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ARTICLE INFO ABSTRACT

Keywords: Hepatocellular carcinoma (HCC) is an immune-related tumor, that the type and number of tumor-infiltrated
In}mune. cells immune cells can serve as biomarkers for the clinical application. In this study, we constructed the immune
Diagnosis model for diagnostic and prognostic prediction of HCC based on the systematic bioinformatics analyses on the
Prognosis . component of immune cells from large samples transcriptome. CIBERSORT analysis found that the component of
Hepatocellular carcinoma . . . .

Biomarkers immune cells between 513 HCC and 473 adjacent normal tissues was different. MO macrophages and regulatory T

cells were mainly enriched in tumor tissues, whereas the CD8" T cell and activated CD4" memory T cells were the
most in normal tissues. Using random forest and LASSO analyses, eleven immune cell types were mined out to
construct the immune diagnostic model (IDG), which showed high efficiency in distinguishing cancer from
normal tissues both in testing and validation groups. In addition, the immune prognostic model (IPG) consisting of
five types of immune cells was constructed using the LASSO-Cox algorithm. It showed that HCC patients of the
high-risk group had a significantly shorter survival time than those of low-risk group in testing, validation, and
entire cohorts. Besides, Nomogram plots and decision curve analyses revealed that the IPG was positively asso-
ciated with the HCC clinical classification of the Barcelona Clinic Liver Cancer (BCLC) stage, and showing more
accuracy of prediction than independent BCLC stage. Related analyses found that IDG positively correlated with
epithelial-mesenchymal transition (EMT) and cytotoxic factor-related genes and negatively correlated with im-
mune checkpoint regulators related genes. From the GSEA analysis of the biological function of genes related to
IPG, it was found that the genes of the high-risk group were enriched in some tumorigenesis related pathways,
such as DNA replication, cell cycle, and PPARA. Therefore, this study identified IDG and IPG as efficient bio-
markers for the diagnosis and prognosis of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the malignant tumors
threatening human health. There has been an increasing trend in the
incidences of HCC worldwide. It ranks sixth and third for the incidence
and mortality of malignant tumors, respectively [1]. Current treatment
strategies of HCC include surgical resection, chemoradiotherapy, and
immunotherapy. However, since the insidious onset and the lack of early
diagnostic and prognostic biomarkers, more than 80% of HCC patients
are generally in the middle and late stage at the time of treatment. This
results in poor prognosis and loss of the optimal treatment opportunity
[2]. Therefore, efficient diagnostic and prognostic specific biomarkers
are critical to improving the clinical management of HCC.
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The liver is a vital immune organ with unique immune cells that helps
in the maintenance of the normal immune function of the human body.
Numerous studies have shown that the immune dysregulation of the
liver, such as immune surveillance escape, immune microenvironment
alteration, and immunosuppression, is an important mechanism for the
development and distant metastasis of HCC [3]. Recent studies have
found infiltrated immune cells as an important part of the immune
microenvironment that influences the occurrence of HCC [4]. Moreover,
it was previously revealed that tumor-infiltrating immune cells are
closely related to the prognosis of HCC and the target of immunotherapy
[5]. Lessons learned from these studies suggest that different types of
immune cell infiltration could be novel potential biomarkers for the
diagnosis and prognosis of HCC.
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Infiltration of various cell types mainly made up of B-cell, plasma-cell,
and T-cell, in tumor tissue were characterized for better prognosis [6]. On
the contrary, the tumor tissues enriched with high infiltration of regu-
latory T cells (Tregs), macrophages, and mast cells could have a poor
prognosis [7]. Using the HCC mouse model to analyze the
tumor-associated antigens, Liu et al. found that CD8" T cells exhibited
exhaustion-like phenotypes, while macrophages showed accumulation
during the progression of HCC. Their findings indicated immune check-
point inhibitors and immunotherapies based on infiltrating immune cells
for HCC [8,9]. However, the traditional methods, such as flow cytometry
and immunohistochemistry, can neither assess entirely different immune
effector cell types nor clearly distinguish between groups of closely
related cells. This is mainly due to the limited number of immune
markers that current techniques can simultaneously measure. Further-
more, the targets of immune cells in small sample experiments lack
specificity and are not representative enough to be used to guide the
clinical application [10]. As an alternative, bioinformatics analysis based
on big data transcriptome has made it possible for a comprehensive
investigation of the tumor-infiltrated immune cells and mining out of the
immune-related biomarkers for tumors.

