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Abstract

Regulation of gene expression is an important mechanism through which genetic

variation can affect complex traits. A substantial portion of gene expression variation

can be explained by both local (cis) and distal (trans) genetic variation. Much

progress has been made in uncovering cis‐acting expression quantitative trait loci

(cis‐eQTL), but trans‐eQTL have been more difficult to identify and replicate. Here

we take advantage of our ability to predict the cis component of gene expression

coupled with gene mapping methods such as PrediXcan to identify high confidence

candidate trans‐acting genes and their targets. That is, we correlate the cis

component of gene expression with observed expression of genes in different

chromosomes. Leveraging the shared cis‐acting regulation across tissues, we combine

the evidence of association across all available Genotype‐Tissue Expression Project

tissues and find 2,356 trans‐acting/target gene pairs with high mappability scores.

Reassuringly, trans‐acting genes are enriched in transcription and nucleic acid

binding pathways and target genes are enriched in known transcription factor

binding sites. Interestingly, trans‐acting genes are more significantly associated with

selected complex traits and diseases than target or background genes, consistent with

percolating trans effects. Our scripts and summary statistics are publicly available for

future studies of trans‐acting gene regulation.
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1 | INTRODUCTION

Transcription is modulated by both proximal genetic
variation (cis‐acting), which likely affects DNA regulatory
elements near the target gene, and distal genetic variation
(trans‐acting). This distal genetic variation likely affects
regulation of a transcription factor (or coactivator) that
goes on to regulate a target gene, often located on a
different chromosome from the transcription factor gene.
Expression quantitative trait loci (eQTL) mapping has
been successful at identifying and replicating single‐
nucleotide polymorphisms (SNPs) associated with gene
expression in cis, typically meaning SNPs within 1Mb of
the target gene. Because effect sizes are large enough,
around 100 samples in the early eQTL studies was
sufficient to detect replicable associations in the reduced
multiple testing space of cis‐eQTLs (Cheung et al., 2005;
Myers et al., 2007; Stranger et al., 2007).

Trans‐eQTLs have been more difficult to replicate
because their effect sizes are usually smaller and the
multiple testing burden for testing all SNPs versus all
genes can be too large to overcome. A few studies have
had some success; one that focused on known genome‐
wide association study (GWAS) SNPs, with a discovery
cohort of 5,311 individuals and a replication cohort of
2,775 individuals, identified and replicated 103 trans‐
eQTLs in whole blood (Westra et al., 2013). A recent
follow‐up to this study examined GWAS SNPs in 31,684
individuals and found trans‐eQTLs in 36% of SNPs tested
(Vosa et al., 2018). Unlike cis‐eQTLs, trans‐eQTLs are
more likely to be tissue‐specific, rather than shared
across tissues (Aguet et al., 2017; Vosa et al., 2018).
However, a large fraction (52%) of trans‐eQTLs colocalize
with at least one cis‐eQTL signal (Vosa et al., 2018).

Here, we apply PrediXcan (Gamazon et al., 2015) and
MultiXcan (Barbeira et al., 2019) to map trans‐acting
genes, rather than mapping trans‐eQTLs (SNPs). Our
method provides directionality, that is, whether the trans‐
acting gene activates or represses its target gene. We use
genome‐transcriptome data sets from the Framingham
Heart Study (FHS; Joehanes et al., 2017), Depression
Genes and Networks (DGN) cohort (Battle et al., 2014),
and the Genotype‐Tissue expression (GTEx) Project
(Aguet et al., 2017). We show that our approach, called
trans‐PrediXcan, can identify replicable trans‐acting
regulator/target gene pairs. To leverage sharing of cis‐
eQTLs across tissues and improve our power to detect
more trans‐acting effects, we combine predicted expres-
sion across tissues in our trans‐MultiXcan model and
show that it increases significant trans‐acting/target gene
pairs >10‐fold.

Pathway analysis reveals the trans‐acting genes are
enriched in transcription and nucleic acid binding

pathways and target genes are enriched in known
transcription factor binding sites, indicating that our
method identifies genes of expected function. We show
that trans‐acting genes are more strongly associated with
immune‐related traits and height than target or back-
ground genes, demonstrating that trans‐acting genes
likely play a key role in the biology of complex traits.

