organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-[Bis(dimethylamino)methylidene]-2-[(triphenylmethyl)sulfanyl]ethanaminium hexafluorophosphate

Adam Neuba, Ulrich Flörke* and Gerald Henkel

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: ulrich.floerke@upb.de

Received 30 March 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.104; data-to-parameter ratio = 18.6.

The molecular structure of the title compound, $C_{26}H_{32}N_3S^+$ ·-PF₆⁻, shows a protonated guanidyl group bridged by an ethylene linker with a tritylsulfanyl unit. The guanidinium (gua) unit displays charge delocalization over the three N- C_{gua} bonds. The N-C-C-S group shows a folded nonplanar conformation with a torsion angle of 158.4 (1)°. In the crystal, the cation and anion are linked by an N-H···F interaction.

Related literature

For the synthesis, see: Herres-Pawlis *et al.* (2005). For related structures, see: Flörke *et al.* (2006); Neuba *et al.* (2007*c*); Pruszynski *et al.* (1992). For related chemistry literature, see: Börner *et al.* (2007, 2009); Galezowski *et al.* (1994); Harmjanz (1997); Herres *et al.* (2005); Herres-Pawlis *et al.* (2009); Neuba (2009); Neuba *et al.* (2007*a,b,* 2008*a,b,* 2010, 2011); Peters *et al.* (2008); Pohl *et al.* (2000); Raab *et al.* (2003); Schneider (2000); Waden (1999); Wittman (1999); Wittmann *et al.* (2001).

Experimental

Crystal data

 $\begin{array}{l} C_{26}H_{32}N_3S^+ \cdot PF_6^-\\ M_r = 563.58\\ \text{Triclinic, } P\overline{1}\\ a = 9.0111 \ (14) \ \text{\AA}\\ b = 9.1376 \ (15) \ \text{\AA}\\ c = 17.564 \ (3) \ \text{\AA} \end{array}$

 $\alpha = 96.532 (3)^{\circ}$ $\beta = 100.225 (4)^{\circ}$ $\gamma = 108.053 (3)^{\circ}$ $V = 1331.0 (4) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation

μ	=	0.25 mm^-
Т	=	120 K

Data collection

Bruker SMART APEX	11072 measured reflections
diffractometer	6281 independent reflections
Absorption correction: multi-scan	4547 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.060$
$T_{\min} = 0.924, T_{\max} = 0.939$	

 $0.33 \times 0.30 \times 0.26 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 338 parameters $wR(F^2) = 0.104$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$ 6281 reflections $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots F6^{i}$	0.88	2.13	2.949 (2)	155
a				

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5504).

References

- Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.
- Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). *Eur. J. Inorg. Chem.* pp. 5645–5651.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flörke, U., Herres-Pawlis, S., Heuwing, A., Neuba, A., Seewald, O. & Henkel, G. (2006). Acta Cryst. C62, m234–m237.
- Galezowski, W., Bakshi, P. K., Leffek, K. T. & Cameron, T. S. (1994). Can. J. Chem. 72, 352–356.
- Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.
- Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.
- Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). *Eur. J. Org. Chem.* pp. 4879–4890.
- Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154– 1169.
- Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.
- Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, 03476-03477.
- Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, 04661.
- Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, 04683.
- Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). *Angew. Chem.* In the press.
- Botte, E., Hotel, F. & Henkel, G. (2011). Angew. Chem. In the press.
 Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z.
 Anorg. Allg. Chem. 634, 2511–2517.
- Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.
- Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.
- Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821.

- Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.
 Pruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst.
- C48, 1638–1641.
- Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.
- Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.
- Wittman, H. (1999). PhD thesis, University of Marburg, Germany.
- Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.