To improve the diagnosis and prognosis of HCC, the present study has
characterized the infiltrated immune cells composition of tumor tissues
from gene expression profiles using the Estimating Relative Subsets of
RNA Transcripts (CIBERSORT) algorithm. The random-forest analysis,
least absolute shrinkage, and selection (LASSO) algorithm, logistic
regression analyses were applied to found out the immune-related bio-
markers. The immune diagnostic model (IDG) and immune prognostic
model (IPG) that provided the potential biomarkers for the diagnosis and
prognosis of HCC patients were then constructed. Further analyses of
bioinformatics associations revealed the IPG was related to clinical
characteristics and molecular subtypes. The research flow chart is pre-
sented in Fig. 1.
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2. Materials and methods
2.1. Dataset acquisition

The data used in this study were obtained from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) public database.
It contains high-throughput gene expression data of all kinds of diseases
submitted by research institutions around the world [11]. To avoid
experimental bias, we downloaded HCC data from four different research
institutions, including GSE20140 (GSE20140-GPL5474,
GSE20140-GPL8432, GSE20140-GPL18461), GSE10186, GSE54236, and
GSE76427. The four datasets selected had prognostic information of the
HCC tissues and a sample size greater than 50. To obtain more accurate
results, the preliminarily processed data were divided into three groups:
testing, validation, and entire cohorts, for experimental verification. The
chip probe was then mapped to the human gene symbol using the R
Bioconductor package. A total of 80 tumor tissues in GSE20140 and
GSE10186 datasets had duplicates. Ultimately, we obtained 986 tissues
that included 513 tumors and 473 normal tissues (Supplementary
Table 1). The dataset GSE76427 had 115 tumor and 52 normal tissues
containing the clinical information, such as age and gender. Barcelona
Clinic Liver Cancer (BCLC) clinicopathological stage was used for asso-
ciation analyses.

2.2. Estimation of infiltrated immune cells

CIBERSORT was used to assess the proportion of the infiltrated im-
mune cells in the tumor and normal tissues. It is a method for transferring
transcriptomics data to the immune cell component of complex tissues to
analyze the profiling of immune cell fractions from bulk tissue. The
standard genes expression data were uploaded to the CIBERSORT web
portal. The LM22 genes signature and 1000 permutations were used to
quantify the proportions of 22 subsets of infiltrated immune cells [12].
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‘ CIBERSORT estimation 986 tissues (513 tumor and 473 normal) ‘
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Fig. 1. Flow Chart of this study.
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The infiltrated immune cells included T cells, B cells, macrophages,
dendritic cells, NK cells, and myeloid subset cells. An empirically defined
global P-value was determined to measure the confidence of deconvo-
lution results of each tissue. The P-value of each tissue calculated by the
CIBERSORT algorithm was <0.05, indicating that the population of the
immune cell was correct. For each tissue, the value calculated by
CIBERSORT was normalized, and immune cell type fractions summed up
for direct comparison of cellular component across different phenotypes
of immune cells and datasets.

2.3. Construction of the diagnostic and prognostic model

The tissues were randomly divided into testing and validation groups
using the R Sample function package. The LASSO and random-forest
analyses were conducted to select the suitable immune cell fractions.
The overlapping markers were obtained between the two methods. The
IDG was constructed based on the coefficients of each selected marker
using a logistic regression algorithm. For the construction of IPG, we used
the LASSO-Cox algorithm, an algorithm of estimation on parameters in
high-dimensional models [13], to reduce the dimensionality and to select
the most significant suitable immune cell fraction. The IDG was built
based on the corresponding coefficients by using the Cox regression
analysis.

2.4. Associated analysis and biological function on IPG

The relationship between IPG and gene signatures linked to tumor
and immunity was analyzed by spearman’s correlation test and the cor-
relation diagram depicted using the Corrplot R package. The associations
between the IPG and clinical characteristics were evaluated via Nomo-
gram plots using the R package. The calibration curves were drawn to
compare the ideal model and observed outcome. The decision curve was
used to assess the discrimination of the IPG and BCLC stage. We con-
ducted the Gene set enrichment analysis (GSEA) algorithm to analyze the
biological functions of the genes using the JAVA program based on
molecular signatures database of “c2. cp.kegg.v6.1. symbols” and “c2.
cp.biocarta.v6.1. symbols”.