2 | METHODS

2.1 | Genome and transcriptome data

2.1.1 | Framingham Heart Study

We obtained genotype and exon expression array data
(Joehanes et al., 2017; Zhang et al., 2015) through
application to dbGaP accession phs000007.v29.p1. Genotype
imputation and gene‐level quantification were performed
by our group previously (Wheeler et al., 2016), leaving 4,838
European ancestry individuals with both genotypes and
observed gene expression levels for analysis. We used the
Affymetrix power tools suite to perform the preprocessing
and normalization steps. First, the robust multiarray
analysis protocol was applied, which consists of the
following three steps: Background correction, quantile
normalization, and summarization (Irizarry et al., 2003).
The summarized expression values were then annotated
more fully using the annotation databases contained in the
huex10stprobeset.db (exon‐level annotations) and huex10st-
transcriptcluster.db (gene‐level annotations) R packages
available from Bioconductor. The genotype data were then
split by chromosome and prephased with SHAPEIT
(Delaneau, Marchini, & Zagury, 2012) using the 1000
Genomes Phase 3 panel and converted to vcf format. These
files were then submitted to the Michigan Imputation
Server (https://imputationserver.sph.umich.edu/start.html;
Fuchsberger, Abecasis, & Hinds, 2015; Howie, Fuchsberger,
Stephens, Marchini, & Abecasis, 2012) for imputation with
the Haplotype Reference Consortium version 1 panel
(McCarthy et al., 2016). Approximately 2.5M nonambig-
uous strand SNPs with MAF> 0.05, imputation R2 > 0.8
and, to match GTEx gene expression prediction models,
inclusion in HapMap Phase II were retained for subsequent
analyses.

2.1.2 | Depression Genes and Networks

We obtained genotype and whole blood RNA‐Seq data
through application to the National Institute of Mental
Health (NIMH) Repository and Genomics Resource, Study
88 (Battle et al., 2014). For all analyses, we used the hidden
covariates with prior (HCP) normalized gene‐level expres-
sion data used for the trans‐eQTL analysis Battle et al.
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(2014) and downloaded from the NIMH repository. Quality
control and genotype imputation were performed by our
group previously (Wheeler et al., 2016), leaving 922
European ancestry individuals with both imputed geno-
types and observed gene expression levels for analysis.
Briefly, the 922 individuals were unrelated (all pairwise
< 0.05) and thus all included in downstream analyses.
Imputation of approximately 650 K input SNPs (minor
allele frequency [MAF]> 0.05, Hardy‐Weinberg Equili-
brium [p> 0.05], nonambiguous strand [no A/T or C/G
SNPs]) was performed on the Michigan Imputation Server
(Fuchsberger et al., 2015; Howie et al., 2012) with the
following parameters: 1,000G Phase 1 v3 ShapeIt2 (no
singletons) reference panel, SHAPEIT phasing, and EUR
population. Approximately 1.9M nonambiguous strand
SNPs with MAF> 0.05, imputation R2 > 0.8 and, to match
GTEx gene expression prediction models, inclusion in
HapMap Phase II were retained for subsequent analyses.

2.2 | Gene expression prediction models

Elastic net (alpha= 0.5) models built using GTEx V6p
genome‐transcriptome data from 44 tissues (Barbeira et al.,
2018) were downloaded from http://predictdb.org/ from the
GTExV6pHapMap20160908.tar.gz archive.

2.3 | Mappability quality control

Genes with mappability scores <0.8 and gene pairs with a
positive cross‐mappability k‐mer count were excluded
from our analysis (Saha & Battle, 2018; Saha et al., 2017).
Gene mappability is computed as the weighted average of
its exon‐mappability and untranslated region (UTR)‐
mappability, weights being proportional to the total
length of exonic regions and UTRs, respectively. Mapp-
ability of a k‐mer is computed as 1/(number of positions
k‐mer maps in the genome). For exonic regions, k= 75
and for UTRs, k= 36. Cross‐mappability between two
genes, A and B, is defined as the number of gene A
k‐mers (75‐mers from exons and 36‐mers from UTRs)
whose alignment start within exonic or untranslated
regions of gene B (Saha & Battle, 2018; Saha et al., 2017).

In addition, to further guard against false positives, we
retrieved RefSeq Gene Summary descriptions from the
UCSC hgFixed database on 2018‐10‐04 and removed
genes from our analyses with a summary that contained
one or more of the following strings: “paralog,”
“pseudogene,” “retro.”

2.4 | Trans‐PrediXcan
To map trans‐acting regulators of gene expression, we
implemented trans‐PrediXcan, which consists of two

steps. First, we predict gene expression levels from
genotype dosages using models trained in independent
cohorts to protect against false positives that may occur
by training and testing in the same cohort. As in
PrediXcan (Gamazon et al., 2015), this step gives us an
estimate of the genetic component of gene expression,
GReX, for each gene. In the second step, for each GReX
estimate, we calculate the correlation between GReX and
the observed expression level of each gene located on a
different chromosome. As in Matrix eQTL (Shabalin,
2012), variables were standardized to allow fast computa-
tion of the correlation and test statistic. In the discovery
phase, we predicted gene expression in the FHS cohort
using each of 44 tissue models from the GTEx Project.
Significance was assessed via the Benjamini–Hochberg
false discovery rate (FDR) method (Benjamini & Hoch-
berg, 1995), with FDR< 0.05 in each individual tissue
declared significant. We tested discovered trans‐acting/
target gene pairs for replication in the DGN cohort and
declared those with p< 0.05 replicated. To estimate the
expected true positive rate, we calculated π1 statistics
using the qvalue method (Aguet et al., 2017; Storey &
Tibshirani, 2003). π1 is the expected true positive rate and
was estimated by selecting the gene pairs with FDR
< 0.05 in FHS and examining their p value distribution in
DGN. π0 is the proportion of false positives estimated by
assuming a uniform distribution of null p values and
π π= 1 −1 0 (Storey & Tibshirani, 2003).

