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Background: Machine learning (ML) is developing fast with promising prospects within medicine and 
already has several applications in perioperative care. We conducted a scoping review to examine the extent 
and potential limitations of ML implementation in perioperative anesthetic care, specifically in cardiac 
surgery patients. 
Methods: We mapped the current literature by searching three databases: MEDLINE (Ovid), EMBASE 
(Ovid), and Cochrane Library. Articles were eligible if they reported on perioperative ML use in the field of 
cardiac surgery with relevance to anesthetic practices. Data on the applicability of ML and comparability to 
conventional statistical methods were extracted. 
Results: Forty-six articles on ML relevant to the work of the anesthesiologist in cardiac surgery were 
identified. Three main categories emerged: (I) event and risk prediction, (II) hemodynamic monitoring, 
and (III) automation of echocardiography. Prediction models based on ML tend to behave similarly to 
conventional statistical methods. Using dynamic hemodynamic or ultrasound data in ML models, however, 
shifts the potential to promising results. 
Conclusions: ML in cardiac surgery is increasingly used in perioperative anesthetic management. The 
majority is used for prediction purposes similar to conventional clinical scores. Remarkable ML model 
performances are achieved when using real-time dynamic parameters. However, beneficial clinical outcomes 
of ML integration have yet to be determined. Nonetheless, the first steps introducing ML in perioperative 
anesthetic care for cardiac surgery have been taken.
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Introduction 

Cardiac surgery has gone through many advancements 
since the first use of cardiopulmonary bypass in 1953 (1). 
Milestones have been achieved with mechanical circulatory 
support devices and improved surgical techniques like the 
introduction of minimally invasive hybrid cardiac surgery. 
These innovations have enabled the inclusion of elderly 
and more high-risk patients. In addition, the improvement 
of perioperative management has further reduced the 
risk of complications. For example, the assessment of 
cardiovascular performance has improved with continuous 
ventricular function monitoring using miniaturized 
transesophageal echocardiography (TEE) probes (2). Also, 
the implementation of goal-directed therapy (GDT) has 
yielded beneficial effects in cardiac surgery (3). These 
innovations provide crucial diagnostic information needed 
to aid perioperative supportive and preventive care. 

In recent years, machine learning (ML), a subset of 
artificial intelligence (AI), is the cause for a revolution in 
several medical fields (4-6), suggesting new possibilities 
within cardiac surgery. ML’s exponential growth in 
medicine is made possible by the availability of large 
datasets and improvement in computing power, as it is a 
computer-controlled technique that automates analytical 
model building. Three main types of machine learning 
are distinguished (7): (I) supervised ML is concerned with 
the training of a model towards a known target variable 
(outcome). By differing the weighted effect of given labeled 
inputs (e.g., age, sex, cholesterol level, smoking status), 
it minimizes the prediction error of the desired output 
(for example, having cardiovascular disease or not). Most 
applications in medicine apply this principle of machine 
learning, using either a classification or regression model. 
(II) Unsupervised ML is when the algorithm obtains 
unlabeled data (e.g., large sets of radiological or histological 
images) and attempts to find patterns. This is a more 
exploratory method as the algorithm decides what classes 
and patterns best describe the data. (III) Reinforcement 
learning is the technique that is perhaps key to surpassing 
human capability. This method learns what actions lead to 
the highest possible reward. This reward is predefined and 
usually custom-tailored to the problem at hand. In this case, 
a training set is absent, but it is created by the inputs the 
model receives through interaction with the environment. 
An example of such a reward is each time an autonomous 
vehicle stays within its lane. Through positive and negative 
reinforcement, the self-driving model learns what the 

required behavior is and what actions lead to that scenario. 
For now, the use of ML in medicine is mainly limited to 
supervised methods. 

The large quantities of data obtained during the 
perioperative phases of cardiac surgery are possibly suitable 
for a versatility of ML applications. Therefore, we have 
conducted a scoping review with the goal of identifying 
the full extent of current machine learning applications 
and their possible limitations for perioperative anesthetic 
management and risk assessment in cardiac surgery patients.

We present the following article in accordance with 
the PRISMA-ScR reporting checklist (available at https://
dx.doi.org/10.21037/jtd-21-765).

Methods

We performed a scoping review methodology as defined by 
Arksey and O’Malley (8) to examine the extent and nature 
of the currently employed machine learning methods 
within perioperative management of cardiac surgery 
patients. The preferred reporting items for systematic 
reviews and meta-analyzes extension for scoping reviews 
(PRISMA-ScR) checklist (9) was used to guide detailed 
reporting. 

Search strategy

Searches were compiled by a clinical librarian for three 
databases [MEDLINE (Ovid), EMBASE (Ovid), and 
Cochrane Library], using the following keywords: 
cardiothoracic surgery, anesthesiology, and artificial 
intelligence, including all synonyms (complete list of 
keywords is included in Appendix 1). Three reviewers (SR, 
JS, and WV) independently selected the articles, reaching a 
consensus on all included studies. 

