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Botanical supplements with broad traditional and medicinal uses represent an area

of growing importance for American health management; 25% of U.S. adults use

dietary supplements daily and collectively spent over $9. 5 billion in 2019 in herbal and

botanical supplements alone. To understand how natural products benefit human health

and determine potential safety concerns, careful in vitro, in vivo, and clinical studies

are required. However, botanicals are innately complex systems, with complicated

compositions that defy many standard analytical approaches and fluctuate based upon

a plethora of factors, including genetics, growth conditions, and harvesting/processing

procedures. Robust studies rely upon accurate identification of the plant material, and

botanicals’ increasing economic and health importance demand reproducible sourcing,

as well as assessment of contamination or adulteration. These quality control needs for

botanical products remain a significant problem plaguing researchers in academia as

well as the supplement industry, thus posing a risk to consumers and possibly rendering

clinical data irreproducible and/or irrelevant. Chemometric approaches that analyze the

small molecule composition of materials provide a reliable and high-throughput avenue

for botanical authentication. This review emphasizes the need for consistent material

and provides insight into the roles of various modern chemometric analyses in evaluating

and authenticating botanicals, focusing on advanced methodologies, including targeted

and untargeted metabolite analysis, as well as the role of multivariate statistical modeling

and machine learning in phytochemical characterization. Furthermore, we will discuss

how chemometric approaches can be integrated with orthogonal techniques to provide

a more robust approach to authentication, and provide directions for future research.

Keywords: metabolomics, adulteration, multi-omics, dietary supplements, biochemometrics, chemometrics,

botanicals, authentication

INTRODUCTION

Botanical medicines and dietary supplements represent a growing facet of personal health and
medical care for Americans; the 2017 survey from the Council for Responsible Nutrition found
that botanicals make up ca. 39% of total dietary supplement usage for adults in the United States
(1), and US sales of herbal supplements totaled $9.6 billion in 2019, an annual increase of 8.6%
(2). The use of botanical medicines and dietary supplements has come to include patients receiving
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disease therapy, such as cancer (3) and chronic obstructive
pulmonary disease (COPD) (4). The increase in economic
and biomedical relevance of botanicals have led to a rise in
research interest surrounding their potential health benefits,
including support from the National Institutes of Health (5).
The US National Library of Medicine’s clinical trial tracker
(clinicaltrials.gov) had >140 active clinical trials involving
“herbal” or “botanical” preparations listed (accessed July 30,
2021) (6). However, the veracity of biomedical research, whether
it is in vitro studies or clinical trials, is predicated on the
authenticity and purity of the botanical(s) being studied.
Botanical products are inherently complex chemical mixtures
that can vary depending on abiotic and biotic factors during
growth and post-harvest processing. Complicating this is the
fact that products can be obtained from multiple producers
and growers, potentially with multiple sources of raw material
and processing techniques. Thus, to ensure the authenticity,
efficacy, and safety of botanical dietary supplements, complex
multi-faceted methods are required. This review focuses on
chemometric and orthogonal methods for profiling, analyzing,
and comparing botanical systems. We first provide opportunities
and limitations of traditional botanical product authentication,
followed by an overview of alternative chemometric approaches,
then delve into a plethora of multivariate statistical approaches
for botanical evaluation and present a workflow for how
researchers can rationally select an analytical model based on data
types and goals.

OPPORTUNITIES AND LIMITATIONS OF
TRADITIONAL APPROACHES

Morphology
Plant morphology is the traditional approach to botanical
product authentication, based on leaf shape and size and
arrangement, color, life cycle changes, and other phenotypic
factors. The combination of modern resources for plant
identification and expansive collections of medicinal plant
herbarium vouchers allows for fairly accurate morphological
characterization (7, 8). Although trained specialists provide the
most accurate identifications, guidebooks and phone applications
provide a simple, inexpensive avenue for authentication.
Increased accuracy results from micromorphology which allows
species-specific evaluations of pollen shape, pore size, and
other microscopic traits (9, 10). Recently, machine learning and
image processing software have led to high-thruput identification
of medicinal plants based on predefined characteristics and
extensive training datasets (11, 12).

Despite its strengths, morphology-based identification is
limited and often impractical, especially for rare plants. Similar
environments and evolution pathways can result in unrelated
plants with strong morphological resemblances but differing
medicinal properties. Furthermore, important morphological
information is lost when plants are dried or powdered, such
as leaf shape and texture. Morphology also varies between
plant parts, and recorded information for identifying plants
based on below ground parts rarely exists. While certain

root characteristics are useful, such as stone cells, auxiliary
root angle, and rhizome length, the literature for species
level identification is lacking and often contradictory between
labs (13–16). Taxonomic identification is further complicated
by vernacular names, which vary based on culture, location,
language, and subspecies (17, 18).

Genetics
Genetic approaches, namely DNA barcoding and genome
sequencing, are powerful tools for herbal product authentication.
DNA can be extracted from fresh or dried tissue and is
often effective with post-processed material (19). Primer-based
methods are the most straightforward approach to DNA based
identification: predefined primers for single genes (ITS2), a
combination of genes (matK and rbcL), or chloroplast genomes
(18, 20–23) amply specific fragments know to vary between
species and have potential to differentiate morphologically and
genetically similar species (24). Extensive sequence libraries exist
which simplifies species identification; rare and understudied
species are not thoroughly represented though (24). As
sequencing becomes increasingly advanced and affordable, the
applicability of genetic marker-based identification of a broad
range of botanicals will increase.

DNA barcoding, including random amplification of
polymorphic DNA (RAPD) (25) and inter-simple sequence
repeats (ISSR) (26), provides a robust evaluation of genome
diversity through examination of the presence/absence of more
than 20 random fragments of polymorphic DNA at a time.
Primer-based approaches amplify random segments of DNA
to compare polymorphic variations among species. Although
DNA barcoding is reliable, it is time consuming and requires
meticulous method optimization for each application. Further,
there is low resolution at the species or sub-species level (27).
Recent advances in metabarcoding, which combines next-
generation sequencing with bioinformatics, has greatly improved
the ability to detect adulteration and supplementation in herbal
products (28–30). Notably, the EU and other governing bodies
suggest metabarcoding to evaluate the identity and safety of
botanical products (31). For example, Seethapathy et al. used
metabarcoding to determine that over 24% of Ayurvedic herbal
products tested do not contain the botanical as labeled (28).
However, metabarcoding is expensive and requires a reference
DNA library and pre-defined genetic markers. So, for rare
species or those without sequenced genomes, metabarcoding is
ineffective as a quality control approach (32).

While genetic approaches have proven useful for botanical
product quality control, there are limitations. Plant tissue
is damaged and degraded during processing procedures,
hindering extractions of high-quality DNA (33). Since genetic
approaches do not provide quantitative data, there is limited
ability to determine relative abundances of different species
within a product. Thus, DNA barcoding does not allow trace
contamination, as from shared equipment, to be discerned
from intentional, large-scale adulteration of products. A final
limitation is the inability to evaluate medicinal properties
through barcoding based approaches. The medicinal value of a
product is largely based on its chemical constituents. Without
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detailed chemical analysis, the presence and relative abundance
of specific medicinal compounds is unknown. So, while genetics
may be able to detect adulteration, it cannot determine a products
actual medicinal value. Thus, chemical evaluation serves to both
authenticate botanicals and provide information of a product’s
bioactive potential.

TARGETED ANALYSIS OF BIOMARKERS

A simple and common approach to herbal product quality
control is the use of small-molecule based targeted analysis.
This approach uses individual and small groups of compounds
specific to the botanical in question. Using a targeted analysis
allows quick verification the product contains the plants as
advertised. This section outlines the targeted analysis workflow,
with examples and explanations of the pros and cons of
targeted approaches.

Single Biomarker Approach
The first step in using small molecule chemistry to serve
as biomarkers of quality and authenticity is to identify a
targeted metabolite or small set of metabolites specific to
the botanical in question. Since many commercially available
botanical medicines and dietary supplements are fairly well
characterized in scientific literature, the identification of
predominant metabolites (also known as ‘marker compounds’)
is fairly straightforward. These targeted compounds are analyzed
by a chemical methodology and compared against reference
standards and literature values; common analytical techniques
include charged aerosol detection (CAD), ultraviolet-visible
(UV/VIS) spectrophotometry, and mass spectrometry (MS),
often with chromatographic separation beforehand (liquid
chromatography, “LC”, or gas chromatography, “GC” being the
two primary forms). Nuclear magnetic resonance (NMR) is an
analytical technique that has become more quantitative recently
(qNMR) to facilitate comparisons between complex botanical
samples (34–36).

