In vivo 
work in the 5XFAD mouse showed lower expression of ion-
ized calcium-binding adaptor molecule 1 (IBA-1) and dimin-
ished microglial activation. Importantly, co-administration of 
AC253 + amylin blocked this reduction of neuroinflamma-
tion, suggesting that AMYR activation may mediate anti-
inflammatory pathways [157]. Together, while the data are 
conflicting, the presence of amylin AMYR in microglia sug-
gests a direct inflammation regulatory role for this peptide 
that should be further explored.  

CONCLUSION 

The work described above supports a much more com-
plex role for the peptide amylin than previously thought. 
Functions for this peptide expand beyond the traditional pe-
ripheral metabolic regulatory roles to include several CNS 
functions, such as long-term energy balance, reward func-
tions, and, reviewed in detail here, cognitive functions and 
cellular endpoints associated with AD development (Table 
1). The most attention-grabbing aspect of amylin research in 
AD is the directly conflicting reports that amylin agonism 
and antagonism are therapeutically beneficial in the disease. 
To this end, studies support both a ‘gain-of-toxic-function’ 
by amylin aggregation, either by providing a seed for Aβ 
[55, 56], or driving toxicity through its receptor [159, 162], 
as well as a beneficial effect of amylin or analog therapy 
[155-157, 164]. The latter supports the hypothesis that ag-
gregation-mediated depletion of free amylin may lead to a 
“loss of native function”, an aspect that is supported by neg-
ative correlations between free amylin and AD in human 
studies [149, 155] (Fig. 1).  

The key to resolving some of these conflicts could lie in 
delving deeper into the complex amylin signaling pharmacol-
ogy. This is particularly critical, given that amylin does not 
have its own receptor but rather signals through two subtypes 
of the calcitonin receptors when coupled to three potential 
modulating receptor proteins. Additional complexity is added 
to this already complicated system by the differential 
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Table 1.  A condensed list of studies that evaluated amylin impact on cognition, amyloid and tau pathology, OS, inflammation, and 

signaling that utilized AD rodent and cellular models discussed within this review.  

Amylin Findings in Alzheimer’s Disease Literature 

Study Model Treatment Findings 

Lim et al., 2010 SHSY5Y  Fibular hAMY or A� 
Increased cytotoxicity LDH 

Reduced mitochondrial oxygen consumption 

Adler et al., 
2014 

Human 

 

 

SAMP8 mice 

---------- 

 

 

PRAM 

MCI and AD patients have significantly decreased plasma amylin compared to 

normal aging individuals 

PRAM increased Novel Object Recognition task  

PRAM increased synaptic markers 

PRAM increased Cdk5 

Qui et al., 2014 Human ---------- 
Amylin plasma positively correlated with verbal memory and vasoconstriction 

tasks 

Zhu et al., 2015 

5XFAD & Tg2576 

 

 

 

Human 

hAMY or PRAM 

 

 

 

AD & Cognitively unim-

paired 

Reduced A� plaque size 

Increased CSF A�1-42 

Improved Y maze & MWM performance 

Tg2576 + hAMY only- decreased CTF� 

Plasma amylin positively correlates with A�1-40 and A�1-42  

 

Soudy et al., 
2016 

TgCRND8 

 

 

 

HEK293 

AC253 

 

 

 

AC253, cAC253 

AC253 improved T Maze and MWM performance  

No differences in A��pathology 

AC253 increased synaptic markers 

AC253 decreased microglia activation 

Blocked hAMY-induced cAMP (dose dependent manner) 

Kimura et al., 
2016 

TgCRND8 

Fibular hAMY or A� 

 

PRAM 

Depressed hippocampal LTP 

 

Increased hippocampal LTP 

Verma et al., 
2016 

Humans (T2DM + 

AD) 

 

HIP rats 

 

C57BL6/J 

--------- 

 

--------- 

 

Daily hAMY 

 

Daily hAMY 

Neuronal amylin aggregates + decreased membrane integrity  

 

 

Neuronal amylin aggregates + decreased membrane integrity  

Neuronal amylin aggregates + decreased membrane integrity  

Tao et al., 2018 Healthy elderly  PRAM Single PRAM dose increased A�1-42 efflux 

Wang et al., 
2017 

BV2 (microglia 

line) 

5XFAD 

Amylin  

 

Amylin 

Amylin reduced LPS-induced Iba-1 & CD68 phagocytic microglial marker 

Amylin reduced amyloid and tau pathology 

Amylin “corrected” mitochondrial gene expression (microarray) 

Zhu et al., 2017 

5XFAD 

 