Study selection

Articles were included in the review if the following criteria 
were met: (I) reported on perioperative applications of ML 
in the field of cardiac surgery with relevance to the work of 
the anesthetist or the postoperative intensive care unit (ICU) 
admission; (II) evaluated the performance of the applied 
AI technique in non-simulated datasets; (III) available 
in English; (IV) published in the last thirty years (1991 
to present). Machine learning application (i.e., advanced 
method) was considered if a traditional statistical technique 
(i.e., conventional method) was trained and subsequently 

https://dx.doi.org/10.21037/jtd-21-765
https://dx.doi.org/10.21037/jtd-21-765
https://cdn.amegroups.cn/static/public/JTD-2021-AI-03-Supplementary.pdf
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validated in different datasets. We excluded studies that 
solely focus on conventional methods, studies performed in 
children (age <18 years), or involving animals. In addition, 
editorials, commentary letters, and case reports were 
excluded. 

Data extraction 

For each article, data were extracted regarding: (I) 
perioperative phase; (II) type of cardiac surgery; (III) size 
of datasets; (IV) type of ML methods used; (V) area under 
the receiver operating characteristic curve (AUC). AUC, 
as a generalization referred to as the C-index, is used in 
this paper to provide insight into the mutual relationships 
of different models. An AUC value between 0.7 and 0.8 is 
considered satisfactory in this scoping review (10). A meta-
analysis was not deemed appropriate given the wide variety 
of included subjects and ML techniques in the included 
studies. 

Results

A total of 1,566 articles were identified, with a remainder 
of 1,142 articles after deduplication. Of these, 51 full-
text studies were assessed for inclusion after the screening 
of titles and abstracts. Eighteen full-text articles were 
excluded for various reasons (Figure 1). We found thirteen 
additional articles through citation tracking and non-
systematic searches, resulting in 46 included articles. We 
identified three distinguishable categories: (I) event and 
risk prediction, (II) hemodynamic monitoring, and (III) 
automation of echocardiography. 

Preoperative 

Risk scores enable the assessment of preoperative risks to 
help in the stratification of patients. Additionally, they inform 
and guide patients and their relatives in shared-decision 
making and are used in cost-benefit analyzes. However, a 

Figure 1 Flow chart of the literature selection process for the present article.

MEDLINE (Ovid)
(n=648)

EMBASE (Ovid)
(n=768)

Records after duplicates removed
(n=1,142)

Full text articles reviewed for eligibility 
(n=51)

Total articles included 
(n=46)

Additional references identified by screening 
of the reference lists of included full texts and 

non-systematic searches
(n=13)

References excluded (n=18) 
6 Wrong intervention 
6 Wrong population
1 Wrong publication type
5 Not applicable to anesthesia 

Cochrane Library
(n=150)
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known drawback of widely used risk scores in cardiac surgery 
is that they do not fit all (sub)populations, especially causing 
underperformance in high-risk patients (11). 

Prediction of mortality 
The established European System for Cardiac Operative 
Risk Evaluation (EuroSCORE) and the Society of Thoracic 
Surgeons (STS) score are based on conventional logistic 
regression analysis. These two clinical scores are among 
the most commonly used mortality risk scores, with AUCs 
ranging from 0.74 to 0.80 (Table 1). Important to note are 
the predictive discrepancies that persist for these scores in 
a few cardiothoracic operations and some subpopulations, 
especially in high-risk patients (33-38). Contrary to this 
underperformance, several advanced machine learning 
models demonstrated their added value in elderly and 
rheumatic heart disease (RHD) subpopulations. Within 
the elderly population, six perioperative variables (not 
further specified by the authors) were found to be strongly 
correlated with mortality. Based on those variables, 
a logistic regression (LR) model, Bayesian network 
(BN), and an artificial neural network (ANN) produced 
AUCs of respectively 0.854, 0.931, and 0.941, clearly 
outperforming the EuroSCORE that had an AUC of 
0.648 in this population (19). Overall, the main mortality 
predictors in RHD were found to be left atrium size, 
high creatinine, tricuspid procedure, reoperation, and 
pulmonary hypertension. Using a random forest (RF) 
model, a new clinical score, the RheSCORE, was built on 
those predictors. With an area of 0.98, it outperforms the 
EuroSCORE II, which produces an AUC of 0.857 based on 
essentially the same predictors (25). 

However, in a mixture of cardiac surgery procedures, 
the two aforementioned clinical scores perform similarly 
or slightly less than advanced models (12,13,20). An 
ANN yielded comparable predictive properties to the 
EuroSCORE (AUC 0.80 vs. 0.79), with only a small 
advantage in the case of valve procedures (AUC 0.76 vs. 0.72, 
P value =0.0001) (13). Assembling four ML models [gradient 
boosting machines (GBM), RF, support vector machines 
(SVM), and Naïve Bayes (NB)] created a significant but 
modest benefit with an AUC of 0.795 versus 0.737 for 
the EuroSCORE II (12). Similarly, modest advantages in 
accuracy and AUC were seen comparing an advanced ML 
model [extreme gradient boosting machine (XGBoost)] to 
the STS clinical score. Interestingly, despite both the STS 
score and the XGBoost being well-calibrated and having a 
high area under the curve (respectively 0.808 and 0.795), 

they identified a large proportion of different patients as 
being at risk (20). Even one of the first clinical scores, the 
Parsonnet score, still holds value in predicting in-hospital 
mortality with a comparable AUC to an advanced LR and 
ANN model (0.829, 0.852, and 0.873, respectively) (14). 