However, axiomatic to using a defined marker compound is
the knowledge of the chemistry of the system at hand and the
commercial availability (or the ability to isolate and conclusively
identify) of the targetmarker compounds.Whilemany botanicals
on themarket have well-developed chemical libraries and/or have
monographs detailing their chemical composition [including
the German Commission E (37), US Pharmacopeia (38), and
Tyler’s Herbs of Choice (39)], not every botanical, nor every
potential dietary supplement, is as thoroughly studied, and
gaps in the literature of even well-known botanicals still exist
today. The choice of marker compound also should, but doesn’t
necessarily, have relevance to the putative biological activity of
the botanical medicine or dietary supplement. Finally, standards
must be available to construct calibration curves; if they are
not commercially available, researchers face the daunting task
of isolating and elucidating the structure prior use as a marker
compound (40).

Furthermore, tying authenticity to a single compound
overlooks the broader chemical landscape present in the
botanical product, and can leave products susceptible to potential

adulteration. Single-point analyses can be confounded by spiking
with specific compounds or mixtures that might bypass quality
control procedures. One example is the discovery by Chandra
et al. of adulteration in ginkgo (Gingko biloba) extracts spiked
with either single isolated flavonoids or flavonoid-rich mixtures
(41). As the broad category “flavone glycosides” was chosen
by the gingko market as an authenticity marker, it was
prone to spiking by flavones (e.g., quercetin, kaempferol, and
isorhamnetin) to meet the quality criteria. In fact, three out
of eight products analyzed in the study that were labeled to
contain ginkgo extracts actually resembled those of commercial
extracts from Japanese sophora (Styphnolobium japonicum)
(41). In other cases, botanical dietary supplements have been
doped with dyes or other synthetic mixtures to deceive
single molecule quality control methods (42). Supplements
with alleged weight loss properties were spiked with alkaloid
derivatives, ephedra stimulants, or androgenic steroids (43,
44). Spiking and adulteration can also be used to bypass
negative controls searching for known contaminants/adulterants;
1,3-dimethylamylamine (1,3-DMAA) is one case study. The
United States Food and Drug Administration (FDA) had banned
1,3-DMAA in 2016 and pulled all products containing the
stimulant from shelves because of an increased incidence of ER
visits correlated with this stimulant, as well as failure to meet
regulatory conditions (45). However, investigations by Cohen
et al. revealed 1,3-DMAA analogs present in multiple weight loss
supplements (five out of six tested), illustrating how adulteration
can be used to sidestep regulatory authorities with potentially
toxic constituents (45).

Molecular “Fingerprints”
Beyond single molecules for targeted biomarker detection,
researchers can collect information on a range of molecules
or a “chemical fingerprint” that exemplifies a more robust and
nuanced representation of the botanical’s metabolite profile.
Using multiple components blunts the potential for metabolite
spiking (as seen with single marker compound approaches)
and can provide more selective and sensitive analysis for
distinguishing authentic material. Lv et al. (2016) developed an
HPLC-based fingerprint to differentiate species and geographical
origins of Rhizoma coptidis using six distinct alkaloids (46), while
eight organic acids were used to distinguish between Castanea
spp. Buds (47), and Parveen et al. validated an UHPLC-UV-
MSmethod incorporating 10 standard compounds to distinguish
closely related Tinospora species (48). Even AOAC’s official
method for some botanicals incorporates multiple compounds;
their method 2015.007 for investigating Ashwagandha (Withania
somnifera) employs 10 withanolide glycosides and aglycones
(49). However, multi-molecular chemical “fingerprints” are
more time- and labor-intensive approaches, as they require
the quantitation of multiple compounds with different linear
ranges and limits of detection and quantitation (LOD and LOQ,
respectively). This also does not circumvent the issue with single
biomarker approaches needing reliable, commercially available
standards in order to determine the overall fingerprint and
quantitation for the analysis.
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METABOLOMICS

The ‘metabolome’ is generally defined as the complete set
of small molecules produced by an organism or biological
sample at any given point in time. Metabolomics, therefore,
is the unbiased, holistic measurement of the metabolome
(though practically speaking there is no single analytical
approach capable of measuring all small molecules in one
experiment), and the relative areas or heights of signals within
the metabolome can be employed as a basis for comparison
between two or more samples. As such, metabolomics provides
a powerful tool for understanding the complete chemical
makeup of an herbal product, which can be used for efficient
and accurate quality control and authentication. Metabolomics
characterizes the chemical relationships that underlie variations
based upon genotype, origin (50), climate (51), or other
biotic or abiotic interactions (52–54). While a variety of
analytical inputs can be used to generate metabolome data
– including Fourier-Transformed infrared spectroscopy (FT-
IR), charged aerosol detection (CAD), ultraviolet-visible
(UV/VIS) spectrophotometry, mass spectrometry (MS), and
Nuclear Magnetic Resonance (NMR) spectroscopy – the two
primary analytical approaches employed for the majority of
metabolomics studies are liquid chromatography coupled
to mass spectrometry (LC-MS) and NMR spectroscopy.
These two provide incredible sensitivity and selectivity in
profiling a large fraction of the metabolome of a sample,
while also offering detailed structural information crucial
for metabolite annotation for the authentication of botanical
dietary supplements and medicines (55, 56). The advances
of metabolomics techniques is not the focus of this review,
the incredible innovation and progress that has been
achieved in metabolomics experiments have been discussed
elsewhere (57–59).

As relative comparisons are being made across a large dataset
(often hundreds to thousands of peaks in a single metabolome
data matrix), the chemical identification of the peaks is not
necessary at the outset of the experiment and analysis. Thus,
untargeted metabolomics studies can compare complex samples
with no a priori knowledge of their constituents (60) and do
not require the acquisition of analytical standards to complete
comparative analyses, a distinct advantage over the targeted or
fingerprinting approaches described above.

CHEMOMETRIC APPROACHES FOR
PATTERN RECOGNITION AND SIMILARITY
DETERMINATION

While a valuable tool for authentication of herbal products,
the innate complexity of metabolomic datasets can be daunting
when developing novel quality control approaches. One of
the major challenges facing metabolomic (or other molecular
fingerprinting approaches) is not the collection of the data,
but instead the processing, analysis, and interpretation of the
expansive datasets that are often generated. In metabolomics,
the data matrices often have more columns (independent
variables, such as m/z-retention time pairs or NMR signal
buckets) than rows (samples) and are known as “landscape”
matrices. “Chemometrics” refers to the application of statistical
methods to discover relevant analysis and maximize the
information obtained from the chemical datasets (61). For
the authentication of botanical materials, chemometric pattern
recognition approaches are the most prevalent. There are
a variety of multivariate mathematical–statistical methods
for prediction and pattern recognition (Figure 1), which
have disparate criteria for successful application to complex
chemical datasets.

FIGURE 1 | Pattern recognition methods. ANN, artificial neural networks; PCA, principal component analysis; PLS, partial least squares; SIMCA, soft independent

modeling of class analogy; SOM, self-organizing maps.
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Data Preparation for Chemometric
Analysis
In any statistical analysis, the robustness of the predictions
and inference is limited by the quality of the data that is
input into the model. For chemometric analysis, there are a
number of aspects of the dataset that will contribute to the
overall quality and reliability of the resulting model. One aspect
of note is the reproducibility of analytical data. Variations
in extraction protocol, sample handling as well as the mass
spectrometer detection itself (mass analyzer, detector, and even
the chromatography components) preclude facile comparisons
between labs. This can potentially lead to differing raw spectral
data, as well as variations in results obtained (62).

Raw spectral data, from any analytical source (LC-MS, GC-
MS, NMR, FT-IR, etc.) must be processed in order for the
statistics to be effective. For some spectral data (e.g., 1H-
NMR and FT-IR), the data is traditionally sliced into “bins”
that are then used as individual features in the dataset (63,
64). Mass spectrometry data is obtained as discreet features
(unique m/z-retention time pairs), yet still requires multi-step
“preprocessing” to identify peaks and align the data. There are
numerous methods and workflows to preprocess spectral data,
and have been examined and reviewed exhaustively elsewhere
(65–71). While most open access preprocessing software yields
similar performance in detection of actual peaks (“true” features)
from the data [as examined by Li et al. (68)], the abundance
of parameters needed to fine tune in order to develop a
robust final dataset can be challenging for researchers. The
subsequent scaling, centering, and normalization of the dataset
can also play a factor in the resulting statistical analysis (72, 73).
Thus, careful treatment of the raw data during preprocessing
is critical to downstream chemometric analyses in order to
obtain reproducible and reliable interpretations of the data.
The potential for variations in the processing of the data is a
persuasive argument in favor of the trend in metabolomics to
encourage open science by depositing the spectral data, as well
as metadata associated with the preprocessing parameters used,
in accordance with the FAIR (Findable, Accessible, Interoperable,
and Reusable) data principles (74).