For comparison to our trans‐PrediXcan method, we
performed traditional trans‐eQTL analysis in FHS and
DGN using Matrix eQTL (Shabalin, 2012), where trans is
defined as genes on different chromosomes from
each SNP.

2.5 | Trans‐MultiXcan

To determine if jointly modeling the genetic component of
gene expression across tissues would increase power to
detect trans‐acting regulators, we applied MultiXcan
(Barbeira et al., 2019) to our transcriptome cohorts. In our
implementation of MultiXcan, predicted expression from all
available GTEx tissue models (~44) were used as explana-
tory variables. To avoid multicolinearity, we use the first k
principal components of the predicted expression in our
regression model for association with observed (target) gene
expression. We keep the first k principal components out of
i principal components estimated where

λ

λ
< 30,

i

max

where λi is an eigenvalue in the predicted expression
covariance matrix (Barbeira et al., 2019). A range of
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thresholds were previously tested and yielded similar
results (Barbeira et al., 2019). We used an F‐test to
quantify the significance of the joint fit. We tested trans‐
acting/target gene pairs discovered in FHS (FDR< 0.05)
for replication in the DGN cohort and declared those
with p< 0.05 replicated.

2.6 | eQTLGen comparison

We compared our trans‐PrediXcan and trans‐MultiXcan
FHS results to eQTLs discovered in eQTLGen, a blood
eQTL study of 31,684 individuals (Vosa et al., 2018). Note,
eQTLGen includes the FHS cohort (n= 4838) we used in
our trans‐PrediXcan and trans‐MultiXcan analyses, and
thus it is not a completely independent cohort. To
determine the expected distribution of trans‐eQTLs
under the null of no association between predicted and
observed expression, we randomly sampled without
replacement the lists of predicted and observed genes to
generate 1000 sets of “trans‐acting/target gene pairs,”
each the same size and with the same chromosome
distribution as the observed results from either trans‐
PrediXcan or trans‐MultiXcan. We then counted how
many “trans‐acting genes” in each set had an eSNP in
their expression prediction model (nonzero effect size)
that targeted the same gene in eQTLGen. We compared
this distribution to the observed number of trans‐acting/
target gene pairs that had a trans‐eQTL in eQTLGen to
obtain an empirical p value (the number of times the
permuted overlap exceeded the observed overlap divided
by 1000). To calculate the fold‐enrichment of trans‐
eQTLs found in our top trans‐PrediXcan and trans‐
MultiXcan FHS gene pairs (FDR< 0.05), we determined
how many gene pairs included a matching eQTLGen
trans‐eQTL across all tested gene pairs.

2.7 | Pathway enrichment analysis

We used functional mapping and annotation of genetic
associations (FUMA; Watanabe, Taskesen, Van Bochoven, &
Posthuma, 2017) to test for enrichment of biological
functions in our top trans‐acting and target genes. We
limited our hypergeometric enrichment tests to Reactome
(MSigDB v6.1 c2), gene ontology (MMSigDB v6.1 c5),
transcription factor targets (MSigDB v6.1 c3), and GWAS
Catalog (e91_r2018‐02‐06) pathways. We required at least
five trans‐acting or target genes to overlap with each tested
pathway. For the trans‐acting gene enrichment tests, there
were 182 unique trans‐acting genes at FDR<0.05 in FHS
and p<0.05 in DGN (Table S2) and the background gene set
was the 16,185 genes with a MultiXcan model. For the target
gene enrichment tests, there were 211 unique target genes at
FDR<0.05 in FHS and p<0.05 in DGN (Table S2) and the

background gene set was the 12,445 expressed genes.
Pathways with Benjamini–Hochberg FDR<0.05 were con-
sidered significant and reported.

We also tested the larger discovery gene sets from FHS
(FDR< 0.05) for enrichment in known transcription
factors and signaling proteins. The list of transcription
factors was collected from (Ravasi et al., 2010) and
signaling proteins were genes annotated as phosphatases
and kinases in Uniprot (Roy et al., 2013; The UniProt
Consortium, 2012). We used the hypergeometric test
(hypergeom function from scipy.stats Python
library) to determine the significance of enrichment.
Given the size of the background gene set, M , number of
genes with the property of interest in the background, K ,
and the size of the selected gene set, N , the hypergeo-
metric test calculates the probability of observing x or
more genes in the selected gene set with the property of
interest. In our setting, K is the number of genes
annotated as a TF or signaling protein and N is the size
of the discovery gene sets.