Also,  when comparing advanced ML methods, 
little difference in predicting performance is seen  
(14-16,21,22,39,40), with only a slight advantage for 
nonlinear models [ANN, BN, and multilayer sigmoid 
perceptron (MLP)] over linear LR models (13,19,24). The 
majority of these studies use a set of preoperative data, 
including demographic characteristics, medical history, 
and type of surgery performed. Adding intraoperative 
hypotension as a dynamic parameter to these preoperative 
data showed improved AUCs for advanced LR, RF, and 
XGBoost models. At the same time, an SVM and ANN did 
not benefit from this added parameter, outputting AUCs of 
0.66 and 0.70, respectively (17).

Risk survival scores in heart transplantation
There are currently three main risk scores for heart 
transplant patients based on conventional logistic regression 
methods: the Donor Risk Index (DRI) (41), the Index 
for Mortality Prediction After Cardiac Transplantation 
(IMPACT) (42), and the Risk-Stratification Score (RSS) (43).  
These produce C-indices ranging from 0.55 to 0.57 for 
overall survival (Table 1). We identified two studies that 
compared an advanced model directly to these risk scores, 
obtaining slightly better performances (AUCs between 0.62 
to 0.66) (26,27). Comparing only advanced models in their 
ability to predict 1-year mortality, both linear and nonlinear 
models show similar results with moderate AUCs consistently 
≤0.66 (28-31). Only in predicting 5-year mortality after heart 
transplantation, an advanced GBM model transcended other 
machine learning models, generating an area of 0.717 (32). 

A different application of advanced modeling was used 
to stratify patients on a heart transplant waiting list. The 
applied neural network only moderately determined the 
most likely patient status: still waiting, transplanted, or 
deceased at three different time points (44). 

Intra-operative

A staggering eighty percent of all intra-operative alarms 
in cardiac surgery, mainly hemodynamic warnings, do not 
require therapeutic intervention (45). Many redundant 
alarms involve artifacts or expected procedure-specific 
events. This is not fully acceptable as it can cause distraction 
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Table 1 Area under the curve values in validation datasets for mortality prediction at different time-points 

Study Surgery
Datasets

Phasea
Model typeb (clinical score)

AUCc Definition mortality
Training Test Category Subtype

Mixed surgical population 

Allyn et al. (12) Mix N/A Preoperative Conventional LR (EuroSCORE II) 0.737 Postoperative, time point 
not specified

4,564 1,956 Preoperative Advanced LR 0.742

RF + NB + GBM + SVM 0.795

Nilsson  
et al. (13)

Mix N/A Preoperative Conventional LR (EuroSCORE I) 0.79 Death during hospitalization 
or  

≤30 days after cardiac 
surgery

13,771 4,591 Preoperative Advanced LR 0.78

ANN 0.80

Peng, Peng (14) Mix N/A Preoperative Conventional LR (Parsonnet) 0.829 Postoperative, time point 
not specified

637 315 Pre-, and 
postoperative

Advanced LR 0.852

ANN 0.873

Orr (15) Mix 732 380 Pre-, and 
postoperative

Advanced PNN 0.81 Not specified

Benedetto  
et al. (16)

Mix N/A Preoperative Conventional LR (EuroSCORE I) 0.76 Postoperative, in-hospital

LR (EuroSCORE II) 0.77

20,133 8,628 Preoperative Advanced LR 0.80

RF 0.80

Naïve Bayes 0.77

ANN 0.77

Fernandes  
et al. (17)

Mix 3,761 1,254 Pre-, and 
intraoperative

Advanced LR 0.80 Postoperative, time point 
not specified

RF 0.83

XGB 0.85

SVM 0.66

ANN 0.70

Zhong et al. (18) Mix 5,475 1,369 Pre-, intra-, 
postoperative

Advanced LR 0.86 30-day mortality

RF 0.88

XGBoost 0.90

ANN 0.64

Celi et al. (19) Mix in 
elderlyˆ

N/A Preoperative Conventional LR (EuroSCORE I) 0.648 In-hospital, time point not 
specified

116 49 Pre-, intra-, 
postoperative

Advanced LR 0.854

BN 0.931

ANN 0.941

CABG and/or valve surgery 

Kilic et al. (20) CABG + 
valve 

N/A Preoperative Conventional LR (STS PROM) 0.795 Death during hospitalization 
or ≤30 days after cardiac 

surgery
10,071 1,119 Preoperative Advanced XGBoost 0.808

Table 1 (continued)
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Table 1 (continued)