Acta Cryst. (2011). E67, o1238-o1239 [doi:10.1107/S1600536811014929]

N-[Bis(dimethylamino)methylidene]-2-[(triphenylmethyl)sulfanyl]ethanaminium hexafluorophosphate

A. Neuba, U. Flörke and G. Henkel

Comment

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper-sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b, 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N₂O-reductase (Neuba et al., 2011). The title compound (I) is the protonated variant of 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine ($C_{26}H_{31}N_3$) (Neuba et al., 2007c). Both compounds possess a folded non-planar conformation with torsion angles of the S—C—C—N group of 66.04 (15) in C₂₆H₃₁N₃ and 158.36 (13)° in I. Compared to C₂₆H₃₂N₃ with localized N=Cgua double bond (N=Cgua: 1.281 (2), N-Cgua: 1.399 (2) and 1.292 (2) Å) the respective double bond in I is clearly delocalized over the guanidine unit (N=Cgua: 1.341 (2), N-Cgua: 1.3938 (2) and 1.333 (2) Å). Several variants of protonated bis(tetramethyl-guanidino)propylene (Flörke et al., 2006) show similar N-C (1.326 (7)-1.341 (6) Å) and N-Cgua bond lengths (1.331 (2)-1.343 (3) Å). In bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), with a protonated imine N atom, strong delocalization is also observed among the three C-N bonds, which are in the range of 1.31 (1)-1.34 (1) Å. Further protonated guanidine units show comparable N-Cgua- and N=Cgua geometries (Herres-Pawlis et al., 2005; Herres et al., 2005; Wittman, 1999; Peters et al., 2008, Galezowski et al., 1994, Raab et al., 2003).

The crystal packing exhibits N1—H…F6(-x + 1, -y + 1, -z + 1) intermolecular interaction from cation to anion with H…F = 2.127 Å.

Experimental

Preparation of the title compound: 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine ($C_{26}H_{31}N_3$) (417 mg, 1 mmol) was added to a solution of [$Cu(MeCN)_4$]PF₆ (373 mg, 1 mmol) in acetonitrile (aqueous, 15 ml); the mixture was stirred for 15 min at room temperature and then refluxed for further 15 min and filtered off. Colourless crystals were obtained using the vapour pressure equalization method with this solution in the presence of diethylether.

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C or N atoms with C—H = 0.95 (aromatic), 0.98 (methyl) and N—H 0.88 Å, and with isotropic displacement parameters $U_{iso}(H) = 1.2U(C/N_{eq})$ or 1.5U(–CH₃ H atoms). All CH₃ H atoms were allowed to rotate but not to tip.

Figures

Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms omitted for clarity.

N-[Bis(dimethylamino)methylidene]- 2-[(triphenylmethyl)sulfanyl]ethanaminium hexafluorophosphate

Crystal data

$C_{26}H_{32}N_3S^+ \cdot PF_6^-$	<i>Z</i> = 2
$M_r = 563.58$	F(000) = 588
Triclinic, <i>P</i> T	$D_{\rm x} = 1.406 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.0111 (14) Å	Cell parameters from 786 reflections
b = 9.1376 (15) Å	$\theta = 2.4 - 27.9^{\circ}$
c = 17.564 (3) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\alpha = 96.532 \ (3)^{\circ}$	T = 120 K
$\beta = 100.225 \ (4)^{\circ}$	Block, colourless
$\gamma = 108.053 \ (3)^{\circ}$	$0.33\times0.30\times0.26~mm$
$V = 1331.0 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEX diffractometer	6281 independent reflections
Radiation source: sealed tube	4547 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.060$
φ and ω scans	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -11 \rightarrow 10$
$T_{\min} = 0.924, \ T_{\max} = 0.939$	$k = -12 \rightarrow 11$
11922 measured reflections	$l = -23 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.104$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0445P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6281 reflections	$(\Delta/\sigma)_{max} < 0.001$
338 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters -	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	p	(· · ·	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.77994 (6)	0.61888 (5)	0.29140 (3)	0.02002 (12)
N1	0.6327 (2)	0.89606 (18)	0.43688 (9)	0.0242 (4)
H1A	0.6289	0.8850	0.4857	0.029*
N2	0.7383 (2)	1.16512 (18)	0.47245 (9)	0.0253 (4)
N3	0.5695 (2)	1.05179 (18)	0.34970 (9)	0.0252 (4)
C1	0.6470 (2)	1.0380 (2)	0.41911 (10)	0.0211 (4)
C2	0.7029 (3)	1.3121 (2)	0.47981 (13)	0.0378 (6)
H2A	0.7840	1.3922	0.4625	0.057*
H2B	0.7042	1.3471	0.5348	0.057*
H2C	0.5969	1.2948	0.4470	0.057*
C3	0.8710 (3)	1.1626 (3)	0.53285 (12)	0.0338 (5)
H3A	0.8341	1.1432	0.5812	0.051*
H3B	0.9578	1.2636	0.5434	0.051*
H3C	0.9102	1.0792	0.5145	0.051*
C4	0.6343 (3)	1.1837 (3)	0.31065 (13)	0.0407 (6)
H4A	0.5737	1.2556	0.3145	0.061*
H4B	0.6252	1.1443	0.2551	0.061*
H4C	0.7473	1.2390	0.3362	0.061*
C5	0.4191 (3)	0.9342 (3)	0.30549 (12)	0.0350 (5)