 

3xTgAD 

hAMY or hAMY + 

AC253 

 

 

 

hAMY or hAMY + 

AC253 

hAMY reduced A��pathology; AC253 attenuated these results 

 

reduced tauopathy 

hAMY decreased p25 

 

both models- hAMY reduced microglia activation, AC253 attenuated 

hAMY improved Y maze and MWM  

(Table 1) contd…. 
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Study Model Treatment Findings 

Fu et al., 2017 

5XFAD

 

Human fetal micro-

glia 

cAC253, hAMY, AB 

 

cAC253, hAMY, AB 

cAC253 reduced A��pathology 

hAMY & A� increased inflammation  

AC253 inhibited oligomeric hAMY and AB induced Ca+2 influx 

Zhu et al., 2019 Human ---------- 

Plasma amylin correlated with brain volume 

Plasma amylin concentration was correlated with AD-incidence on a U-shaped 

curve 

Patrick et al., 
2019 

APP/PS1  

 

 

 

SHSY5Y 

PRAM 

 

 

 

PRAM 

PRAM improved MWM 

PRAM reduced A��pathology 

PRAM increased OS enzymes 

PRAM increased ADAM10 (CTX & HIPP), increased BACE1 (HIPP) 

Reduced OS-induced toxicity 

Patel et al., 2020 
5XFAD 

TgCRND8 

50% hemizygous CalcR 

KD 

(both strains)  

Reduced A� pathology

Improved MWM task 

Mousa et al., 
2020 

TgSwDI Amylin, PRAM 
Amylin and PRAM alter y-secretase subunits, increasing transportation to lipid 

rafts 

 

 

Fig. (1). The proposed signaling relationships between amylin, pramlintide (PRAM), and AMYR in AD as discussed throughout this review 

of the current literature. Top Left: Amylin aggregates (also mimicked by AMYR antagonist) may serve as a “loss of function hypothesis” of 

normal AMYR downstream signaling during Alzheimer’s disease (AD) or metabolic dysregulation by blocking the receptor. It is proposed 

that due to this loss of amylin, there will be toxic consequences such as increased A� pathology, Tau phosphorylation and disruption of cog-

nitive processes. Top Right: Proposed therapeutic approach signaling of amylin, PRAM and amylin as monomers activating AMYR in the 

brain leads to downstream adenylate cyclase activation to increase ERK signaling that leads to increased neuroprotective effects. Bottom 

Left: “Gain of Toxic Function Hypothesis”, higher concentrations or amylin oligomers/fibrils activating AMYR may cause the activation of 

Voltage-gated Ca
2+

 ion channels, to open leading to an excitotoxicity state due to chronic intracellular Ca
2+

 in state of disease or pathology, 

such as AD or Type II Diabetes. Bottom Right: Proposed therapy for this rationale is to block AMYR with antagonists that inhibit potential 

toxic downstream signaling. Created with BioRender.com. (A higher resolution/colour version of this figure is available in the electronic 
copy of the article). 
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expression of these combinations across regions within the 
CNS, all of which could have slightly different affinities for 
the ligand. Because of this complex receptor anatomy and the 
lack of a unique amylin receptor, the use of modern genetic 
tools to knock out a receptor becomes limited. Under genetic 
knockdown of calcitonin receptor or RAMPS one inherently 
disrupts both calcitonin and amylin signaling or any of the 
receptors that are modulated through RAMP binding, i.e., cal-
citonin-like receptor and adrenomedullin receptor.  

Together, the above highlights a key needed for “tradi-
tional” pharmacological studies, including detailed pharma-
cokinetics and pharmacodynamic studies of the native hor-
mone, analogs, and existing antagonist in relation to each 
receptor subtype and CNS cell type. It also spawns for the 
development of novel pharmacology development in this 
area, one which utilizes modern computational modeling and 
high throughput techniques to understand how these peptides 
bind to each receptor subtype and activate or inhibit it. The 
development of specific antagonist for each receptor subtype 
based would allow for a much deeper understanding of amy-
lin signaling in vivo.  

Lastly, in relation to AD treatment, it will also become 
critical to determine the effects of such molecules under 
carefully controlled Aβ levels as well as carefully controlled 
measurements of aggregation, amyloid-beta processing, and 
degradation since one can impact the levels of the other. To-
gether, however, the study of this pharmacological paradox 
is an opportunity to foster a deeper understanding of physio-
logical amyloid functions and novel therapies in disease that 
is unfortunately devoid of pharmacological interventions 
beyond those aimed at lowering amyloid-beta.  
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