2.8 | Trans‐acting and target gene
association studies with complex traits

We retrieved S‐PrediXcan (summary statistic PrediXcan)
results from the gene2pheno.org database (Barbeira et al.,
2018) for immune‐related traits and height. We focused on
S‐PrediXcan results obtained from gene expression pre-
diction models built using DGN whole blood because that
was the largest model cohort with results available.
Because the expression prediction models were built using
whole blood data, we chose to examine blood and
immune‐related traits available in gene2pheno.org from
UK Biobank (UKB) and a second cohort. We also
examined height due to the large cohorts available. Traits
available from UKB that we analyzed include “standing
height” (n= 500,131), “Non‐cancer illness code, self‐
reported: asthma” (n= 382,462), and “Non‐cancer illness
code, self‐reported: systemic lupus erythematosis/sle”
(n= 382,462). Red and white blood cell count S‐PrediXcan
results were available from a meta‐analysis that combined
the UKB and INTERVAL cohorts, n= 173,480 (Astle et al.,
2016. We also examined S‐PrediXcan results for systemic
lupus erythematosus from IMMUNOBASE (n= 23,210;
Bentham et al., 2015), asthma from GABRIEL (n= 26,475;
Moffatt et al., 2010), and height from GIANT (n= 253,288;
Wood et al., 2014). For each trait, we compared the
observed versus expected p value distributions via QQ
plots for three groups of genes: Trans‐acting genes
discovered in FHS MultiXcan (FDR< 0.05), target genes
discovered in FHS MultiXcan (FDR< 0.05), and back-
ground genes tested in MultiXcan that were not signifi-
cant. In each cohort, there were approximately 560
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trans‐acting genes (FHS FDR< 0.05), 700 target genes
(FHS FDR< 0.05), and 9900 background genes.

2.9 | R packages

R packages used in this study include huex10stprobe-
set.db (MacDonald, 2015a), huex10sttranscriptclus-
ter.db (MacDonald, 2015b), Matrix eQTL (Shabalin,
2012), qvalue (Bass, Storey, Dabney, & Robinson,
2017; Storey & Tibshirani, 2003), data.table (Dowle &
Srinivasan, 2017), dplyr (Wickham, Francois,
Henry, & Muller, 2017), ggplot2 (Wickham, 2009),
ggrepel (Slowikowski, 2017), readxl (Wickham &
Bryan, 2017), and gridExtra (Auguie, 2017).

3 | RESULTS

3.1 | Trans‐acting gene discovery and
validation with trans‐PrediXcan
We sought to map trans‐acting and target gene pairs by
applying the PrediXcan framework to observed expression
as traits and term the approach trans‐PrediXcan (Figure 1).
We excluded genes with poor genome mappability from
our analyses (see Section 2). We compared trans‐PrediXcan
results between the discovery FHS whole blood cohort
(n= 4838) and the replication DGN whole blood cohort

(n= 922). We first used PrediXcan (Gamazon et al., 2015)
to generate a matrix of predicted gene expression from FHS
genotypes using prediction models built in GTEx whole
blood (Barbeira et al., 2018). Then, we calculated the
correlation between predicted and observed FHS whole
blood gene expression. Examining the correlations of gene
pairs on different chromosomes, 55 pairs were significantly
correlated in FHS, with an expected true positive rate (π1)
of 0.72 in DGN (Table 1, Figure S1). Gene pair information
and summary statistics are shown in Table S1.

Of the 55 trans‐acting/target gene pairs, 29 had a
negative effect size, meaning the trans‐acting gene may be
a repressor because decreased expression of the trans‐
acting gene is associated with increased expression of the
target gene. Conversely, 26 had a positive effect size,
meaning the trans‐acting gene may be an activator because
increased expression of the trans‐acting gene is associated
with increased expression of the target gene. Note that the
directions of effect of 69% of these gene pairs discovered in
FHS are consistent in DGN (Figure 2). None of the trans‐
acting/target gene pairs we identified also acted in the
reverse direction, that is, if gene A was trans‐acting to
target gene B, gene B was not also trans‐acting to target
gene A. Looking at all results, beyond just the top signals,
there was no correlation in effect sizes between such pairs
(P= .53). Therefore, our trans‐PrediXcan method is not
simply capturing a coexpression network.