2.5. Statistical analysis

All the statistical analyses in this study were performed using R
software 3.5 and SPSS software 25. Student’s t-test and Mann Whitney U
test were used to make comparisons between groups for the normally
distributed variables and nonnormally distributed variables, respec-
tively. The Kaplan-Meier (KM) method was used to depict the survival
curve to estimate the survival probability of patients. The statistical
differences among means were tested using the log-rank test. The
receiver operating characteristic (ROC) curves, generated by the pROC R
package, were used to determine the sensitivity and specificity of KM
analysis based on the area under the ROC curve (AUC). The violin plot
obtained from the Vioplot R package was used to represent the different
distribution of IPG among datasets. Combining with the clinical char-
acteristic as concomitant variables, univariate and multivariate Cox
regression analyses were undertaken to verified potentially prognostic
value of IPG. All the statistical tests were two-tailed and statistical sig-
nificance was defined as P value < 0.05.

3. Results

3.1. The difference of infiltrated immune cells between tumor and normal
tissues

A total of 513 tumor and 473 normal tissues were subjected to
CIBERSORT screening. Among these, 164 tumor and 218 normal tissues
(P < 0.05) were used to investigate the composition of infiltrated im-
mune cells in tumor and normal tissues using the CIBERSORT method.
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The results showed a significant difference in the fractions of immune
cells between tumor and normal tissues (Fig. 2A). The mast cells, mac-
rophages, and T regs cells were the main component of tumor tissues,
whereas the normal tissues consisted mainly of CD4" T and CD8™" T cells.
We also found that counts of the MO macrophages and Tregs in the tumor
tissues were consistently higher than in normal tissues. On the contrary,
normal tissues had more CD8™ T cells and activated CD4" memory T cells
that tumor tissues.

The summary analysis of the distribution of infiltrated immune cells
across the clinical characteristics in tumor tissues showed that plasma
cells, M2 macrophages, activated CD4" memory T cells, MO macro-
phages, and activated mast cells had the greatest enrichment (Fig. 2B).
Even after regrouping the tumor tissues by clinical characteristics, such
as the BCLC stage, the proportion of the five types of immune cells
remained the same. This suggested their potential role for the biomarker
of HCC. The results indicated a significant difference in the composition
of infiltrated immune cells between tumor and normal tissues, suggesting
the potential value of using infiltrated immune cells in the diagnostic and
prognostic evaluation of HCC patients.

3.2. Construction of the immune diagnostic model

The 164 tumor and 218 normal tissues that satisfied the condition of
P < 0.05 by CIBERSORT screening were randomly divided into testing
(267 tissues) and validation (115 tissues) groups. We performed random
forest and LASSO analyses to mine out the key biomarkers of infiltrated
immune cells. Random forest analysis, an intelligent data mining algo-
rithm [14], was applied to identify the most important immune cells that
can be used to distinguish between tumors and normal tissues (Fig. 3A).
A total of 14 immune cells that could clearly separate the tumor from the
normal tissues well were obtained. (Supplementary Table 2). The LASSO
analysis, a shrinkage estimation [15], was used to select the most
significantly immune cells to differentiate tumor and normal tissues
(Fig. 3B). It identified 15 types of immune cells with optimal values when
lambda = 0.000001 (Supplementary Table 2). Eleven biomarkers that
overlapped between the two analyses were retained (Supplementary
Table 3). We then constructed the immune diagnostic model (IDG) based
on the eleven biomarkers using a logistic regression algorithm. The
selected immune cells were assessed as continuous variables in this
model. When the IDG values were compared, tumor tissues had signifi-
cantly higher values than normal tissues in testing, validation and entire
sets of all datasets except GSE54236 (Fig. 3C). The ROC curves showed
that the AUC value for the testing and validation sets were 0.905 and
0.852, respectively (Fig. 3D), indicating that IDG could be used to
effectively distinguish the tumor from normal tissues.