H5A	0.4396	0.8717	0.2619	0.052*
H5B	0.3447	0.9862	0.2845	0.052*
H5C	0.3720	0.8657	0.3403	0.052*
C6	0.6227 (2)	0.7568 (2)	0.38190 (11)	0.0245 (4)
H6A	0.5129	0.7109	0.3485	0.029*
H6B	0.6430	0.6775	0.4124	0.029*
C7	0.7419 (2)	0.7943 (2)	0.32952 (11)	0.0207 (4)
H7A	0.8437	0.8738	0.3601	0.025*
H7B	0.6989	0.8384	0.2852	0.025*
C8	0.7037 (2)	0.5855 (2)	0.18294 (10)	0.0173 (4)
C11	0.6980 (2)	0.4160 (2)	0.15696 (10)	0.0177 (4)
C12	0.8390 (2)	0.3816 (2)	0.17641 (11)	0.0226 (4)
H12A	0.9333	0.4611	0.2068	0.027*
C13	0.8442 (2)	0.2340 (2)	0.15229 (12)	0.0269 (4)
H13A	0.9412	0.2127	0.1664	0.032*
C14	0.7079 (3)	0.1177 (2)	0.10767 (11)	0.0270 (5)
H14A	0.7109	0.0164	0.0906	0.032*
C15	0.5672 (3)	0.1497 (2)	0.08807 (11)	0.0266 (4)
H15A	0.4732	0.0697	0.0578	0.032*
C16	0.5622 (2)	0.2984 (2)	0.11234 (11)	0.0220 (4)
H16A	0.4649	0.3192	0.0982	0.026*
C21	0.5359 (2)	0.5994 (2)	0.16573 (10)	0.0172 (4)
C22	0.4204 (2)	0.5180 (2)	0.20308 (10)	0.0206 (4)
H22A	0.4475	0.4567	0.2399	0.025*
C23	0.2669 (2)	0.5248 (2)	0.18760 (11)	0.0230 (4)
H23A	0.1900	0.4685	0.2138	0.028*
C24	0 2246 (2)	0 6135 (2)	0 13396 (11)	0.0237 (4)
H24A	0.1192	0.6181	0.1233	0.028*
C25	0.3372 (2)	0.6948 (2)	0.09638 (11)	0.0235 (4)
H25A	0.3092	0.7558	0.0596	0.028*
C26	0 4920 (2)	0 6881 (2)	0 11204 (11)	0.0208 (4)
H26A	0.5686	0 7448	0.0858	0.025*
C31	0.8208 (2)	0.6940 (2)	0.14281 (10)	0.0183 (4)
C32	0.8071 (2)	0.6503(2)	0.06202(11)	0.0231(4)
H32A	0.7257	0.5565	0.0338	0.028*
C33	0.9100 (2)	0 7415 (2)	0.02285 (11)	0.0268 (4)
H33A	0.8989	0 7100	-0.0319	0.032*
C34	1.0294 (2)	0.8785 (2)	0.06290 (12)	0.0259 (4)
H34A	1.1011	0.9406	0.0361	0.031*
C35	1.0432 (2)	0.9240(2)	0.14238 (12)	0.0252 (4)
H35A	1 1240	1 0185	0 1701	0.030*
C36	0.9401 (2)	0.8329 (2)	0.18186 (11)	0.0216 (4)
H36A	0.9512	0.8658	0.2365	0.026*
P1	0.19146 (7)	0.27386 (6)	0.37421 (3)	0.02543 (13)
F1	0.02793 (18)	0.13314 (18)	0.35865 (10)	0.0699 (5)
F2	0.20703 (19)	0.22909 (16)	0.28687 (7)	0.0526 (4)
F3	0.35707 (17)	0.41217 (16)	0.39103 (9)	0.0547 (4)
F4	0.10033 (18)	0.38923 (16)	0.34893 (8)	0.0531 (4)
F5	0.18070 (19)	0.31694 (17)	0.46304 (8)	0.0524 (4)
	× /	× /	× /	· /