FIGURE 1 Overview of approach to detect and characterize trans‐acting genes. First, in our Whole Blood Model, we predict messenger
RNA (mRNA) expression levels from cis region expression quantitative trait loci (eQTLs), using weights trained in a single tissue
(Genotype‐Tissue Expression [GTEx] Project whole blood). These predicted expression levels (trans‐acting genes) are tested for association
with observed expression levels of genes on different chromosomes (target genes). Second, in our multitissue model, we use predicted mRNA
expression levels from multiple tissues in a multiple regression to detect trans‐acting genes and their targets. Third, we compare models and
test significant trans‐acting and target genes for enrichment in pathways or in genome‐wide association study (GWAS) traits
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To compare the performance of our trans‐PrediXcan
approach to traditional trans‐eQTL analysis, we also
examined the p‐value distribution of top FHS trans‐
eQTLs (FDR< 0.05) in DGN to determine the expected
true positive rate. In our SNP‐level trans‐eQTL analysis,
π1 was 0.46, 36% lower than the trans‐PrediXcan π1 of
0.72. We also compared our results to a recent blood
eQTL study in the eQTLGen cohort (Vosa et al., 2018). Of
the 55 whole blood model gene pairs we discovered in
FHS, 5/55 (9%) have at least one trans‐eQTL (FDR< 0.05)
shared with eQTLGen, more than expected by chance
based on the genes tested (empirical p< 0.001, Table S1).
This means our prediction model for the trans‐acting
gene includes a nonzero weight for the eQTLGen eSNP
and that the target gene in eQTLGen and our whole
blood results is the same. Across all 2.4 × 107 gene pairs
tested, just 3547 (0.01%) included a shared trans‐eQTL
with eQTLGen. Thus, top trans‐PrediXcan gene pairs

show a 900‐fold enrichment (9/0.01) of eQTLGen trans‐
eQTLs among whole blood model prediction SNPs
compared to all gene pairs tested. In addition, of the five
gene pairs with a matching trans‐eQTL in eQTLGen, all
five also had a cis‐eSNP in eQTLGen (FDR< 0.05)
targeting the trans‐acting gene from our results and
present in the prediction model of the trans‐acting gene.
A list of these overlapping eSNPs is shown in Table S2.

3.2 | Multitissue prediction improves
trans‐acting gene discovery and validation

To leverage tissue sharing of cis‐eQTLs, we used a multi-
variable regression approach called MultiXcan, which
accounts for correlation among predicted expression levels
across 44 GTEx tissues (Barbeira et al., 2019). Notice that
even though we seek to detect trans regulation, the
instruments we are using, that is, predicted expression, are
based on cis regulation. Thus, it makes sense to combine
information across tissues to obtain the best local predictor of
gene expression. To address multicolinearity issues, Multi-
Xcan uses principal component analysis to reduce the
number of independent variables to those with the largest
variation (Barbeira et al., 2019). When we applied trans‐
MultiXcan to the FHS data, the number of trans‐acting/
target gene pairs increased dramatically (Figure 3). At
FDR<0.05, there were 2,356 trans‐acting gene pairs
discovered in FHS using the multitissue method, while only
55 pairs were discovered with the GTEx whole blood
predictors alone (Table 1). We could test 1,902 of these
multitissue gene pairs for replication in DGN and found 535
of them were significant at p<0.05 (blue in Figure 4).
Although the expected true positive rate was lower with the
MultiXcan model (π = 0.491 ) than with the single tissue
model (π = 0.721 ), the absolute number of replicate gene
pairs was much higher (Table 1, Figure S1). Thus, the
number of genes that replicated in both cohorts was 20 times
higher in the multitissue model compared to the whole blood
model (Table 1). Similarly, for gene pairs tested in both
models, the adjusted R2 was consistently higher in the
multitissue model than the whole blood model across gene
pairs (Figure S2). Summary statistics of the 2,356 gene pairs
discovered in the trans‐MultiXcan are available in Table S3.

Of the MultiXcan gene pairs we found, 728/2356 (31%)
replicated in the blood eQTLGen cohort. That is, 31% of

TABLE 1 Trans‐acting and target gene pair counts and replication rates across GTEx tissue models

Model FHS FDR< 0.05 FHS tested DGN p< 0.05 DGN tested DGN π1

Multitissue (MultiXcan) 2356 2.0E + 08 535 1902 0.49

Whole blood (PrediXcan) 55 2.4E + 07 26 54 0.72

Note. DGN: Depression Genes and Networks whole blood cohort; FDR: Benjamini–Hochberg false discovery rate; FHS: Framingham Heart Study; GTEx:
Genotype‐Tissue Expression Project; π1: expected true positive rate.

FIGURE 2 Comparison between Framingham Heart Study
(FHS) and Depression Genes and Networks (DGN) results using
the GTEx whole blood prediction models. Results of trans‐acting
gene pairs with false discovery rate (FDR) < 0.05 in the discovery
cohort (FHS) are shown for both FHS (x‐axis) and the validation
cohort DGN (y‐axis). The t‐statistics from the linear models testing
predicted trans‐acting expression for association with observed
target gene expression are plotted. GTEx: Genotype‐Tissue
Expression Project
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MultiXcan gene pairs have at least one trans‐eQTL
shared with eQTLGen, more than expected by chance
based on the genes tested (empirical p< 0.001, Table S3).
This means that at least one tissue’s prediction model for
the trans‐acting gene includes a nonzero weight for the
eQTLGen eSNP and that the target gene in eQTLGen and
our multitissue results is the same. Across all 2 × 108

gene pairs tested, 168,893 (0.08%) included a shared
trans‐eQTL with eQTLGen. Thus, top trans‐MultiXcan
gene pairs show an approximately 400‐fold enrichment
(31/0.08) of eQTLGen trans‐eQTLs among prediction
SNPs compared to all gene pairs tested. Trans‐eQTLs
with eSNPs in our MultiXcan trans‐acting gene models
with the same target genes are shown in Table S4. In
addition, of these 728 gene pairs with a matching trans‐
eQTL in eQTLGen, 283 (39%) also had a cis‐eSNP in
eQTLGen (FDR < 0.05) targeting the trans‐acting gene
from our results and present in the prediction model of
the trans‐acting gene in at least one tissue.