3.3. Construction of the immune prognostic model

A total of 276 tumor tissues that survival information and met the
criteria for prognostic analysis were included in IPG construction. These
tissues were separated into testing (193 patients) and validation (83
patients) groups. The LASSO-Cox algorithm was an algorithm of esti-
mation on parameters in high-dimensional models [13], was performed
to reduce the number of candidate immune cells and to select the most
significant survival-associated immune cells (Fig. 4A). Five key bio-
markers were identified for IPG construction (Supplementary Table 4).
The IPG model was constructed through a Cox analysis in the testing
groups. The AUC values were determined to assess the predictive ability
of IPG (Supplementary Table 5). Based on the median value (0.411) of 5
key biomarkers of the testing cohort, patients were divided into high-risk
and low-risk cohorts. Kaplan-Meier (KM) analyses showed that the
prognosis of patients in the low-risk cohort was better than in the
high-risk cohort (p < 0.0001) (Fig. 4B). Similar results were obtained in
validation (p = 0.006), and entire (p < 0.0001) (Fig. 4C and D) cohorts.

To further verified the prognostic value of IPG, we drew the nomo-
gram plots by combining the prognostic score of IPG on the GSE76427
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Fig. 2. The analysis of the composition of infiltrating immune cells. (A) Differences in immune cell fraction between tumor and normal control tissue. (B) The

summary of immune cell fraction distributed across the clinical characteristics in

tumor tissues. 4 series stand for 4 datasets, including GSE20140-GPL18461,

GSE20140-GPL5474, GSE54236, and GSE76427; Total represents all the 6 datasets in this study; the red squares represent the key immune cells in the tumor tis-
sues with higher proportions than normal tissues; the blue squares show the key immune cells in the normal tissues with higher proportions than tumor tissues.
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Fig. 3. Construction of immune diagnostic model based on the infiltrating immune cells. (A) Multi-dimensional scale plot of an adjacent matrix using random forest
analysis. (B) LASSO regression model used to reveal the misclassification error of different quantitative variables. The red dots and the grey lines show a misclas-
sification error value and standard error (SE), respectively. The vertical dashed lines on the left and right represent the minimum criteria and 1-SE criteria,
respectively. The lambda was randomly selected parameter. (C) Comparison of IDG value between normal and tumor tissues across different datasets. T: tumor tissues;
N: normal tissues. (D) ROC curves of the IDG used to demonstrate the ability of IPG to differentiate between tumor and normal tissues.

dataset (Fig. 5A). The length of the line represented the degree of in-
fluence of different factors and the effect of different values of factors on
the outcome. The nomogram plots showed that both the prognostic score
of IPG and BCLC stage had a significant influence on the prognosis of HCC

patients. Moreover, the prognostic score of IPG contributed to the highest
risk points (0-95) than other clinical characteristics. The nomogram plots
used in our study performed relatively well when compared to the ideal
model (Fig. 5B). Besides, the decision curve showed that the nomogram
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IPG for the prognostic evaluation of HCC patients was more accurate and
informing than the BCLC stage (Fig. 5C). To observe the relationship
between IPG and clinical characteristics (age, gender, and BCLC stage),
univariate (P = 0.037) and multivariate (P = 0.034) analyses were used
to verify the independency of IPG regardless of adjusting the clinical
characteristics (Supplementary Table 6). These results indicated that IPG
was a robust biomarker for the prognostic evaluation of HCC patients.

3.4. Analysis of association of IPG with clinical characteristic,
inflammation/related genes, and biological process

We investigated the relationship between IPG and clinical charac-
teristics and found that the score of IPG varied across the BCLC stage and
survival status. The score of IPG increased as the BCLC stage went up (p
= 0.038), and scores of IPG in the dead group were higher than alive
groups (p = 0.032) (Fig. 6A). We then investigated the association be-
tween IPG and inflammation-related genes, including epithelial-
mesenchymal transition (EMT), cytotoxic factor, and immune check-
point regulators. IPG was shown to positively correlate with all the genes
of EMT and cytotoxic factor, and negatively correlate with several genes
of immune checkpoint regulators, such as CTLA4 and LAG3 (Fig. 6B).
Also, the biological process of IPG was analyzed through GSEA methods
to elucidate its related functional pathway. Different analyses of genes
between high-risk cohort and low-risk cohort were made. Both in mo-
lecular signatures database of “c2. cp.kegg.v6.l. symbols” and “c2.
cp.biocarta.v6.1. symbols”, the genes of the high-risk cohort were

enriched in some the tumorigenesis related pathways, including DNA
replication, cell cycle, and PPARA pathway. The genes of the low-risk
cohort were mainly associated with metabolism pathways, such as
drug metabolism cytochrome p450, fatty acid metabolism, and tyrosine
metabolism (Fig. 6C and D). The association analyses revealed that IPG
correlated with some key clinical characteristics and genes and partici-
pated in several important biological functions. These findings showed
the potential of IPG as a prognostic biomarker for HCC patients.