Study Surgery
Datasets

Phasea
Model typeb (clinical score)

AUCc Definition mortality
Training Test Category Subtype

Lippmann, 
Shahian (21)

CABG 40,480 40,126 Preoperative Advanced LR 0.762 Not specified

Bayesian model 0.748

Committee classifier 0.764

Single-layer MLP 0.754

Two-layer MLP 0.761

Three-layer MLP 0.761

Mendes  
et al. (22)

CABG 1,053 262 Pre-, intra-, 
postoperative

Advanced LR 0.86 Death 30-day after CABG

ANN 0.85

Tu, Guerriere 
(23)

CABG 4,782 5,517 Preoperative Advanced LR 0.77 Postoperative, time point 
not specified

ANN 0.78

Lippmann (24) CABG 1,257† Pre-, intra-, 
postoperative

Advanced LR 0.705‡ Not specified

Single-layer MLP 0.760‡

MLP

MLP-Committee

Mejia et al. (25) Valve in 
RHD

N/A Preoperative Conventional LR (B-Parsonnet) 0.876 Death during hospitalization 
or ≤30 days after cardiac 

surgery
LR (EuroSCORE II) 0.857

LR (InsCor) 0.835

LR (AmblerSCORE) 0.831

LR (Guaragna) 0.816

LR (New York) 0.834

2,919† Preoperative Advanced RheSCORE1 0.98

Heart transplantation 

Yoon et al. (26) HTx N/A Preoperative Conventional LR (DRI) 0.529 Generalization of four time 
point at 3-month, 1-, 3-, 

and 10-year 
LR (IMPACT) 0.527

LR (RSS) 0.544

66,306 16,576 Preoperative Advanced ToPs/R2 0.577

Nilsson et al. 
(27)

HTx N/A Preoperative Conventional LR (DRI) 0.56 1-year mortality

LR (IMPACT) 0.61

LR (RSS) 0.61

41,780 8,569 Preoperative Advanced IHTSA3 0.650

Shah  
et al. (28)

HTx 4,054† Preoperative Advanced LR 0.60 1-year mortality or 
retransplantation

ML model not 
specified

0.64

Table 1 (continued)
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Table 1 (continued)

Study Surgery
Datasets

Phasea
Model typeb (clinical score)

AUCc Definition mortality
Training Test Category Subtype

Villela et al. (29) HTx 18,612† Preoperative Advanced LR 0.62 1-year mortality or 
retransplantation

Stacking of GBM 0.66

Bravo  
et al. (30)

HTx after 
LVAD

7,700† Preoperative Advanced LR 0.63 1-year mortality or 
retransplantation

ML model not 
specified

0.61

Miller et al. (31) HTx 45,182 11,295 Preoperative Advanced LR 0.65 1-year mortality

Ridge regression 0.65

Regression LASSO 0.65

RF 0.63

NB 0.61

TA-NB 0.62

SVM 0.52

SGB 0.64

ANN 0.66

Agasthi  
et al. (32)

HTx 12,189 3,047 Pre-, intra-, 
postoperative

Advanced GBM 0.717 5-year mortality

a, perioperative phase: pre-, intra, postoperative used variables in prediction models; b, distinction between conventional and advanced 
models is explained in the methods section; c, definitions of both the AUC and C-index is given in the methods section. 1, ensemble 
of thirteen advanced models; 2, trees of predictors based on three regression methods (cox regression, linear perceptron, and logistic 
regression); 3, international Heart Transplant Survival Algorithm based on an artificial neural network model. †, ratio between training and 
validation set not reported; ‡, not all values are extractable as they are mainly displayed in bar graphs; ˆ, ≥80 years. ANN (1, 2, etc.), 
artificial neural network (one-layer, two-layer, etc.); AUC, area under the receiving operating characteristics curve for the validation sets; 
BN, Bayesian network; B-Parsonnet, 2000 Bernstein-Parsonnet score; CABG, coronary artery bypass graft surgery; GBM, gradient-
boosted machine; HTx, heart transplantation; LASSO, least absolute shrinkage and selection operator; LVAD, left ventricular assist 
device; LR, logistic regression; Mix, various cardiac surgery patients with/without heart transplantation; ML, machine learning model; MLP, 
multilayer sigmoid neural network; TA-NB, tree-augmented NB; NB, Naïve Bayes; PNN, probabilistic neural network; RF, random forest; 
RHD, rheumatic heart disease; SGB, stochastic gradient boosting; SVM, support-vector machines; Valve, heart valve surgery; XGBoost, 
extreme gradient boosting.

or alarm fatigue (46). Advancements can be made to reduce 
the multitude of distracting alarms, as shown in a few AI 
applications in this chapter. 