F6

0.28644 (18)

0.15713 (16)

0.40077 (7)

(

0.0472 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0229 (3)	0.0197 (2)	0.0182 (2)	0.0101 (2)	0.00173 (19)	0.00234 (17)
N1	0.0361 (10)	0.0218 (8)	0.0170 (8)	0.0095 (8)	0.0118 (7)	0.0047 (6)
N2	0.0275 (10)	0.0227 (8)	0.0245 (9)	0.0083 (7)	0.0052 (7)	0.0003 (7)
N3	0.0312 (10)	0.0246 (9)	0.0219 (8)	0.0126 (8)	0.0058 (7)	0.0043 (7)
C1	0.0222 (11)	0.0251 (10)	0.0198 (9)	0.0107 (8)	0.0100 (8)	0.0032 (8)
C2	0.0447 (15)	0.0216 (11)	0.0446 (14)	0.0110 (10)	0.0088 (11)	-0.0019 (9)
C3	0.0299 (12)	0.0375 (12)	0.0279 (11)	0.0083 (10)	0.0006 (10)	-0.0007 (9)
C4	0.0584 (17)	0.0377 (13)	0.0347 (12)	0.0214 (12)	0.0157 (12)	0.0186 (10)
C5	0.0346 (13)	0.0395 (13)	0.0291 (11)	0.0195 (11)	-0.0029 (10)	-0.0047 (9)
C6	0.0339 (12)	0.0191 (9)	0.0225 (10)	0.0103 (9)	0.0093 (9)	0.0031 (7)
C7	0.0222 (10)	0.0161 (9)	0.0232 (10)	0.0066 (8)	0.0045 (8)	0.0026 (7)
C8	0.0179 (10)	0.0160 (9)	0.0159 (9)	0.0045 (8)	0.0018 (7)	0.0019 (7)
C11	0.0207 (10)	0.0170 (9)	0.0168 (9)	0.0068 (8)	0.0064 (8)	0.0045 (7)
C12	0.0195 (10)	0.0198 (9)	0.0273 (10)	0.0057 (8)	0.0054 (8)	0.0022 (8)
C13	0.0281 (12)	0.0250 (10)	0.0328 (11)	0.0137 (9)	0.0100 (9)	0.0067 (8)
C14	0.0374 (13)	0.0169 (9)	0.0292 (11)	0.0108 (9)	0.0122 (10)	0.0018 (8)
C15	0.0295 (12)	0.0208 (10)	0.0234 (10)	0.0012 (9)	0.0066 (9)	-0.0008 (8)
C16	0.0215 (11)	0.0224 (10)	0.0204 (9)	0.0069 (8)	0.0026 (8)	0.0020 (7)
C21	0.0168 (10)	0.0149 (8)	0.0173 (9)	0.0054 (7)	-0.0001 (7)	-0.0014 (7)
C22	0.0227 (11)	0.0200 (9)	0.0211 (10)	0.0091 (8)	0.0044 (8)	0.0065 (7)
C23	0.0192 (10)	0.0227 (10)	0.0270 (10)	0.0055 (8)	0.0068 (8)	0.0061 (8)
C24	0.0173 (10)	0.0258 (10)	0.0287 (11)	0.0100 (8)	0.0033 (8)	0.0033 (8)
C25	0.0248 (11)	0.0229 (10)	0.0250 (10)	0.0115 (9)	0.0029 (9)	0.0077 (8)
C26	0.0210 (10)	0.0191 (9)	0.0230 (10)	0.0070 (8)	0.0052 (8)	0.0057 (7)
C31	0.0173 (10)	0.0179 (9)	0.0228 (9)	0.0094 (8)	0.0046 (8)	0.0052 (7)
C32	0.0210 (10)	0.0216 (9)	0.0246 (10)	0.0057 (8)	0.0023 (8)	0.0044 (8)
C33	0.0290 (12)	0.0313 (11)	0.0226 (10)	0.0114 (10)	0.0068 (9)	0.0098 (8)
C34	0.0246 (11)	0.0262 (10)	0.0336 (11)	0.0122 (9)	0.0110 (9)	0.0155 (9)
C35	0.0190 (10)	0.0175 (9)	0.0375 (12)	0.0047 (8)	0.0041 (9)	0.0061 (8)
C36	0.0197 (10)	0.0200 (9)	0.0253 (10)	0.0078 (8)	0.0044 (8)	0.0033 (8)
P1	0.0307 (3)	0.0207 (3)	0.0231 (3)	0.0066 (2)	0.0047 (2)	0.0047 (2)
F1	0.0451 (10)	0.0428 (9)	0.0994 (13)	-0.0102 (7)	0.0113 (9)	0.0027 (9)
F2	0.0916 (12)	0.0495 (9)	0.0248 (7)	0.0340 (9)	0.0148 (7)	0.0079 (6)
F3	0.0403 (9)	0.0380 (8)	0.0720 (10)	-0.0026 (7)	0.0121 (8)	0.0015 (7)
F4	0.0661 (11)	0.0509 (9)	0.0512 (9)	0.0377 (8)	0.0019 (8)	0.0112 (7)
F5	0.0803 (11)	0.0580 (9)	0.0337 (7)	0.0362 (9)	0.0256 (7)	0.0098 (6)
F6	0.0765 (11)	0.0483 (8)	0.0350 (7)	0.0411 (8)	0.0162 (7)	0.0173 (6)