4. Discussion

The development of HCC is associated with the immune mechanism
of the host [16]. Studies have shown that the liver immune microenvi-
ronment is reprogrammed under the influence of inflammation, which
was closely related to HCC. HCC occurs mainly as a result of pathological
changes in the long-term inflammatory response to chronic viral hepatitis
[17]. The homeostasis of the immune microenvironment is the premise
to maintain liver function [18]. However, the liver homeostasis of infil-
trated immune cells is destroyed under chronic infection, prompting
macrophages, neutrophils, mast cells, lymphocytes, and dendritic cells to
release a large number of inflammatory factors to form inflammatory
microenvironments. The inflammatory microenvironment promotes
HCC induction, accelerates tumor progression, and contributes to the
formation of new blood vessels [19,20]. Thus, much attention has been
drawn to the component of infiltrated immune for its ability to be utilized
as biomarkers for the clinical implication and the pathogenesis of HCC
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[21].

Although the insights of infiltrated immune cells have not benefited
much the practical clinical application in HCC, they have provided a new
strategy for the diagnosis and treatment. In this study, we used multi-
dimensional bioinformatics analyses to examine the component of infil-
trating immune cells in a large sample of HCC tissues and established IDG
and IPG for the clinical implication. Our study not only demonstrated the
IDG and IPG to be potential biomarkers for the HCC patients but also
shown the infiltrating immune cells participating in its pathogenesis.
Besides, our study overcame the difficulty of tissue acquisition, small
sample size, and poor homogeneity. This research has solved the problem
of single-dimensional analysis, lack of immune markers, and poor
discrimination ability.

Early diagnosis and prognostic evaluation of HCC is the premise to
improve the effect of treatment on patients. Therefore, specific markers
for timely diagnosis and prognosis of HCC should be developed. A study
on the predictive treatment efficacy of sorafenib in HCC patients using
flow cytometry revealed that a high baseline CD4" T effector/Treg ratio
could be used as a biomarker for significant prognosis in HCC patients
with sorafenib treatment [22]. However, the simultaneous evaluation of
effector immune cells, such as CD8™, dendritic cells, and NK cells, in HCC
patients, was not comprehensively performed on this platform. Similarly,
using immunohistochemistry to investigate the potential biomarker of
PD-L1/PD-1 for HCC, it was found that PD-L1 expression of macrophages
cells was positively associated with the overall survival of the patient.
This indicated that PD-L1" macrophages were characterized by immune
activation with high levels of CD8™ infiltration cells and immune-related
gene expression [23]. However, the characterization of the effects of the
immune cells on different cell types was limited, and the distinction of
cells between tumor and normal tissue was weak. For these reasons, big
data analytics on genes using high-throughput technology has been
developed and verified for the screening of tumor biomarkers based on
gene expression [24]. Therefore, the use of transcriptomic data to
calculate tumor immune microenvironment could efficiently describe
multiple immune cell phenotypes of different tissues in a large sample
size patient cohort [25].

In this study, we investigated the composition of infiltrated immune
cells through gene expression using the CIBEROSORT algorithm. We
observed differences in the characteristics of the immune cell between
tumor and normal tissues. For instance, macrophages and Tregs were
more in the tumor tissues than in the normal tissues. These tumor-
associated macrophages (TAM) not only prevented T cells from attack-
ing tumor cells but also secreted growth factors to promote tumor
angiogenesis [26]. The immunosuppressive cells in the tumor microen-
vironment, such as Tregs, plays an important role in the occurrence and
development of tumor by inhibiting the function of immune effector cells
through various mechanisms [27]. We hypothesized that the higher
proportions of Tregs and macrophages in the tumor microenvironment
contributed to tumorigenesis. On the other hand, we found that the
proportion of CD4" T cells and CD8" T cells in the normal tissue were
higher than tumor in tissues, which was attributed to the mechanism
employed by T cells to find and kill cancer cells [28].