Predictions of hemodynamic instability
In 1997, Becker et al. (47) developed a monitoring system 
based on fuzzy logic to provide a continuous intuitive 
descriptive overview of a patient’s hemodynamic status (e.g., 
‘preload is too high’). These hemodynamic interpretations 
were based on vital  parameters and administered 
anesthetics. The validation process demonstrated promising 
results with a predictability of 99.5%. Compared to a 

simple threshold alarm, this system can help the physician 
to interpret changes quickly. 

The hypotension prediction index (HPI) (48) is 
another monitoring application. It is an advanced logistic 
regression-based model that can predict a hypotensive event 
(mean arterial pressure <65 mmHg for at least one minute), 
regardless of current blood pressure, up to 15 minutes in 
advance (48). The model was developed using large datasets, 
including cardiac surgery patients. A recently published 
study demonstrated the high predictive capability of the 
HPI solely in cardiac surgery (49). ML can also be used 
to identify relationships between risks, as demonstrated 
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with three advanced RF models that adequately found 
cardiopulmonary bypass associated factors contributing to a 
reduction in right ventricular (RV) function (50).

Automation of intraoperative echocardiography (IOE) 
Two articles were identified on the automation of 
ultrasound assessments that have the potential to enable 
a more efficient intraoperative workflow (51,52). As RV 
function analysis is both challenging and time-consuming, 
an AI-based automated RV strain assessment was compared 
with the most commonly used parameters: tricuspid annular 
plane systolic excursion (TAPSE), tissue Doppler-derived 
systolic tricuspid annulus motion velocity (S’), and RV 
fractional area change (FAC). A strong correlation was 
found between FAC and global longitudinal strain (GLS) 
over various RV function measurements on three different 
ultrasound machines (51). 

The second AI application in ultrasound automation 
relates to the analysis of the mitral valve (MV) (52). Patients 
with a normal biventricular function who underwent an 
elective CABG surgery were included for ultrasound 
imaging to evaluate the clinical applicability and accuracy 
of an AI-based MV analysis software. An experienced 
echocardiographer captured three end-systolic frames of 
the MV in each patient. Postoperatively, these frames were 
analyzed with the AI software. The software automatically 
traced the valves, and three experienced examiners 
independently verified the valve tracings. Thus, creating 
three separate datasets for all frames, as the examiners 
could administer minor manual adjustments when deemed 
necessary. Subsequently, the software’s six clinically 
relevant geometric parameters were calculated from the 
verified MV tracings (annulus anterolateral posteromedial 
diameter, annulus anteroposterior diameter, annular area, 
annulus nonplanarity angle, annulus total perimeter, and 
anterior and posterior leaflet areas). Statistical analyses 
showed a high precision for the calculated parameters in 
corresponding end-systolic frames in which only the valve 
tracings were verified by different examiners. Meaning that 
the latter did not affect the outcome (52). 

Postoperative

Traditionally, risk scores were developed for mortality 
prediction alone. Only recently, morbidity has been 
incorporated in these models as they provide a marker 
for the quality of life (53). So far, most risk scores for 

postoperative outcomes are based on preoperative inputs 
and lack incorporation of intraoperative variables to 
improve on performance (54).

Morbidity in the ICU 
The previously mentioned Parsonnet score initially 
developed for mortality prediction also generates acceptable 
AUCs in morbidity prediction concerning cardiovascular, 
respiratory, and neurological complications. Addressing 
these same outcomes, two advanced models (LR and ANN) 
show even better predictive capability in comparison, with 
the most significant advantage in predictive power for the 
ANN model with an AUC of 0.85 (14) (Table 2). In a recent 
study comparing advanced models reciprocally, an XGBoost 
model had the upper hand over ANN (18). However, 
these are outliers in terms of morbidity prediction. Most 
comparative studies in cardiac surgery show a reasonable 
predictive value for all advanced ML models with AUCs 
around 0.77 (55,56,62). 

Acute kidney injury (AKI) is a common complication 
after cardiac surgery (63). Isolating patients at risk for 
AKI or renal replacement therapy (RRT) could guide 
perioperative treatment. Advanced predictive models 
based on GBM, LR, and ANN showed superior ability in 
identifying patients at risk for AKI and RRT as opposed 
to conventional risk scores based on LR (64,65). Overall, 
reasonable predictions in AKI prediction are seen for 
conventional and advanced models in most articles with 
AUCs ranging from 0.66 to 0.84 (61). Looking at individual 
studies in which various advanced models are directly 
compared with each other, it is noticeable that both MLP 
and XGBoost models are often better (24,58-60). Lastly, 
promising results have been found in evaluating the need for 
early continuous venovenous hemofiltration (CVVH) after 
cardiac surgery with comparable and accurate predictive 
results for both an ANN and an advanced LR model (66). 