Unsupervised Approaches
Unsupervised methods are the (relatively) simplest ways of
classifying large chemical datasets, designed to analyze data
that can only be arranged in one matrix. These methods are
“unsupervised” in the sense that no data classifications are known
before the analysis; instead data structures are revealed through
these pattern recognition methods. Researches should be aware
of the differences between hard and soft classification techniques.

Principal Component Analysis (PCA)
Principal component analysis (PCA) is an unsupervised
approach which projects multivariate data (with k
features/variables) onto a smaller dimensional space (<k-
1). As such, PCA is often referred to as a projection or
dimension reduction method. The metabolite profile is reduced
to uncorrelated principal components (PCs) which represent the
total variation present in the metabolome. The first principal

component accounts for the maximum percentage of the overall
variance, the second principal component (orthogonal to the
first) accounts for the second largest amount of variance, and
so on until all the variation in the data is accounted for or
the number of principal components reaches the limit (i.e.,
the number of features-1) (75). The principal components are
plotted in a pair-wise fashion (typically the first two, which
explain the most variation) on a 2-dimensional plane – known
as a “scores” plot – that demonstrates the spatial relationship
between different samples. Points which cluster together have
similar correlations in the PC variations, which translates to
similarities in their overall chemical profile. Likewise, dissimilar
samples are located further from one another in the two-
dimensional graph. A second corresponding graph associated
with PCA is the loadings plot, in which the features (variables)
are arranged in a two-dimensional plot using the same PCs
as the scores plot. The spatial representation of the loadings
mirrors that of the scores, thus enabling the determination of
which features are more prevalent in certain clusters of samples.
Zhang et al. (76) developed an approach to authenticate juices
from different berry fruits using untargeted metabolomics. Using
PCA generated from LC-QTOF-MS spectra, they were able to
discriminate between blueberry, cranberry, apple, and grape
juice (Figure 2). The corresponding loadings plot yielded 18
characteristic markers that were able to categorize the juices (76).
Additionally, Farag et al. differentiated ten cinnamon accessions
from the main cinnamon species using 1H-NMR metabolomics
combined with unsupervised chemometric approaches (77).
The scores plot (Figure 3) distinguished between Cinnamomum
cassia and C. verum, with PC1 and PC2 comprising 77%
of the variability in the model. The loadings plot suggested
nine key metabolites which could be used to differentiate
between cinnamon accessions, including cinnamaldehyde and
eugenol; the exclusive presence of eugenol in C. verum samples
suggested its potential as an authentication marker (77). Thus,
PCA represents a robust and potent chemometric tool in the
evaluation of different samples and their authenticity/purity.

However, while PCA can demonstrate clusters of samples
based upon their chemical profile, it is not able to provide
quantitative metrics around the degree of similarity between
samples, nor ranking how similar samples are to one another.
Furthermore, PCA relies on a subsection of the overall
principal component model to visually represent similarities
and differences between the samples; this is often an ad hoc
choice of PCA components which can mask outliers or shift
the overall spatial relationship between samples, leading to
the possibility of specious results and subsequent conclusions.
Integration of multiple PCs into a single quantitative comparison
may circumvent this. Termed the composite score, it has
potential to facilitate comparisons between multiple samples
using the entirety (or at minimum a significant subset) of
the principal component model to quantify similarity between
samples (78). This approach was used recently by Wallace et al.
to differentiate Hydrastis canadensis supplements from potential
adulterants (79).

Suggestions for future use: PCA is a powerful unsupervised
clustering tool with accessible computational resources to

Frontiers in Nutrition | www.frontiersin.org 5 November 2021 | Volume 8 | Article 780228

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Abraham and Kellogg Chemometric Analysis of Botanicals

FIGURE 2 | Principal component analysis (PCA) scores (A) and loadings (B) plot demonstrating differentiation between fruit juices based upon untargeted

metabolomic analysis. Reproduced with permission from Zhang et al. (76). Copyright 2018, American Chemical Society.

FIGURE 3 | Principal component analysis (PCA) from Cinnamomum verum and C. cassia from different geographical origins, and representative commercial oil, using
1H-NMR (n = 3) metabolomics. The scores plot (A) demonstrates clusters at distinct spatial points in the PC1-PC2 scores plot, and loadings plot (B) highlights major

contributing molecules to the separation of the samples. Reproduced with permission from Farag et al. (77). Copyright 2018, Elsevier Ltd.
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simplify analysis, making it an ideal first step in any chemometric
analysis. PCA can be used prior to any supervised approach to
confirm expected clustering among samples, and that apparent
distinctions result from true variations in sample metabolomes,
not as a result of overfitting to predefined categories. Alone, PCA
can be used to determine if adulterated and pure samples differ
while simultaneously identifying biomarkers likely responsible
for any variation. Thus, PCA has potential for a quick and
easy approach to botanical authentication based on metabolite
profiles. Possible sample clustering that may be identified using
PCA is species proximity, cultivation procedures, or origin of
plant growth. For any authentication study requiring more
detailed information of how samples are related or identification
of unknown with a single model, other approaches should be
performed concurrently with PCA.

Hierarchical Cluster Analysis (HCA)
Hierarchical clustering analysis (HCA) uses distances between
sample groupings (clusters) to organize samples into taxonomies;
objects with the highest similarity cluster together, and generated
clusters are treated as a new, independent feature which are
clustered with the next most similar variable. Similarity is
calculated as distance between variables through a variety of
algorithms, including Euclidian, Mahalanobis, or city block
(Manhattan); similarly, there are various linkage rules for
amalgamating the cluster analysis, such as minimum or
maximum similarity between variables, group average (average
similarity between every possible pair of data points), or Ward’s
Method (sum of the squared distance between each pair of data
points). Proximity matrixes are used to compare the calculated
similarity of all groups. The shorter the distance, the more similar
the variable, and thus more likely to be related. However, since
the similarity (distance) and linkage can be calculated using
different combinations of rules, the results of cluster analysis
are difficult to compare between studies. In the case of sample
authentication, each botanical sample is treated as a variable
and clusters are formed based on similarity in peak heights (or
other metabolite features) so that the most chemically similar
samples group together. HCA has been used to distinguish
Cirrhosae bulbus from common adulterants using UPLC-ELSDA
fingerprinting (80). Zhou et al. demonstrated the use of HCA in
discriminating between two bitter melon (Momordica charantia)
chemotypes with different medicinal properties (81). While PCA
was able to distinguish the two chemotypes, HCA allowed
a deeper insight into how each variety differed within the
groups (81), and the combination of PCA and HCA predicted
biomarkers for easy chemotype distinction of unknown samples.
NMR chemical fingerprinting of Sarsaparilla species (Decalepis
hamiltonii, Hemidesmus indicus, Pteridium aquilinum, and
Smilax spp.) revealed four clear clusters, which were further
confirmed by patterns in the NMR spectra (Figure 4) (82).
In addition to detection of herbal adulteration, HCA provides
opportunity to detect contamination with pharmaceutical drugs;
Cebi et al. used HCA to classify coffee and tea blends adulterated
with sibutramine, an illegal weight-loss drug (83).

Suggestions for future use: HCA models share similar possible
directions as PCAs, with additional information of how samples

are related chemically within generated clusters. A potential
study may evaluate differences in chemotypic and genotypic
based hierarchical clustering for authentication. It is possible
genetic approaches may discover adulteration by non-target
species but miss contamination with synthetic compounds;
chemotypic approaches may simultaneously provide species
distinction and chemical authentication. Similarly, comparisons
of HCAs generated via multiple analytical techniques (H-NNR
vs. LC-MS) may provide a deeper understanding of sample
relationships though inclusion of additional compounds.

Self-Organizing Maps
Artificial neural networks (ANN) is a collective term for several
machine learning methods. The most common unsupervised
ANN approach is self-organizing maps (SOM). Section
5.2.3.4 provides an overview of supervised ANN in natural
product authentication.