3.3 | Master trans‐acting genes
associate with many targets

Points that form vertical lines in Figure 4 are indicative of
potential master regulators, that is, genes that regulate
many downstream target genes. We defined master
regulators as trans‐acting genes that associate with 50
or more target genes. In our MultiXcan analysis, we
discovered three potential master regulator loci, which

are labeled in Figure 4. The most likely master regulator
we identified with MultiXcan is ARHGEF3 on chromo-
some 3. ARHGEF3 associated with 53 target genes in FHS
(FDR< 0.05) and 45/51 tested replicated in DGN
(p< 0.05). Also, SNPs in ARHGEF3 have previously been
identified as trans‐eQTLs with multiple target genes.
ARHGEF3 encodes a ubiquitously expressed guanine
nucleotide exchange factor. Multiple GWAS and func-
tional studies in model organisms have implicated the
gene in platelet formation (Astle et al., 2016; Gieger et al.,
2011; Schramm et al., 2014; Yao et al., 2017; Zhang et al.,
2014). Similarly, SNPs at the chromosome 17 locus we
identified have also been identified as trans‐eQTLs
(Kirsten et al., 2015) and one study showed the trans
effects are mediated by cis effects on AP2B1 expression
(Yao et al., 2017). AP2B1 encodes a subunit of the adaptor
protein complex 2 and GWAS have implicated it in red
blood cell and platelet traits (Astle et al., 2016).

3.4 | Trans‐acting genes are enriched in
transcription factor pathways

We tested replicated trans‐acting genes for enrichment in
Reactome (MSigDB v6.1 c2), GO (MSigDB v6.1 c5),
transcription factor targets (MSigDB v6.1 c3), and GWAS
Catalog (e91_r2018‐02‐06) pathways using FUMA (Wa-
tanabe et al., 2017). In our MultiXcan analysis, there were
174 unique trans‐acting genes at FDR< 0.05 in FHS and
p< 0.05 in DGN (Table S2). We required at least five
trans‐acting genes to overlap with each tested pathway.
The background gene set used in the enrichment test
were the 15,432 genes with a MultiXcan model. All
pathways with FDR< 0.05 are shown in Table 2 and their
gene overlap lists are available in Table S5.

The top two most significant pathways were the GO
nucleic acid binding transcription factor activity pathway
and the Reactome generic transcription pathway (Table 2).
The trans‐acting genes in each pathway are spread across
multiple chromosomes as shown in Figure S3. PLAGL1,
which encodes a C2H2 zinc finger protein that functions as
a suppressor of cell growth, is a notable trans‐acting gene
in the GO nucleic acid binding transcription factor activity
pathway. Of the four PLAGL1 target genes discovered in
FHS, three replicated in DGN (Table S3). One notable
gene in the reactome generic transcription pathway is
MED24. In our MultiXcan analysis, MED24 targeted 13
genes in FHS (FDR< 0.05) and 8/12 replicated in DGN
(P < 0.05, Table S3). MED24 encodes mediator complex
subunit 24. The mediator complex is a transcriptional
coactivator complex required for the expression of almost
all genes. The mediator complex is recruited by transcrip-
tional activators or nuclear receptors to induce gene
expression, possibly by interacting with RNA polymerase

FIGURE 3 Multitissue trans‐MultiXcan finds more trans‐
acting gene pairs than a single tissue trans‐PrediXcan (Whole
Blood) model. Quantile‐quantile plots show an increase in signal in
the multitissue model compared to the Whole Blood model. −log10
p‐values are capped at 30 for ease of viewing. The 1e6 most
significant p values in each model are plotted to manage file size
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TABLE 2 Replicated trans‐acting genes (MultiXcan FDR< 0.05 in FHS and p< 0.05 in DGN) are enriched in transcription and GWAS
pathways

Source GeneSet N n p‐value Adjusted p

GO molecular functions GO nucleic acid binding transcription factor activity 1000 33 6.40e‐09 5.76e‐06
Reactome Reactome generic transcription pathway 292 15 2.18e‐07 1.47e‐04
GWAS catalog Reticulocyte count 138 10 4.80e‐07 1.47e‐04
GWAS catalog Reticulocyte fraction of red cells 147 9 6.76e‐06 2.75e‐03
GWAS catalog White blood cell count 152 8 5.90e‐05 1.57e‐02
GWAS catalog Neuroticism 134 7 1.44e‐04 2.20e‐02
GWAS catalog Platelet count 228 9 2.78e‐04 3.40e‐02
GWAS catalog Crohn’s disease 525 15 3.19e‐04 3.54e‐02