Prevention and early recognition of delirium are 
essential as it is associated with poor outcomes (67). We 
identified one study on this topic. It cross-examined seven 
advanced models comparing their performance in an 
imbalanced dataset (integral dataset) to their performance 
in a balanced dataset (i.e., 10-fold cross-validation 
applied). This was done in order to reduce overestimation. 
In line with their expectation, the predictive values of the 
models showed better performance in the balanced sets, 
with the best predictions for an LR and RF model and the 
least for a BN model that still performed sufficiently with 
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Table 2 Area under the curve values in validation datasets for postoperative morbidity prediction 

Surgery Datasets Phasea Model typeb (clinical score) AUCc

Training Test Category Subtype

Miscellaneous1

Cevenini et al. (55) CABG 545 545 Pre-, intra-, postoperative Advanced LR 0.781

BL 0.778

BQ 0.785

HS 0.768

DS 0.779

k-NN 0.772

ANN1 0.776

ANN2 0.778

Chong et al. (56) CABG N/A Preoperative Conventional LR (QMMI score) 0.752

423 140 Preoperative Advanced LR 0.807

ANN 0.886

Peng, Peng (14) Mix N/A Preoperative Conventional LR (Parsonnet) 0.727

637 315 Pre-, and postoperative Advanced LR 0.789

ANN 0.852

Secluded morbidities

Zhong et al. (18) Mix 5,475 1,369 Septic shock 

Pre-, intra-, 
postoperative

Advanced LR 0.93

RF 0.81

XGBoost 0.96

ANN 0.88

Thrombocytopenia

Pre-, intra-, 
postoperative

Advanced LR 0.87

RF 0.89

XGBoost 0.89

ANN 0.83

Liver dysfunction

Pre-, intra-, 
postoperative

Advanced LR 0.82

RF 0.89

XGBoost 0.89

ANN 0.70

Mufti et al. (57) Mix 4,476 1,117 Agitated delirium

Pre-, intra-, 
postoperative 

Advanced LR 0.814

RF 0.813

NB 0.799

BN 0.774

SVM 0.811

DT 0.772

ANN 0.804

Table 2 (continued)
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Table 2 (continued)

Surgery Datasets Phasea Model typeb (clinical score) AUCc

Training Test Category Subtype

Acute kidney injury

Lei et al. (58) Aortic arch 627 270 Pre-, intra-, postoperative Advanced LR 0.65

RF 0.71

SVM 0.64

LGM 0.80

Tseng et al. (59) Mix 470 201 Pre-, and intraoperative Advanced LR 0.806

RF 0.839

DT 0.781

XGboost 0.837

SVM 0.825

RF+XGBoost 0.843

Lee et al. (60) Mix 1,005 1,005 Pre-, intra-, postoperative Advanced LR 0.70

RF 0.68

DT 0.71

XGBoost 0.78

SVM 0.69

NN classifier 0.64

Deep learning 0.55

Penny-Dimri et al. 
(61)

Mix N/A Preoperative Conventional LR (Cleveland Clinic) 0.71

LR (Risk score) 0.74

LR (Risk score) 0.75

77,322 19,331 Preoperative Advanced LR 0.76

GBM 0.76

k-NN 0.66

ANN 0.76

Pre-, and intraoperative Advanced LR 0.77

GBM 0.78

k-NN 0.67

ANN 0.77
a, perioperative phase: pre-, intra, postoperative used variables in prediction models; b, distinction between conventional and advanced 
models is explained in the methods section; c, definitions of both the AUC and C-index is given in the methods section. 1, Mix of 
cardiovascular, respiratory, neurological, renal, infectious, and hemorrhagic complications. ANN (1, 2, etc.), artificial neural network (one-
layer, two-layer, etc.). AUC, area under the receiving operating characteristics curve for the validation sets; BL, Bayes linear; BN, Bayesian 
network; BQ, Bayes quadratic; CABG, coronary artery bypass graft surgery; DS, direct score; DT, decision trees; GBM, gradient-boosted 
machine; HS, Higgins score; k-NN, k-nearest neighbor; LGM, light gradient machine; LR, logistic regression; Mix, various cardiac surgery 
patients with/without heart transplantation; NN, neural network; NB, Naïve Bayes; RF, random forest; SVM, support-vector machines; 
XGBoost, extreme gradient boosting. 

an AUC of 0.77 (57). 

Length-of-stay 
Accurate estimation of ICU length-of-stay (LOS) is not 

only advantageous in the counseling of patients and their 
families but even so in the organization of the bed capacity 
and scheduling of the operating rooms. More so in recent 
times, with the increased scarcity of ICU beds due to the 
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ongoing COVID-19 pandemic (68). 
The conventional EuroSCORE I is positively correlated 

with prolonged LOS, making it a suitable predicting tool 
for LOS (69). We identified one article demonstrating the 
superiority of an advanced ML model to the EuroSCORE 
I. It outperformed other advanced models as well and 
showed similar distinctiveness to physicians’ LOS 
predictions (70) (Table 3). Other comparing data suggest 
that ANNs outperform other advanced models regarding 
LOS (76). By itself, an ANN developed in 1993 showed 
that it successfully stratified cardiothoracic surgery 
patients at risk of extended stay (>2 days) with an AUC of 
0.70 (23). These promising results are even outperformed 
when ANNs are ensembled (72). Although slightly more 
modest in performance, advanced regression models still 
produce acceptable LOS predictions with AUCs ranging 
from 0.83 to 0.87 (73).