Self-organizing maps (SOMs), sometimes referred to as
Kohonen maps or Kohonen networks, is a neural network-based
algorithm that reduces the input dimensionality to represent
sample patterns; SOM forms a 2-dimensional map where similar
samples are mapped closer together. The benefit of this approach
is that SOMs account for non-linear information in the data,
and each variable’s importance to the model can be derived from
the weights associated with each map “point” (84). Torrecilla
et al. (85) employed SOM to analyze extra virgin olive oils and
detect adulteration via the addition of other oils. Using random
and non-random noise to simulate adulteration, the SOM was
constructed which yielded a misclassification rate <1.3% (68).
Using previous research, Menezes et al. generated a library of
terpenes present in three tribes of Annonaceae species (521
molecules) for use in training a SOM (86). The model was able
to classify unknown samples into the three predefined tribes
with 80% average accuracy (86). Similar approaches have been
demonstrated using diterpenes to classify Lamiaceae spp. (87)
and flavonoids to classify Asteraceae spp. (88).

Suggestions for future use: Menezes et al. provide an SOM
method very applicable to natural product authentication (86).
Using previous metabolomics data to classify botanical samples,
despite variations in analytical and collection techniques,
provides an opportunity to create authentication models without
extensive benchwork. This approach should be applied to
commercial supplements with well-defined chemistry to develop
predictive models for existing products.

Supervised Approaches
Supervised statistical methods require the data matrix have
both independent and dependent variables, the latter of which
can be nominal (categorical) or numerical in nature. Nominal
dependent data are ideal for clustering data into pre-defined
classes, such as “pure” and “adulterated,” whereas numerical data
can allow for the ranking, quantifying, and comparing variables
against each another. Many machine learning approaches are
supervised models based on training datasets. Simply, a set
of samples with known dependent variables are used to train,
generate, and validate a model, which subsequently predicts the
classification of additional, unknown samples (or the remainder
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FIGURE 4 | Unsupervised clustering analysis of four species of Sarsaarilla using cheometric modeling of 1H NMR data. Peak patterns are also provided to illustrate

differences between four major species. Reproduced under a Creative Commons Attribution 4.0 license from Kesanakurti et al. (82).

of the data). However, as the numbers of samples in a
metabolomics data set are generally fewer than the number of
variables, supervised techniques are prone to overfitting the data
(89); even so far as to be able to fit a model to completely
random data (90). Therefore, model validation is critical before
any interpretation of the model is reliable, and often quality
criteria of the model are reported such as R2 (a measure of the
fit of the model) and Q2 (the ability of the model to predict
unknown samples) (91).

Partial Least Squares (PLS)
PLS is a dimension reduction tool similar to PCA. PLS
condenses complex data to simpler latent variables which
explain shared features between correlated samples, but with
a dependent variable to supervise the construction of the
model. The goals of PLS are akin to linear regression:
classification of dependent variables and understanding the
independent variables (metabolite features) that are predictors
of this classification. A PLS model plots the latent components
among the independent variables that best explain variations in
dependent variables, and samples are projected onto the model
space. The resulting scores plot allows simple visualization of
sample clustering based on the reduced variables; the loading plot

provides information about specific variables which contribute
the most covariance to the model. The two primary types of PLS
analyses- PLS-R and PLS-DA are defined by the nature of the
dependent variable.

PLS-R
Partial least squares-regressions model variations among the
independent variables to explain a numerical dependent variable.
While PLS-R is uncommon for quality control of botanical
products, it has been employed with biomarker identification,
biochemometrics, and detection of adulteration (92). For
example, PLS-R was employed to differentiate between Hydrastis
canadensis (goldenseal) and four common adulterants using FT-
NIR data (64). Following preprocessing and filtering the spectral
data, PLS-Rmodeling successfully clustered pure goldenseal from
non-target species, as well as differentiated between various
goldenseal parts (roots and shoots) (64). In this case, the plot
consisted of latent variables which reduced the spectral data as
guided by a gradient in contamination as the dependent variable.
This study also highlights the importance of preprocessing and
filtering data; unprocessed data was unable to distinguish species
using PLS-R (80). Partial least squares is also one of the primary
predictive chemometric approaches: when there are correlations
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are drawn between the dependent data set (often bioactivity
or other quantitative data) and the independent chemical data
from which the model is derived. This approach, known as
biochemometrics when using bioactivity data, is explained more
fully below.

Suggestions for future use: Some future applications of PLS-
R in herbal product authentication could include evaluating
products with known and specified variations in ingredients-
teas with varying percentages of Ilex paraguariensis (yerba mate)
and ashwagandha root for example. PLS-R may also be useful
for discovering biomarkers to quickly differentiate between
bioactive and inactive products though detailed bio-chemical
analysis of commercial supplements and subsequently screening
additional products for identifiedmarkers. This may bypass some
typical issues with single marker analysis, as described in section
Single Biomarker Approach, by using commercially available
products for biomarker discovery as opposed to predetermined
pure plants.

PLS-DA
Partial least squares-discriminate analysis (PLS-DA) models the
data similar to PLS-R, but with the caveat that the dependent
variable be a binary descriptor (e.g., “class1” vs. “class2”,
“authentic” vs. “adulterated”, etc.), which are coded as −1
and 1, or 0 and 1. The resulting scores plot is typically
able to discriminate between the two groups, as it is guided
by the classification of the samples. PLS-DA is one of the
most common chemometric tools applied to chemical data for
authentication and discrimination among botanical products.
The study by Ismail et al. demonstrates this approach by
differentiating between different grades of gaharu (agarwood,
Aquilaria malaccensis). Using 1H-NMR metabolomics, a PLS-
DA model was able to differentiate between “high grade” and
lower grades of gaharu (Figure 5), and the resulting loadings
plot also highlighted aquilarone derivatives that discriminated
the different quality classes (93). Windarsih et al. also employed
PLS-DA analysis to differentiate between authentic Cucuma
xanthorrhiza (“Java ginger”) and samples adulterated with C.
aeruginosa. PLS-DA yielded a robust model (R2 and Q2 of
0.993 and 0.986, respectively) which separated authentic from
adulterated samples (94).

One of the limitations of PLS-DA is that the categorization
is restricted to a binary class designation. If there are more than
two main categories, the discriminant analysis requires pair-wise
comparison, complicating the analysis and potentially limiting
the conclusions which can be drawn. This is exemplified by
Barbosa et al.’s study to differentiate and authenticate paprika
grown in three different areas (La Vera and Murcia in Spain
and the Czech Republic) (95). The PLS-DA classification plots
were done as iterations of one region vs. the other two, to
comprehensively demonstrate that the three regions were distinct
from one another (a classification rate of 100%) (Figure 6).

Suggestions for future use: PLS-DA has excellent potential in
herbal product quality control since binary categorical classes
can encompass multiple facets of plant differentiation. These
applications range from classifying samples based on geographic
origin, plant parts, species or subspecies, or adulteration status.

Although PLS-DA requires pre-determined classifications of
data, the loading plots can guide discovery of biomarkers for
quick screening of unclassified samples. An interesting study
would model one chemical dataset for multiple classifications
of the same samples to evaluate how clustering and model
validation (R2 and Q2) change to determine the most reliable
classifications for authentication.

Soft Independent Modeling of Class Analogies

(SIMCA)
SIMCA is a supervised expansion of PCA: samples are grouped
into predefined classes and PCA is performed on each class, so
that each group is projected onto a separate PC space. To detect
adulteration, there are only two classes: authentic or adulterated,
so one-class PCA’s for authentic or adulterated samples can
be generated (79). A new, unknown sample’s classification is
predicted by projecting it to the PC space and calculating
the Q statistic (or Q residual), quantifying the similarity of
the unknown PCA to the training set’s PCA (79). The Q-
statistic predicts if the new sample belongs in the authentic,
adulterated, both, or neither class. Thus, SIMCA distinguishes
similarities among samples and unknowns rather than defining
the differences between groups (96). Wallace et al. intentionally
adulterated Hydrastis canadenis with varying concentrations
of Copits chinesis and used untargeted metabolomics with
SIMCA analysis to differentiate between pure and tainted
samples. Using one-class modeling, the Q statistic of “unknown”
adulterated products was calculated and found to fall above
the 95% confidence interval for pure samples, successfully
identifying even the lowest percentage of contamination (5%)
and providing a higher resolution of differentiation than PCA
alone (Figure 7) (79).

Suggestions for future use: SIMCA is a powerful classification
tool with digestible graphic outputs. SIMCA can be used
for classification problems where the output for each sample
is already known, such as adulterated vs. pure. It is a
straightforward tool for analysis of binary classifications but
becomes more complicated as more categories are added. Thus,
it should be reserved for problems focused on identifying
contaminated samples when deep machine learning modeling is
not necessary. A suggested approach to botanical quality control
is to perform unsupervised PCA to identify and confirm a
binary clustering of samples followed by SIMCA to predict the
classification of unknown products.