Note. DGN: Depression Genes and Networks cohort; FDR: Benjamini–Hochberg false discovery rate; FHS: Framingham Heart Study; GO: gene ontology;
GWAS: genome‐wide association study; N: number of genes in GeneSet tested for trans‐acting effects; n: number of replicated genes in GeneSet; p‐value:
functional mapping and annotation of genetic associations (FUMA; Watanabe et al., 2017) enrichment p; Adjusted p: enrichment Benjamini–Hochberg false
discovery rate.

FIGURE 4 Trans‐acting/target gene pairs discovered using MultiXcan in FHS. Each point corresponds to one gene pair (FHS
FDR< 0.05) positioned by chromosomal location of the trans‐acting gene (x‐axis) and target gene (y‐axis). Size of the point is proportional to
the −log10 p‐value in FHS. Gene pairs that replicated in DGN MultiXcan (p< 0.05) are colored blue. Master trans‐acting loci with greater
than 50 target genes are labeled
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II and promoting the formation of a transcriptional
preinitiation complex (Gustafsson & Samuelsson, 2001).

We also found a significant enrichment of transcrip-
tion factors from (Ravasi et al., 2010) in the 766 unique
trans‐acting genes discovered in FHS with FDR< 0.05
(hypergeometric test p = 9.56 × 10−3). However, the
same trans‐acting genes were not enriched in signaling
proteins (P= 0.71).

3.5 | Target genes are enriched in
transcription factor binding sites

We tested MultiXcan replicated target genes for enrich-
ment in the same pathways tested in the trans‐acting gene
analysis. There were 201 unique target genes at FDR<
0.05 in FHS and p< 0.05 in DGN (Table S3). While just
eight pathways were enriched in trans‐acting genes, 118
pathways were enriched in the target genes (Table S5).
Two of these 118 target gene enriched pathways were
transcription factor binding sites (Table 3). No binding
motifs were enriched in the trans‐acting genes. Additional
pathways enriched in target genes included several platelet
activation and immune response pathways (Table S5).
Target genes were spread across multiple chromosomes
(Figure S4). The target genes were not enriched for
Reactome generic transcription or GO nucleic acid binding
transcription factor activity pathways. The 945 unique
target genes discovered in FHS with FDR< 0.05 were also
not enriched for transcription factors (hypergeometric test
p= 0.98) or signaling proteins (p= 0.46) from (Ravasi
et al., 2010).

3.6 | Trans‐acting genes are more likely
to associate with complex traits

Trans‐acting genes may drive complex trait inheritance,
which has been formalized in the omnigenic model
(Boyle et al., 2017; Liu, Li, & Pritchard, 2018). If true, we

hypothesized that the trans‐acting genes we discovered
using our trans‐MultiXcan model should be more
significantly associated with complex traits than both
their targets and other background genes. We focused on
immune‐related complex traits because our observed
gene expression data in FHS and DGN are from whole
blood. We also used height as a representative complex
trait because of the large sample sizes available.

Using height and immune‐related phenotypes from
the UKB and other large consortia (see Section 2) as
representative complex traits, we compared PrediXcan
results among three classes of gene: trans‐acting, target,
and background genes. Trans‐acting and target genes
were those discovered in our FHS MultiXcan analysis
(FDR< 0.05). Background genes are those tested in
MultiXcan, but not found significant. We examined QQ
plots of PrediXcan results for each class in two large
studies of height, red and white blood cell counts, two
studies of systemic lupus erythematosus, and two studies
of asthma. For each trait, we found that trans‐acting gene
associations are more significant than background gene
associations (Figure 5). Though attenuated in comparison
to trans‐acting genes, target genes are also more
significant than background genes for several traits
(Figure 5).

4 | DISCUSSION

We apply the PrediXcan framework to gene expression as
a trait (trans‐PrediXcan approach) to identify trans‐acting
genes that potentially regulate target genes on other
chromosomes. We identify replicable predicted gene
expression and observed gene expression correlations
between genes on different chromosomes. Compared to
trans‐eQTL studies performed in the same cohorts, our
trans‐PrediXcan model shows a higher replication rate
for discovered associations. For example, using the GTEx
whole blood prediction model we show the expected true
positive rate is 0.72 (Table 1). When we performed a
traditional trans‐eQTL study and examined the p‐value
distribution of top FHS eQTLs (FDR < 0.05) in DGN, the
true positive rate was only 0.46. In an independent
analysis of the same data, only 4% of eQTLs discovered in
FHS replicated in DGN (Joehanes et al., 2017).