Mechanical ventilation 
We identified two studies that elaborate on the prediction 
of prolonged mechanical ventilation and the chance 
of re-intubation. Both studies performed in a CABG 
subpopulation show minor differences in accuracy, 
sensitivity, and specificity in favor of an ANN over an 
advanced LR model (22,71). 

Readmission 
Given the high costs associated with readmission after 
hospital discharge, the ability to stratify the risk is 
essential for preventive measures. Improving upon existing 
conventional LR prediction models solely based on 
time-independent variables (e.g., 1-point lab values only 
postoperative) (77-79), an advanced XGBoost algorithm 
incorporating time-dependent factors (e.g., lab values at 
several time-points) demonstrated a better accuracy in 
predictive ability (74). Another but more complex ML tool 
called genetic programs performed equally well in accuracy 
to an advanced LR method. In contrast, an advanced ANN 
model in the same study showed a significantly worse 
predictive ability (75). 

Discussion 

This scoping review includes forty-six articles describing 
various ML techniques in cardiac surgery patients with 
relevance to perioperative anesthetic management and risk 
assessment. We identified three specific applications with 
the majority (n=41) on prediction analyses (e.g., mortality, 

AKI, readmission), three articles on hemodynamic 
monitoring, including a form of prediction, and two studies 
that elaborate on ultrasound guidance. The combined 
overall data suggest that the current applications of ML 
techniques on stationary variables (e.g., hemodynamic 
parameter at one time-point) in the cardiac surgery 
population perform similar to conventional statistical 
methods (not using a training and validation set) concerning 
predictive capability. 

In between ML methods, complex or straightforward 
in construction, only GBM more often shows superior 
outcomes than others. For one study, that can in part be 
attributed to the relatively updated registry it used (32). 
Major differences, however, are absent, with also high 
correlations in between these models, suggesting that 
they find similar patterns. Although major predictive 
improvements are not seen for single ANNs, it is beneficial 
to use them in an ensemble (27,72). However, the true 
power of ML seems to be triumphant when applied to 
more complex data such as full dynamic arterial waveforms 
or complex ultrasound images as opposed to stationary 
perioperative variables. Using these parameters yields 
real-time clinically insightful results (48,51,52) that are a 
valuable addition to current dynamic parameters (e.g., heart 
rate, stroke volume variation). Contemporary literature 
lacks data on clinical outcomes from ML implementation 
in the cardiac surgery population. Still, beneficial results are 
probably not long in coming, given the effectiveness seen in 
a different surgical population using real-time dynamic data 
in an ML model (80). 

In contrast, comparable performances or modest 
improvements in prediction models are similar to other 
medical fields (81,82). An explanatory factor in this may be 
that these implementations are often based on manageable 
datasets that do not use an uncountable number of variables. 
While the strength of some advanced ML models is 
attributed to their ability to establish nonlinear relationships 
between variables in complex datasets that conventional 
methods have not previously demonstrated. In line with 
this, one of our included studies showed that the predicted 
risk correlation between an advanced and conventional 
model was very low. Although comparable in prediction, 
this suggests that they did not assign their prediction to the 
same features. Besides, the high complexity of ML models 
in small datasets poses a risk for overfitting (83). This occurs 
when irrelevant characteristics in the training data are 
marked as predictive parameters, causing underperformance 
in the test set (84). This problem might be avoided by 
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Table 3 Area under the curve values in validation datasets for prediction of additional-, prolonged-, or re-intervention and/or care 

Surgery
Datasets

Phasea
Model typeb (clinical score)

AUCc

Training Test Category Subtype

Renal replacement and CVVH

Penny-Dimri et al. 
(61)

Mix N/A Preoperative Conventional LR (Cleveland Clinic) 0.80d

LR (Risk score) 0.80d

LR (Risk score) 0.81d

77,322 19,331 Preoperative Advanced LR 0.82d

GBM 0.83d

k-NN 0.68d

ANN 0.82d

Pre-, and 
intraoperative 

Advanced LR 0.84d

GBM 0.85d

k-NN 0.69d

ANN 0.84 d

Bent et al. (66) CABG + valve 
surgery

30 35 Perioperative Advanced LR 0.89e

ANN 0.90e

Prolonged mechanical ventilation and reintubation 

Wise et al. (71) CABG N/A Preoperative Conventional LR 0.698f

590 148 Preoperative Advanced ANN 0.714f

Mendes et al. (22) CABG 1,053 262 Pre-, intra-, 
postoperative

Advanced LR 0.67f

ANN 0.72f

LR 0.62g

ANN 0.65g

Length of stay

Rowan et al. (72) Mix 480 240 Pre-, intra-, 
postoperative

Advanced Ensemble ANNs 0.901

Barbini et al. (73) CABG + valve 
surgery

2,605 651 Pre-, intra-, 
postoperative

Advanced NB 0.859

Meyfroidt et al. (70) Mix N/A Preoperative Conventional LR (EuroSCORE I) 0.726

Pre-, intra-, 
postoperative

Nurses’ prediction 0.695

Physician’s prediction 0.758

461 499 Advanced Gaussian processes 0.758

30-day readmission 

Manyam et al. (74) CABG 1,042 261 Time-independent1 Advanced XGBoost 0.627

Time-dependent + 
time-independent1

Advanced XGBoost 0.868

Table 3 (continued)
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Table 3 (continued)