Machine Learning Models
While easily interpretable, models such as SIMCA and PLS are
inherently linear algorithms, capable of modeling only linear
latent covariance. As biological data are often non-linear, it is
probable that the related chemical data also has a non-linear
latent structure. Thus, non-linear machine learning methods can
be uniquely suited to examine relationships frommetabolomic or
other chemical data.

Decision Trees
Decision trees are a machine learning approach that use
hierarchical decisions to determine sample classification based
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FIGURE 5 | PLS-DA analysis of gaharu (Aquilaria malaccensis) woods by 1H-NMR untargeted analysis. The PLS-DA scores plot (A) effectively discriminated between

lower grade products (“E” and “H”) and higher grades. And the corresponding loadings plot (B) demonstrated that the lower quality products contained higher levels

of aquilarone derivates. Reproduced under a Creative Commons CC BY 4.0 license from Ismail et al. (93).

FIGURE 6 | PLS-DA discrimination plots according to the geographical region of production of paprika. (A) La Vera PDO vs. other regions; (B) Murcia vs. the other

two; (C) Czech Republic vs. other classifications. The dashed red line indicates the classification boundary between the two designations. Open symbols represent

the training data; the solid symbols are the test data. Reproduced with permission from Barbosa et al. (95). Copyright 2020, American Chemical Society.

on training data. Trees are displayed upside down, with the
bulk data at the top being split based on features that best
distinguish the data at each step. These distinctions are typically
based on the presence or ratios of specific metabolites that
separate one classifier from another. The result is a tree split
into branches at decision nodes that end with leaves, or the
classification groups. Decision trees are commonly referred to as
classification and regression trees (CARTs) to encompass both
distinct variables (classification) and numerical or continuous
variables (regression). In the case of botanical product quality
control, samples are classified based on species, purity, or other
relevant factors. Classification trees were used to classify different
cultivars of avocados based on HPLC-CAD metabolomics (97).
Training data that comprised of spectra from 32 avocado
samples of three varieties generated a tree which guided
classification of unknown avocado oil samples into cultivar
classes or no class based on specific, model generated rules
(Figure 8) (97). A strength of decision trees is the ability to

classify an unknown sample into a “no class” group to avoid
overfitting or forcing a sample into a classification group. A
creative application of decision trees is to predict the need
of specific safety tests and evaluations for botanical products,
as demonstrated by Little et al. the group used an in silico
decision tree model to analyze the need for safety assessments of
botanical products based on UHPLC with UV, CAD, and HRMS
metabolomics, structure identification, consumer exposure, and
existing safety evaluations (98). The developed tree used chemical
data and previous records to determine if any tests are necessary
for consumer safety depending on the presence of certain
metabolites in the sample and database information of safety
data (98). This study highlights the versatility of decision
trees in quality control – they can not only identify botanical
adulteration, but they can also ensure safe practices while
developing botanical supplements.

Suggestions for future use: Decision trees have the appeal
of a visually appealing output for a complex machine
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FIGURE 7 | Use of SIMCA to determine adulteration of H. canadenis by C. chinesis. (A) SIMCA demonstrating that pure H. candenis samples (blue diamonds) are

below the 95% confidence interval and adulterated samples (orange squares) are above the 95% confidence interval. (B) The Q-residual of each adulterated sample.

The blue diamond represents the mean Q-residual for the unadulterated H. canadenis samples. Reproduced with permission from Wallace et al. (79). Copyright 2020,

Springer Nature.

learning model. They hold promise for discerning unknown
product identification, detecting adulteration of products with
known contaminants, and discovering biomarkers for various
classifications. Once the decision tree model is built with training
data, it is relatively straightforward to feed an unknown’s

chemical data through the model to predict its classification. This
is an exciting possibility for quality control, especially when the
most common adulterants are known to base relevant decision
trees around. It should be noted that the decision algorithms at
each node are based on separating the data available from the
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FIGURE 8 | Use of classification trees to identify unknown avocado oil

samples as a specific cultivar or as no class based on HPLC-CAD metabolite

profiles of a training set. Reproduced with permission from Martin-Torres et al.

(97). Copyright 2019, John Wiley and Sons.

previous split, but the split progressions may not actually be the
most reliable representations of divisions in the data. Random
forests (described below) increase the accuracy of node splits but
lose clear visual representation of the model.

Random Forests
Developed in 2001 by Breiman (99), random forest (RF) methods
build an ensemble of decision trees, each of which is trained
using the dependent variable(s). Each tree produces an outcome,
and the aggregate outcome from all the trees (aka the forest)
is reported as the outcome of the model. Random forest holds
several advantages over other methods. The multiple decision
trees produce more accurate classifications compared to a single
decision tree algorithm, and it is less prone to overfitting
than other supervised approaches (100). Additionally, one other
advantage of random forest is that it can be used for both
classification and regression problems. Deklerck et al. used
random forests to classify heartwood samples of Pericopsis elata,
a protected timber species. Using Direct Analysis in Real Time
ionization coupled to time-of-flight mass spectrometry (DART-
TofMS) on wood slivers, the random forest model using cross-
validation was able to correctly predict P. elata samples (101). To
analyze Zanthoxylum seed oils, Houet al. built a random forest
classification model that differentiated between the two main
species (Z. bungeanum and Z. armatum) with 100% accuracy
from cross-validation. Even simplifying the model to only the
most important chemical features, the cross-validated model still
maintained 100% accuracy (102). Random forests also have the
ability to be a predictive machine learning tool, and provide
correlative predictions between dependent variables and the
associated independent chemical dataset (103).

Suggestions for future use: Random forests can be used for
the same purposes as decision trees where increased reliability
of decisions at each node is necessary. This includes instances
of fewer chemical data or a smaller number of training samples.
Since random forests combine multiple decision trees, the
computational input is much higher, so model building and
training takes longer. Thus, random forests are not the best
option when expecting a quick turn-around. However, there
is potential application in developing random forest models
for detection of adulteration of complex botanical products
and mixtures. The extent of random forests in detecting
contamination and purity of extremely complex samples in a
high-throughput manor should be explored.

Support Vector Machine
Support vector machines (SVMs) are another supervised
machine learning technique that can be employed for regression
or classification analyses. The objective of the SVM algorithm
is to find a plane in a k-dimensional space (k representing
the number of features) that distinctly classifies the data
points into groupings so that it has the maximum margin
(i.e., maximum distance) between data points of both classes.
Similar to other supervised machine learning or multivariate
approaches of chemometrics data (where the number of features
outstrips the number of samples), SVM can be prone to
overfitting, so training on a smaller subset of samples, followed
by cross-validation, is key to generating robust classification or
predictive models.

Martín-Torres et al. (97) used SVMs to differentiate between
the geographical origins as well as the botanical variety of
avocados. Samples from five different countries (on three
continents) representing seven avocado varieties were analyzed
using normal phase HPLC-UV/VIS, after which the data was
interpreted using two different multivariate approaches. The
authors found that PLS-DA and HCA were unable to resolve the
differences in geographical origin or between main groupings of
variety. However, a three-input class SVM classification model
(3iC) correlated the three different continents of origin (Africa,
Americas, and Europe), as well as between the three dominant
varieties (“Bacon”, “Fuerte”, and “Topa-Topa”); the latter having
100% correct assignments and precision and sensitivity of 1.00
(104). SVMs were also used to classify Paris polyphylla via fusion
of Fourier-transformed infrared spectroscopy (FTIR) and UV-
VIS spectroscopy data (105). Pan et al. used untargeted LC-
MS metabolomics to profile five different Uncaria species in
order to authenticate the source of Uncariae Rammulus Cum
Uncis (Gou-Teng). A SVM model correctly categorized both
training and test samples, and was used to classify 20 commercial
Gou-Teng (GT) samples (106). The model predicted 16 of the
samples were Uncaria rhynchophylla, while four did not match
any of the Uncaria species. These four samples exhibited LC-
MS chromatograms that were substantially different from the
others, and thus it was believed that these were other Uncaria
species or mixtures of Uncaria species. This represented a
significant advantage over other (un)supervised techniques for
discrimination purposes. And using data fusion techniques of
mid-infrared (MIR) (transmission and reflection mode) and
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FIGURE 9 | Support Vector Machine (SVM) model for differentiating between Dendrobrium species. Using a low-level fusion strategy of MIR and NIR spectral data

from 12 Dendrobrium sp. Reproduced under a Creative Commons Attribution License 4.0 from Wang et al. (107).