Geometric parameters (Å, °)

S1—C7	1.8202 (17)	C13—C14	1.383 (3)
S1—C8	1.8620 (18)	C13—H13A	0.9500
N1—C1	1.341 (2)	C14—C15	1.381 (3)
N1—C6	1.476 (2)	C14—H14A	0.9500

N1—H1A	0.8800	C15—C16	1.394 (2)
N2—C1	1.338 (2)	C15—H15A	0.9500
N2—C3	1.459 (3)	C16—H16A	0.9500
N2—C2	1.470 (2)	C21—C22	1.393 (3)
N3—C1	1.333 (2)	C21—C26	1.394 (2)
N3—C5	1.459 (3)	C22—C23	1.384 (3)
N3—C4	1.469 (3)	C22—H22A	0.9500
C2—H2A	0.9800	C23—C24	1.388 (3)
C2—H2B	0.9800	C23—H23A	0.9500
C2—H2C	0.9800	C24—C25	1.378 (3)
С3—НЗА	0.9800	C24—H24A	0.9500
С3—Н3В	0.9800	C25—C26	1.395 (3)
С3—НЗС	0.9800	C25—H25A	0.9500
C4—H4A	0.9800	C26—H26A	0.9500
C4—H4B	0.9800	C31—C36	1.390 (2)
C4—H4C	0.9800	C31—C32	1.402 (2)
С5—Н5А	0.9800	C32—C33	1.381 (3)
С5—Н5В	0.9800	C32—H32A	0.9500
С5—Н5С	0.9800	C33—C34	1.384 (3)
C6—C7	1.521 (3)	С33—Н33А	0.9500
С6—Н6А	0.9900	C34—C35	1.383 (3)
С6—Н6В	0.9900	C34—H34A	0.9500
С7—Н7А	0.9900	C35—C36	1.385 (3)
С7—Н7В	0.9900	С35—Н35А	0.9500
C8—C21	1.537 (2)	С36—Н36А	0.9500
C8—C31	1.538 (2)	P1—F4	1.5801 (13)
C8—C11	1.546 (2)	P1—F3	1.5814 (14)
C11—C16	1.386 (3)	P1—F1	1.5819 (15)
C11—C12	1.396 (3)	P1—F2	1.5842 (13)
C12—C13	1.385 (2)	P1—F5	1.5924 (13)
C12—H12A	0.9500	P1—F6	1.6202 (13)
C7—S1—C8	105.13 (8)	C14—C13—H13A	120.1
C1—N1—C6	125.84 (15)	С12—С13—Н13А	120.1
C1—N1—H1A	117.1	C15—C14—C13	119.59 (17)
C6—N1—H1A	117.1	C15—C14—H14A	120.2
C1—N2—C3	122.00 (16)	C13—C14—H14A	120.2
C1—N2—C2	122.76 (17)	C14—C15—C16	120.53 (18)
C3—N2—C2	114.95 (16)	C14—C15—H15A	119.7
C1—N3—C5	122.70 (17)	С16—С15—Н15А	119.7
C1—N3—C4	121.96 (18)	C11-C16-C15	120.46 (18)
C5—N3—C4	115.28 (17)	C11—C16—H16A	119.8
N3—C1—N2	120.65 (17)	C15—C16—H16A	119.8
N3—C1—N1	120.34 (17)	C22—C21—C26	117.89 (17)
N2—C1—N1	119.01 (17)	C22—C21—C8	119.67 (15)
N2—C2—H2A	109.5	C26—C21—C8	122.42 (17)
N2—C2—H2B	109.5	C23—C22—C21	121.25 (17)
H2A—C2—H2B	109.5	C23—C22—H22A	119.4
N2—C2—H2C	109.5	C21—C22—H22A	119.4
H2A—C2—H2C	109.5	C22—C23—C24	120.33 (18)