Our research showed the high AUC values of IDG for HCC diagnosis
and significantly distinguished KM curve of prognosis in high- and low-
risk groups by IPG. Thus, we strongly believe that our IDG and IPG
could be potential biomarkers for the clinical implication of HCC pa-
tients. A general study used a high-throughput sequence to analyze the
differential expression genes between tumor and normal and to identify
the target for the pathogenesis and clinic of disease [29]. Nevertheless,
data based on high-throughput sequencing might not be that clinically
useful, hence the need to determine a suitable and effective scoring
model to interpret these data clinically [30]. Our study enhanced the
accuracy of diagnostic and prognostic prediction markedly by estab-
lishing the IDG and IPG based on a big sample size using systemic bio-
informatics. Moreover, the IDG and IPG were based on the immune
model, suggesting that they had a good practical clinical translation

Journal of Translational Autoimmunity 3 (2020) 100067

value. Similarly, some studies have used genes database to establish an
immune model score for the molecular classification and prognostic
prediction on HCC. For example, Yutaka et al. classified the immune
microenvironment of HCC into three distinct immunosubtypes [6], and
Daniela et al. characterized molecular features of immune cells that
infiltrate HCC [7]. By building IDG and IPG, our study has provided novel
methods to screen out the potential biomarker for HCC clinical
application.

The traditional HCC classification, such as the BCLC stage, TNM, and
differentiation grade, is still the most common clinical guidelines in
practice [31]. However, it has now been established that there may be
significant differences in the clinical outcomes of patients at the same
classification. The current classification of HCC neither provides
comprehensive prognostic information nor responds well to the thera-
peutic outcome [32]. Molecular typing can better subdivide liver cancer,
such as immune phenotype, cell origin, molecular pathway, mutation
status, and gene expression, to distinguish different subtypes of HCC
[33]. In this study, we also analyzed the association between IPG and
clinical characteristics. The prognostic ability of IPG in this study was
similar to that of the traditional BCLC stage. Our findings did not show
our IPG to be superior to the BCLC stage in practical clinical application.
Maybe the implementation of the IPG as a new component model for the
prognosis and the integration of the IPG and BCLC stage could improve
the prognostic evaluation of HCC patients.

The association analysis of IPG and molecular subtypes found that IPG
negatively correlated with the immune checkpoint regulators related
genes, such as CTLA4 and LAG3. This was in agreement with the immune
checkpoint inhibitors in cancer immunotherapy that showed CTLA4 and
LAGS3, as the common biomarkers for designing the immunosuppressive
site [34]. Furthermore, the GSEA analysis on the functional pathway
related to IPG supported the genes engaged in the mechanism of
tumorigenesis. Noteworthily, the GSEA result of low-risk cohort associ-
ated with multiple metabolism signatures. A growing number of studies
have shown the involvement of immunometabolism in immune cell
activation [35]. In particular, pathogen-mediated immune metabolism is
involved in the pathogenesis of diseases such as HIV and intestinal flora
[36,371.

Even though this study overcame the difficulty of tissue acquisition,
small sample size, and poor homogeneity, there were some limitations.
Our research was not comprehensive enough since it constructed the
model based on the analysis of the composition of the immune cells in the
HCC microenvironment only. The combination of the infiltrating of im-
mune cells, pathological type, genes classification, and single-cell
sequencing would be the best method to screen for HCC biomarkers.
Besides, our study did not contrast between the cases with immune-
checkpoint inhibitors and conventional therapy. Therefore, the utiliza-
tion of our IDG and IPG in diagnostic and prognostic of HCC is still
limited and needs further investigations. Furthermore, the component of
infiltrating immune cells was derived from the transcriptomes of
microarray using the CIBERSORT algorithm, which cannot be adopted in
clinical practice immediately. The use of gene expression to predict the
composition of immune cells remains to be explored.

5. Conclusion

This study has given a comprehensive analysis of the infiltrating
immune cells in the utility of diagnosis and prognosis and constructed the
IDG and IPG for the potential clinical application. The IDG and IPG may
be used as an effective biomarker for improving the diagnosis and
prognosis of HCC patients.
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