FIGURE 10 | Metabolomics workflow for ANN. Metabolite features are loaded as inputs (red circle), which are fed through hidden neuron networks (gray circles), and

categorized into output categories (blue circles). Each connection (gray line) has a weight, and each neuron has a bias, which are used for the activation functions.

Reproduced with permission from Pomyen et al. (112) Copyright 2020, Elsevier Ltd.

near-infrared (NIR) spectra followed by SVM analysis facilitated
the discrimination of 12 different Dendrobrium species (107).
SVM provided perfect discrimination (100% accuracy rates) for
both calibration and validation sets (Figure 9).

Suggestions for future use: SVMs have practical applications
for both classification of test data and prediction of unknown
samples origin, species, or cultivar. SVMs may prove useful
for distinction of genetically and chemically similar plants that
cannot be differentiated by other clustering models, either
supervised or unsupervised. For example, many sub-species of
herbs have overlapping genotypes due to crossbreeding and PCA
analysis can fail to separate the most closely related cultivars
using chemical data (108); SVMs may provide a deeper level
of distinction. This application can be applied to authentication
of products commonly adulterated with very similar species
that lack the promised medicinal output. Since SVM models
can automatically handle missing data, SVMs can be used

for metabolomes with variable metabolite profiles and lower
resolution analytical techniques.

Genetic Algorithms
Genetic algorithms (GA) are based on the processes of evolution,
including natural selection, reproduction, and mutations. These
processes take place over multiple generations of increasingly
accurate and simple solutions to a complex problem (109). In the
case of botanical authentication and quality control, the problem
may be product identification, detection of adulteration, or
biomarker discovery. The solutions are the subset of metabolites
and their ratios that best classify samples based on predefined
classes or distinctions. As a brief example, consider Gil et al.’s
study which used a GA to identify the region of rose wine
origin (110). At generation 0, every combination of the 79
polyphenols present in the samples as detected by UPLC-MS
were evaluated for their ability to distinguish between origin
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region. Solutions with the highest fitness, or its distinguishing
power as determined by linear discriminant analysis, were
selected for reproduction. During reproduction, two solutions
were mixed in a cross-over like process to create a new generation
of unique solutions with higher fitness than the previous. The
selection and reproduction processes were repeated for five
generations, and each of the final combinations of polyphenols
was tested for its accuracy in cross-validation tests. Those with
the highest accuracy were further evaluated for their ability
to discriminate wine origin regions in an unknown validation
sample set. The GA model was able to discover a set of 4
polyphenols that had 86.7% accuracy (110). GA also provides
the opportunity for simultaneous sample and variable selection
for improved speed and accuracy for unsupervised clustering
of samples and biomarker discovery (111). This bi-clustering
approach opens the door for high-throughput metabolomics
authentication of botanical materials.

Suggestions for future use: Potential for GA in botanical
product quality control ranges from geographic identification to
generation of a subset of biomarkers for subsequent analysis.
The speed of GA modeling is ideal for situations requiring
fast turn-around, so it is practical for developing authentication
schemes for new products or products with increasing rates
of adulteration. It should be noted, however, that GAs can be
difficult to interpret, since the steps the model takes to combine
data and reach a solution are not defined for the user and
models fed the same data often reach different solutions. Thus,
users should only use GA when the intermediate steps are not
necessary for model validation.

Artificial Neural Networks (ANN) With Known Outputs
ANN are the backbone of deep learning machine learning
models. Mimicking the human brain and neurons allows
computers to recognize complex patterns in sets of training
data and predict the classification of a new dataset using the
resulting model. There are three main sections of an ANN:
an input layer, an output layer, and hidden layers in between
(Figure 10) (112). Each metabolite from the complete set of
samples is treated as an individual input and connections are
generated randomly through multiple hidden layers to generate
an output response. Hidden layers are comprised of “neurons”
that connect metabolites with a random numeric weight and have
a randomly assigned bias (Figure 10) (112). Together the weights
and bias generate an activation function to determine if a neuron
will be activated for use in the next hidden layer. This process
of forward progression is repeated until the model predicts
an output (such as adulterated or pure). Typically, the first
prediction is incorrect since the weights and bias are random, so
the model uses backwards progression using the prediction error
to modulate weights and biases throughout the hidden layers.
Through multiple rounds of forward and backward progression
with a variety of inputs belonging to each output category, the
model can predict the output of new data by processing the
new inputs through the meticulously developed hidden layers
(112, 113). The history of ANN in metabolomics, as well as an
in-depth explanation of different ANN models for spectral data
is reviewed by Mendez et al. (113).

Binetti et al. used ANN with merceological, NIR, and H-
NMR data to classify olive oil cultivars (114). Using H-NMR
spectral data, ANNs were able to classify unknown samples with
>99% accuracy, despite variable environmental, harvesting, and
processing conditions (114). Additionally, ANN modeling of
headspace solid-phase microextraction (HS-SPME) coupled with
GC-TOF-MS of 374 honey samples over two years provided
94.5% accuracy in prediction of honey origin when data from
both collection years was combined (115). These studies are
promising for herbal product classification - botanical material
analysis is typically complicated by temporal, environmental,
and procedural variations. In addition to classification and
identification, ANN modeling has potential to predict the
chemical and medicinal properties of supplements without
extensive bioassays and robust chemical profiling (116). Using
species classification and extraction procedures as inputs, Tusek
et al. used an ANN to predict chemical features, including total
phenolic content and extraction yield, and antioxidant potential
of nine medicinal plants (116).

Suggestions for future use: ANNs hold immense potential
for herbal product authentication. Since training data
covers a range of environmental, temporal, and procedural
variables, the predictive nature of the resulting model has
very high accuracy. This is critical for commercial products
that have limited information about harvest and processing
procedures. An interesting study would determine if a single
ANN model built on samples with a range of preparations
(powdered, dried, capsules) and environmental factors can
successfully classify and authenticate various types of new
products. Additionally, prediction of medicinal properties
using ANN should be expanded to allow confirmation
of desired effects from commercial products quickly and
accurately. This will take authentication a step further from
identifying product constituents and increase efficacy of
botanicals on the market. Users should take caution when
using ANN to not over interpret their results. While ANNs
are powerful classification tools for large data sets, they
do not provide information on the chemical distinctions
on which the model is built. Thus, the model does not
allow interpretation about specific chemicals responsible for
classification of samples.

Precautions for Using Classification
Models
Each model describe above has benefits to the natural product
community, and there are examples highlighting their usefulness
in the literature. However, eachmodel also has pitfalls. It is crucial
for researchers to understand the dangers of overinterpreting
their outputs. One such downfall is overfitting data, or forcing
data points into a category due to the lack of a “unknown” output
option within the model. Almost all of the models described
in this review are prone to overfitting, but some models, like
decision trees and random forests, reduce this possibility by
including an unknown option or compiling the output of
multiple models into the output. It is important to validate each
model by withholding a sample’s data as a validation set with a
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known output, as well as reporting the Q2 and R2, as described in
section Unsupervised Approaches.

An additional warning is that not every model is applicable
in each situation. Despite a model seeming to fit a research
goal, it is possible the type, quantity, or quality of data is
not applicable to a given algorithm. Multivariate statistics and
metabolomics projects require careful planning prior to data
collection to ensure desired models can be used. For suggestion
of models to use in different situations, see section Conclusions
and Future Directions.

COMBINING ORTHOGONAL DATASETS

While modeling chemical data through chemometric approaches
can leverage the immense information contained therein to
investigated nuanced differences between samples, being able to
differentiate samples based on their geographic origin, taxonomic
relationship, or adulteration level, the chemical composition
represents only one facet of potential data to be analyzed.
Incorporating additional data sources, whether it is from
orthogonal chemical analyses, bioactivity/toxicity data, or genetic
data, has the potential to develop discriminatory models that are
even more robust in authenticating botanical products. Often,
combinational approaches can increase the efficacy and reliability
of natural product quality control, and should be implemented
when feasible.