In contrast to our results, a recent study concluded
trans‐eQTLs have limited influence on complex trait
biology (Yap et al., 2018). However, the authors mention
limited power in their analyses and found most of the
trans‐eQTLs examined were not also cis‐eQTLs for
nearby genes (Yap et al., 2018). To combat lack of power,
others have used cis‐mediation analysis to identify trans‐
eQTLs (Yang et al., 2017; Yao et al., 2017). Similar to our

TABLE 3 Replicated target genes (MultiXcan FDR< 0.05 in
FHS and p< 0.05 in DGN) are enriched in transcription factor (TF)
binding sites in the regions spanning up to 4 kb around their
transcription starting sites (MSigDB v6.1 c3)

TF binding site N n p‐value Adjusted p

WGGAATGY_TEF1_Q6 247 14 2.23e‐05 1.37e‐02
PAX8_B 68 6 1.56e‐04 4.79e‐02

Note. DGN: Depression Genes and Networks cohort; FHS: Framingham
Heart Study; N: number of genes in GeneSet tested for target gene effects; n:
number of replicated genes in GeneSet; p‐value: FUMA (Watanabe et al.,
2017) enrichment p; Adjusted p: enrichment Benjamini–Hochberg false
discovery rate.
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approach, a mechanism is built in to significant associa-
tions found via cis‐mediation studies: The cis‐acting locus
causes variable expression of the local gene, which, in
turn, leads to variable expression of its target gene on a
different chromosome. Unlike cis‐mediation analysis, our
trans‐PrediXcan approach allows multiple SNPs to work
together to affect expression of the trans‐acting gene and
thus may reveal additional associations. A similar
method, developed in parallel to ours, combines cis
region SNPs using a cross‐validation BLUP to identify
trans‐acting genes within one eQTL cohort (Liu et al.,
2018). Our findings have the advantage of discovery in a
larger cohort, multiple tissue integration, and replication
in an independent cohort.

When predictive models built in 44 different tissues
are combined with MultiXcan, we increase the number of
trans‐acting gene pairs identified in FHS and replicated
in DGN 20‐fold compared to single‐tissue models (Table
1). In the recent release of eQTLGen, the largest trans‐
eQTL study to date, 52% of trans‐eQTL signals colocalize
with at least one cis‐eQTL signal (Vosa et al., 2018). As
currently implemented, our trans‐PrediXcan method will
only find gene pairs that have cis‐acting regulation of the
predicted (trans‐acting) gene. The SNPs used to predict
expression of each gene are all within 1Mb of the gene,
that is, in cis. Previous work has shown that cis‐eQTLs
are often shared across many tissues (Aguet et al., 2017).
Thus, we show combining cis‐acting effects across tissues
as “replicate experiments” increases our power to detect

trans‐acting associations. For example, if there is a cis‐
acting effect that is common across most tissues but the
trans‐acting effect occurs in one specific tissue, Multi-
Xcan will be able to identify the trans‐acting effect even if
we do not have a prediction model in the causal tissue.
Our choice to use principal component regression is a
conservative approach, discarding less informative com-
ponents of expression variation at the cost of slightly
reduced power. This “denoising” property may limit our
ability to detect tissue‐specific effects, which may be
revealed in future studies with larger sample sizes and
prediction modeling approaches that include distal
genetic variation. Another limitation is that our approach
can detect false positives due to linkage disequilibrium
and thus colocalization and functional studies are
required to reveal the causal trans‐acting regulator of
gene expression.

We found trans‐acting genes discovered in our Multi-
Xcan analysis were enriched in transcription pathways
and thus previously known to function in transcription
regulation. Master regulators revealed by MultiXcan,
ARHGEF3, and AP2B1, were also previously known
(Kirsten et al., 2015; Yao et al., 2017). Our transcriptome
association scan presented here integrates gene expres-
sion prediction models from multiple tissues and
replicates results in an independent cohort. Encoura-
gingly, the trans‐acting and target genes we identify are
enriched in transcription and transcription factor
pathways.

FIGURE 5 Complex trait‐associated genes are enriched for trans‐acting genes. Quantile‐quantile plots of S‐PrediXcan results for each
labeled trait show an increase in signal for trans‐acting genes (FHS MultiXcan FDR< 0.05) compared to target genes (FHS MultiXcan
FDR< 0.05) and background (tested in MultiXcan, but not significant) genes. When present, −log10 p‐values greater than 30 are capped at 30
for ease of viewing. FDR: Benjamini–Hochberg false discovery rate; FHS: Framingham Heart Study; RBC: red blood cell; WBC: white blood
cell; SLE: systemic lupus erythematosus
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Using asthma, lupus, blood cell counts, and height as
representative complex traits, trans‐acting gene associa-
tions with these traits are more significant than target and
background gene associations in multiple cohorts. This
suggests percolating effects of trans‐acting genes through
target genes. We make our scripts and summary statistics
available for future studies of trans‐acting gene regulation
at https://github.com/WheelerLab/trans‐PrediXcan.
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