Surgery
Datasets

Phasea
Model typeb (clinical score)

AUCc

Training Test Category Subtype

Engoren et al. (75) CABG 2,644 2,711 Pre-, intra-, 
postoperative

Advanced LR 0.644

Genetic programs 0.654

ANN 0.537

Graft failure at 5 years

Agasthi et al. (32) HTx 12,189 3,047 Pre-, intra-, 
postoperative

Advanced GBM 0.716

a, perioperative phase: pre-, intra, postoperative used variables in prediction models; b, distinction between conventional and advanced 
models is explained in the methods section; c, definitions of both the AUC and C-index is given in the methods section; d, need for 
renal replacement therapy; e, need for early continuous venovenous hemofiltration; f, prolonged mechanical ventilation; g, reintubation. 
1, perioperative variables. ANN (1, 2, etc.), artificial neural network (one-layer, two-layer, etc.). AUC, area under the receiving operating 
characteristics curve for the validation sets; CABG, coronary artery bypass graft surgery; GBM, gradient-boosted machine; HTx, heart 
transplantation; k-NN, k-nearest neighbor; LGM, light gradient machine; LR, logistic regression; Mix, various cardiac surgery patients with/
without heart transplantation; NB, Naïve Bayes; XGBoost, extreme gradient boosting.

implementing cross-validation as demonstrated for delirium 
in cardiac surgery (57). Still, traditional linear statistics 
may be more suitable for risk prediction models (85), as 
advanced models perform similarly but are more complex to 
develop. 

Although not convincing in risk prediction models, ML 
does excel in datasets consisting of dynamic parameters. 
Future research should focus on these real-time applications 
of ML exploring patterns in complex datasets. Then 
promising results can be achieved, as demonstrated by the 
effective hypotension early warning system by Hatib et al. 
(48,49) and the automation of echocardiography in two 
other studies (51,52). Not only aimed at the development 
and validation of such models but also their clinical 
effectiveness in randomized controlled trials should be 
addressed. 

Future directions and challenges 

Anesthesia is pre-eminently the field where many dynamic 
physiological data can be collected digitally, especially in 
cardiac surgery, where the mean operative time is about 
three hours (86). The current application of anesthesia 
information management systems (AIMS) is expected 
to be well above 80% in academic centers (87). Future 
incorporation of machine learning into AIMS could 
facilitate the continuous development of these models, 
unlocking their full potential based on a regularly updating 
and expanding dataset. Still, it might be safer only to update 

ML models in controlled research settings. Especially as 
neural networks, in particular, are not transparent and, 
at best opaque in how and what variables are processed 
in these algorithms (7,88). Not without reason, there is 
growing interest in explainable artificial intelligence, an AI 
in which decisions made by the model are transparent and 
better interpretable (89). 

Nowadays, the application of ML models is approved 
by the US Food & Drugs Administration (FDA) and the 
European Commission when the algorithm in patients 
cannot improve on its capabilities (so-called locked models). 
This is done to ensure consistent, reproducible results 
and safety from the algorithm (90). The FDA is currently 
assessing regulatory modification possibilities (91) that 
enable the use of “unlocked” ML, taking into account 
potential safety issues. 

There is still plenty of work to be done in the application 
and clinical evaluation of promising “locked” ML methods 
based on various perioperative dynamic variables. We 
suggest that future clinical trials implementing ML models 
address the following three primary outcomes: (I) will 
patient outcomes improve with ML-based diagnostic and 
treatment guidance, (II) does it improve workflow efficiency, 
and (III) is it cost-effective. 

Limitations 

Although we conducted a systematic search, we might 
have missed articles due to the broad range of included 
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topics and acronyms in the literature. This may have 
led to the incorrect exclusion of studies from the initial 
selection. Another limitation of our article is that we 
only descriptively summarized the data without a meta-
analysis. Therefore, definitive conclusions cannot be drawn 
about AUC differences across different methodologies. 
Nevertheless, this article provides an overview of the 
current ML applications per perioperative phase in cardiac 
surgery, showcasing where research is still needed.

Conclusion

Machine learning in cardiac surgery is being applied in 
perioperative anesthetic management and risk assessment. 
They are generally yielding comparable predictive outcomes 
to existing clinical scores. With the exception that models 
implementing dynamic variables obtain promising results. 
However, there is still a need for data on clinical outcomes 
after using ML-based models for diagnostic and treating 
guidance.
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