Multiple Chemical Analyses Inputs
There is no single chemical analysis able to profile every
metabolite present in a complex sample; each approach has
some detractors. Ultra violet-visible spectroscopy (UV-VIS)
requires a chromophore that can absorb energy within these
wavelengths of light (often 180–800 nm); mass spectrometry
(MS) can only monitor structures that are ionizable; nuclear
magnetic resonance (NMR) is not as sensitive in detecting low-
abundance compounds (55, 117). Therefore, combining different
chemical investigations of a metabolome can better represent
the chemical diversity present in a sample, and consequently
allow for more precise modeling and differentiation between
samples. These ‘data fusion’ approaches have been used with
different botanical products to evaluate their authenticity and
detect adulteration. Spiteri et al. combined 1H-NMR with LC-
MS to discriminate between commercial honey. The PCA was
constructed considering each technique separately, and then
combining NMR and LC-MS together. The authors found
that the discriminating potential increased through data fusion,
allowing better separation of the four different floral origins
with no misclassification observed (118). NMR and LC-MS were
also combined to detect adulteration of a commercial botanical
dietary supplement which had resulted in the hypotensive
collapse of several consumers. The product was purported to
contain the species Crataegus oxyacantha, Olea europea, Capsella
bursa-pastoris, and Fumaria officinalis. However, the analysis
revealed the presence of indole alkaloids belonging to the
genus Rauwolfia, such as ajmaline, reserpine and yohimbine.
Subsequent quantitative analysis determined reserpine was
present in pharmacologically-relevant doses (119).

Chemometric analyses using multiple analytical inputs have
also been used to elevate and extract more information from
more common and less expensive analyses, such as infrared
analysis (IR) and ultraviolet-visible spectroscopy [UV-VIS, often
abbreviated as LC methods (HPLC or UPLC) or diode array
detectors (DAD)], to provide robust data and allow clear
discriminate model formation. Combining three different types
of detectors: diode-array detection, evaporative light scattering
detection and mass spectrometry, Deconinck et al. constructed
fingerprints for three common herbal products—Rhamnus
purshiana, Passiflora incarnata L. and Crataegus monogyna.
Using unsupervised projection chemometric analyses, the
researchers were able to detect the presence of these plants
in three different herbal matrices as well as in commercial
preparations containing multiple botanicals (120). Wu et al.
reported that fusing data obtained from polyphyllin content,
FTIR spectra, and UPLC chromatograms yielded correct
discrimination of Paridis Rhizome samples according to
botanical and geographical origins by PLS-DA modeling. The
authors reported that SVM and RF provided similar results (105).
Two-step fingerprints, built upon mid infrared spectroscopy
(MIR) and HPLC chromatograms, were analyzed by k-nearest
neighbors and SIMCA to screen for five regulated plants
used in commercial dietary supplements (121). And Zhou
et al. fused two different infrared technologies – Fourier
transform mid-infrared (FT-MIR) and near infrared (NIR) –
to detect the origin of 210 Panax notoginseng samples from
five cities in Yunnan Province, China. Random forest was
used to establish classification models, which resulted in a
classification accuracy of 95.6% (122). Data fusion of orthogonal
analytical approaches has the potential to cover complementary
facets of chemical space, and the subsequent modeling can
be seen to be more powerful in its ability to discriminate
between botanical samples as a means of authentication and
adulterant detection.

Biochemometrics
The ability to profile large swaths of a metabolome without
iterative methods of separation and purification means
metabolomics approaches have an advantage for screening for
bioactive metabolites (92, 123, 124). Integrating metabolomic
fingerprinting with biological activity data allows for supervised
methods to statistically model correlations between variations
in biological response with differences in chemical composition
across samples. These methods, collectively known as
“biochemometrics”, have become a driver for bioactive molecule
discovery. Several statistical methods have been utilized for this
purpose, including hierarchical clustering analysis (125), partial
least squares (92, 126, 127), and partial least squares-discriminate
analysis (128, 129). Of these, PLS and PLS-DA have emerged
as the foremost multivariate approaches for biochemometric
analysis. These approaches utilize different variable metrics
to ascribe correlation (and thus importance) to the chemical
signals with the variable importance in projection (VIP) plot,
the S-plot, and the selectivity ratio being among the leading
metrics (92, 130–132). Biochemometrics holds great promise for
botanical examination and authentication, as it could leverage
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relevant biological activity to determine a targeted fingerprinting
method which has relevance to the biological function of the
plant (as opposed to ad hoc choices of metabolites). Kim et al.
used a biochemometric method to evaluate 17 different species
of grape myrtle (Lagerstroemia spp.) based on their ability to
increase glucose uptake in vitro. From the PLS-DA model (using
the glucose update as the dependent variable), the Lagerstroemia
sp. were grouped into two clusters, and from the S-plot the
authors identified three main metabolites (myricetin-3-O-β-
D-rhamnoside, quercetin 3-O-β-D-rhamnoside, and corosolic
acid) that predicted glucose uptake activity and could be used as
a discriminatory model for identifying bioactive species from the
genus (Figure 11) (133). The integration of biological activity as
an orthogonal dataset, and as a continuous numeric dependent
variable in the dataset, allows for supervised chemometric
methods to provide greater interpretation of the discriminatory
model creation and identification of bioactive components. This
can lead to the development of fingerprinting or authentication
tools that correlate with the relevant biological effects of the
botanical in question.

Multi-Omics Integration for Botanical
Control
While metabolomic approaches provide ample opportunity for
accurate, robust, and time-efficient authentication of complex
botanical products, combining chemical data with other -
omics approaches may yield the most effective solutions. Most
commonly, metabolomics modeling is combined with genomics
data. As mentioned in section Genetics, DNA barcoding and
metabarcoding can lose accuracy at the species and subspecies
level. Similarly, clustering of metabolites can lose resolution
of chemically similar plants. Combining DNA barcoding
using rpoC1 and LC-MS metabolomic fingerprinting allowed
species-level distinction between nine Phyllanthus species (134).

Integration of genetics and metabolomics is easily the most
common approach to botanical product identification, as
outlined in Table 1. There are instances when metabolomics
and genetics in combination cannot differentiate between
species, so additional analytic approaches are employed, such as
electronic noise (141), microscopy (142, 143), high-resolution
melting analysis (144), Raman spectroscopy (145), or multiple
metabolomic approaches (146). Figure 12 demonstrates that
integrating multifaceted -omics approaches can be achieved
in a single study to increase the power of distinction and
authentication of herbal products (141).

Although genetics is most integrated with genetics,
there is potential to expand to lipidomics, proteomics, and
transcriptomics. Lipidomics, the study of the complete set of
lipids in an organism, is analytically similar to metabolomics;
different extraction and analytical instrument methods target
lipids. The same research lab could seamlessly transition from
metabolite to lipid analysis since the instrumentation is often
the same. On its own, lipidomics has been useful for detection
of adulteration of white rice – RF and SVMs were used to
discriminate pure and adulterated samples using LysoPCs
and lysoPEs as novel lipid biomarkers (147). Using the same
UPLC-MS instrument, Anagbogu et al. combined lipid and
metabolite analysis to identify 30 genotypes of coffee; joining
the two approaches increased species level resolution (148).
Proteomics also uses similar instruments as metabolomics,
but it has more variable methods that may complicate inter-
lab experimentation. Peptide analysis allowed differentiation
between mountain-cultivated ginseng and cultivated ginseng
with 52 variable peptides between the groups (149), and MALDI
TOF-TOF/MS yielded five proteins with potential to authenticate
Ophiocordyceps sinenis, a traditional fungal medicine (150).
Given the limited successful studies utilizing integrated -omics
approaches for botanical product authentication and evidence

FIGURE 11 | Partial least squares-discriminate analysis of Lagerstroemia samples. Scores plot (A) from the PLS-DA model accounted for 40.4% of model variability,

and demonstrated two distinct clusters of samples. The S-plots (B) revealed two flavonol glycosides (myricetin-3-O-β-D-rhamnoside and quercetin

3-O-β-D-rhamnoside) and corosolic acid as potential discriminatory biomarkers with activity in stimulating glucose uptake. Reproduced with permission from Kim

et al. (133). Copyright 2020, Elsevier Ltd.
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TABLE 1 | Orthogonal approaches to integrate genomics and metabolomics data analysis of botanicals.

Botanicals Product type Genetic approach Metabolomic approach Modeling Author Year (Ref.)