H2B—C2—H2C	109.5	C22—C23—H23A	119.8
N2—C3—H3A	109.5	C24—C23—H23A	119.8
N2—C3—H3B	109.5	C25—C24—C23	119.29 (18)
НЗА—СЗ—НЗВ	109.5	C25—C24—H24A	120.4
N2—C3—H3C	109.5	C23—C24—H24A	120.4
НЗА—СЗ—НЗС	109.5	C24—C25—C26	120.40 (17)
НЗВ—СЗ—НЗС	109.5	C24—C25—H25A	119.8
N3—C4—H4A	109.5	С26—С25—Н25А	119.8
N3—C4—H4B	109.5	C21—C26—C25	120.84 (18)
H4A—C4—H4B	109.5	C21—C26—H26A	119.6
N3—C4—H4C	109.5	C25—C26—H26A	119.6
H4A—C4—H4C	109.5	C36—C31—C32	117.81 (17)
H4B—C4—H4C	109.5	C36—C31—C8	123.97 (16)
N3—C5—H5A	109.5	C32—C31—C8	118.22 (16)
N3—C5—H5B	109.5	C33—C32—C31	121.00 (18)
H5A—C5—H5B	109.5	C33—C32—H32A	119.5
N3—C5—H5C	109.5	С31—С32—Н32А	119.5
H5A—C5—H5C	109.5	C32—C33—C34	120.39 (18)
H5B—C5—H5C	109.5	С32—С33—Н33А	119.8
N1—C6—C7	112.59 (15)	С34—С33—Н33А	119.8
N1—C6—H6A	109.1	C35—C34—C33	119.25 (18)
С7—С6—Н6А	109.1	C35—C34—H34A	120.4
N1—C6—H6B	109.1	С33—С34—Н34А	120.4
С7—С6—Н6В	109.1	C34—C35—C36	120.53 (18)
H6A—C6—H6B	107.8	С34—С35—Н35А	119.7
C6—C7—S1	110.58 (12)	С36—С35—Н35А	119.7
С6—С7—Н7А	109.5	C35—C36—C31	121.02 (18)
S1—C7—H7A	109.5	С35—С36—Н36А	119.5
С6—С7—Н7В	109.5	C31—C36—H36A	119.5
S1—C7—H7B	109.5	F4—P1—F3	90.03 (8)
H7A—C7—H7B	108.1	F4—P1—F1	91.33 (9)
C21—C8—C31	112.93 (14)	F3—P1—F1	178.58 (9)
C21—C8—C11	111.65 (14)	F4—P1—F2	91.47 (8)
C31—C8—C11	108.14 (14)	F3—P1—F2	89.85 (8)
C21—C8—S1	108.93 (12)	F1—P1—F2	90.54 (9)
C31—C8—S1	112.31 (12)	F4—P1—F5	90.31 (8)
C11—C8—S1	102.41 (11)	F3—P1—F5	89.46 (8)
C16—C11—C12	118.30 (16)	F1—P1—F5	90.11 (9)
C16—C11—C8	123.45 (16)	F2—P1—F5	178.08 (8)
C12—C11—C8	118.19 (16)	F4—P1—F6	179.38 (9)
C13—C12—C11	121.31 (18)	F3—P1—F6	89.43 (8)
C13—C12—H12A	119.3	F1—P1—F6	89.21 (9)
C11—C12—H12A	119.3	F2—P1—F6	88.82 (7)
C14—C13—C12	119.82 (18)	F5—P1—F6	89.39 (7)
C5—N3—C1—N2	-150.95 (18)	C14-C15-C16-C11	-0.4 (3)
C4—N3—C1—N2	32.1 (3)	C31—C8—C21—C22	-174.76 (15)
C5—N3—C1—N1	28.1 (3)	C11—C8—C21—C22	63.1 (2)
C4—N3—C1—N1	-148.85 (18)	S1—C8—C21—C22	-49.25 (19)
C3—N2—C1—N3	-154.99 (18)	C31—C8—C21—C26	6.9 (2)

C2—N2—C1—N3	31.5 (3)	C11—C8—C21—C26	-115.21 (18)
C3—N2—C1—N1	25.9 (3)	S1—C8—C21—C26	132.42 (15)
C2—N2—C1—N1	-147.63 (19)	C26—C21—C22—C23	0.0 (3)
C6—N1—C1—N3	37.8 (3)	C8—C21—C22—C23	-178.44 (16)
C6—N1—C1—N2	-143.12 (19)	C21—C22—C23—C24	0.1 (3)
C1—N1—C6—C7	43.2 (3)	C22—C23—C24—C25	-0.1 (3)
N1—C6—C7—S1	158.36 (13)	C23—C24—C25—C26	0.0 (3)
C8—S1—C7—C6	115.92 (14)	C22—C21—C26—C25	0.0 (3)
C7—S1—C8—C21	-47.42 (14)	C8—C21—C26—C25	178.32 (16)
C7—S1—C8—C31	78.45 (13)	C24—C25—C26—C21	0.1 (3)
C7—S1—C8—C11	-165.77 (12)	C21—C8—C31—C36	103.47 (19)
C21—C8—C11—C16	9.8 (2)	C11—C8—C31—C36	-132.46 (17)
C31—C8—C11—C16	-115.03 (19)	S1—C8—C31—C36	-20.2 (2)
S1-C8-C11-C16	126.21 (16)	C21—C8—C31—C32	-76.83 (19)
C21—C8—C11—C12	-173.28 (15)	C11—C8—C31—C32	47.2 (2)
C31—C8—C11—C12	61.9 (2)	S1—C8—C31—C32	159.51 (14)
S1—C8—C11—C12	-56.87 (18)	C36—C31—C32—C33	0.7 (3)
C16-C11-C12-C13	-0.3 (3)	C8—C31—C32—C33	-179.02 (16)
C8—C11—C12—C13	-177.34 (17)	C31—C32—C33—C34	0.1 (3)
C11—C12—C13—C14	0.4 (3)	C32—C33—C34—C35	-0.8 (3)
C12-C13-C14-C15	-0.5 (3)	C33—C34—C35—C36	0.8 (3)
C13—C14—C15—C16	0.5 (3)	C34—C35—C36—C31	0.0 (3)
C12—C11—C16—C15	0.3 (3)	C32—C31—C36—C35	-0.7 (3)
C8—C11—C16—C15	177.21 (17)	C8—C31—C36—C35	178.97 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A…F6 ⁱ	0.88	2.13	2.949 (2)	155.
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1