Qin jiao Dried root powder ITS2 barcoding Q-TOF-MS ANOVA Li et al. 2020 (135)

H-NMR PCA

OPLS-DA

Hypericum taxa Essential oil ITS2 barcoding GC-MS PCA Zeliou et al. 2020 (136)

Dried leaf ITS1 barcoding LC-HRMS Biplots

LC-DAD-MS Mantel test

HPLC-DAD

Salvia subg Perovskia fresh leaf and root trnH-psbA barcoding UHPLC-QTOF-MS PCA Bielecka et al. 2021 (137)

ITS2 barcoding

Hypericum spp. Cultured leaf ITS1 barcoding HPLC-DAD PCA Brunakova et al. 2021 (138)

ITS2 barcoding HCA

Chromosome number

genome size

Sarsaparilla Dried root rbcL barcoding H-NMR HCA Kesanakurti et al. 2020 (82)

matK barcoding

genome skimming

DNA probe

Glycyrrhiza spp. Dried root powder rbcL barcoding H-NMR PCA Simmler et al. 2015 (139)

Dried root stick matK barcoding UHPLC-UV SIMCA

Dried root capsule ITS barcoding CDA

trnH-psbA barcoding

Echinacea spp. Genome skimming HPLC-UV Handy et al. 2021 (140)

metabaroding

matK barcoding

rbcL barcoding

that each approach has potential to identify adulteration, there is
a gap in the botanical products community developing methods
and statistical approaches for combined datasets. This is not a
trivial undertaking; often the data sets generated for genomics,
proteomics, and metabolomics experiments are very different,
and their integration can be a challenge. The wide variety
of expertise required to generate high quality data is also a
factor in the wider implementation of a multi-omics approach
to botanical authentication; these disparate techniques have
different methodological proficiencies and even reagents and
laboratory setups, necessitating broad proficiency in a single lab
or a reliable collaboration between different laboratory groups.
For data integration, the R tool mixOmics (including PCA, PLS,
and PLS-DA tools) may prove useful for combined biomarker
discovery and species identification (Figure 13) (151).

WHEN TO USE WHAT

This review highlights the number of chemometric techniques
that can be applied to datasets in order to help authenticate
botanical materials or detect adulteration. However, the

diversity of approaches that are possible can be daunting
to researchers unfamiliar with chemometric analysis and
multivariate analysis/machine learning. While there is a bit of
trial and error in selecting a chemometric approach, there are
some points to consider in determining which technique to
employ in analyzing a dataset. The decisions and chemometric
options available to a researcher analyzing data are summarized
in the following workflow (Figure 14).

First, is there response data collected with the chemical
information? This could take the form of classification identifiers
(e.g., “pure” vs. “adulterated”), control or QC datasets, taxonomic
identification, quantitative data (e.g., temperature, geographic
coordinates, elevation), or bioactivity data (inhibitory studies,
cell studies, in vivo experiments, toxicological data, etc.). For
datasets which do not contain any dependent information
(only chemical input from FTIR, UV-VIS, MS, NMR, etc.),
unsupervised analyses are recommended to understand the shape
and relationships between samples without any guiding variables
or observations. For a hierarchical analysis, where the similarity
relationship between samples is ranked by distance, hierarchical
cluster analysis (HCA) is the foremost choice. For examining
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FIGURE 12 | Integration of metabolomics, DNA barcoding, and electronic noise increases accuracy of Citri Reticulatae Pericarpium cultivar distinction compared to

each method alone. Reproduced with permission from Li et al. (135) Copyright 2020, Springer Nature.

FIGURE 13 | Integration of multiple-omics datasets and potential outputs using the mixOmics R package. Reproduced under a Creative Commons CC BY 4.0

license from Rohart et al. (151).

Frontiers in Nutrition | www.frontiersin.org 18 November 2021 | Volume 8 | Article 780228

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Abraham and Kellogg Chemometric Analysis of Botanicals

FIGURE 14 | A decision tree to establish which analysis is more appropriate to

analyzing complex chemical data. Based upon the presence of response data,

and how the overall analysis needs to be structured/interpreted. ANN, artificial

neural networks; DT, decision trees; GA, genomic algorithms; HCA,

hierarchical clustering analysis; PCA, principal component analysis; PLS,

partial least squares; PLS-DA, partial least squares-discriminate analysis; RF,

random forests; SIMCA, soft independent modeling of class analogies; SOM,

self-organized maps; SVM, support vector machines. Light green boxes

represent “soft” classification techniques. Dark green boxes represent “hard”

classification techniques.

similarities between samples without a hierarchy, principal
component analysis (PCA), self-organizing maps (SOMs), and
k-means clustering are viable options.

For experimental sets which contain dependent variables,
chemometric options include numerous supervised analyses,
which require response or dependent variables to train models.
Generally, an unsupervised approach (PCA) should be applied
to the metabolomics data set to ensure clustering occurs without
predefined categories before delving into supervised analysis.
Within the supervised approaches, the chemometric options

vary depending on whether the response data are categorical or
numerical in nature. Categorical dependent data, such as class
assignments (e.g., “authentic” and “unknown”) enable supervised
analysis to generate models that maximizes differences between
the two classes. When choosing a classification methodology,
one can consider whether the particular chemometric approach
is “soft” or “hard.” These designations relate to a method’s
rigidness in assigning an unknown to a particular class. A
“soft” classification rule estimates the probability associated with
each class and subsequently provides a class prediction based
on the largest estimated probability. In comparison, “hard”
classification delivers a final class prediction without probabilistic
reasoning behind the classification. Of the reviewed approaches,
SIMCA, PLS, random forest (RF), genomic algorithms (GA), and
artificial neural networks (ANN) are generally considered “soft”
computational approaches (Figure 14, light green boxes) (152),
while other techniques, such as PLS-DA, decision trees (DT), and
support vector machines (SVM) (153) are “hard” methodologies
(Figure 14, dark green boxes).

At this point, the last decision is the degree of interpretability
the model will have for the researcher. A highly interpretable
algorithm means that one can easily understand how any
individual predictor (variable) is associated with the response,
so it’s easier to relate the final classification structure back to
specific variables contributing to model responses. Techniques
like partial least squares-discriminant analysis (PLS-DA), support
vector machines (SVM), decision trees (DT), soft independent
modeling of class analogies (SIMCA), and random forests (RF)
are able to provide interpretable models. If interpretation is not
essential (a “black box” approach), and only the final classification
of the data is important, models like artificial neural networks
(ANN) or genetic algorithms (GA)are prime options.

Numeric dependent variables are frequently obtained from
biological activity experiments, and thus enable the use of
prediction algorithms to correlate the dependent variable with
variations in the chemical information. For the biochemometric
analysis of these orthogonal datasets, partial least squares
approaches (PLS, PLS-R) are most common in teasing out these
relationships (92). However, newermachine learning approaches,
such as SVM and RF, have the ability to provide predictive
capabilities and understand relationships with input variables.
As an example, Deng et al. employed random forests to provide
geographical classification of green teas (which outperformed
several other chemometric techniques), but also were able to
correlate the geography with several isotopic indicators (103).

As with data-collection, wheremultiple orthogonal techniques
facilitate a greater coverage of the overall chemical composition
of the samples, multiple data analysis techniques are often
utilized to gain a more comprehensive perspective of the data
structure and relationship between samples. It is common to
begin with unsupervised approaches (e.g., PCA) to glean a
preliminary understanding of how samples are relating to one
another, then followed up with supervised or machine learning
methods to further classify the samples and obtain information
about potential biomarkers or bioactive constituents. Zhang
et al., in authenticating berry juices, first used PCA to identify
clusters of juices by origin, then followed with PLS-DA to
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determine relevant biomarkers (76). PCA and HCA were
employed to reveal well-differentiated clusters for black peppers,
then followed by supervised PLS-DA for a prediction model for
additional unknown samples (154). Thus, merging chemometric
methods, when possible, offers researchers a potentially more
rigorous analysis of their botanical data, which is essential to
draw relevant and robust conclusions about authentication and
adulteration questions.

CONCLUSIONS AND FUTURE
DIRECTIONS

As the demand for botanical medicines and dietary supplements
grows, in terms of relevance to human health as well as economic
importance, ensuring reliable determination of starting materials
for research, safety, and production considerations remains a
challenge. Plant-based formulations pose a particularly unique
hurdle due to their inherent chemical complexity as well as their
variability. Non-targeted chemical fingerprinting techniques,
including metabolomics, hold immense potential for describing
the chemical composition of botanicals. However, organizing that
highly complex information and deducing relevant conclusions
from it can represent a major obstacle for researchers. This
review has sought to address this hurdle by presenting examples
of major chemometric techniques that can be employed to
distill complex chemical data into models for authentication and
classification of unknown samples. The adaptation of statistical
models to wrangle large, complex datasets represents a significant
advancement in modeling botanical chemical data. While the

chemometric analysis methods profiled in this review are the
most common, and some of the most powerful, approaches
in use for botanical authentication, it is by no means an
exhaustive list. Other variations of unsupervised and supervised
techniques have been reported, and there is considerable research
being undertaken to advance the capabilities of these statistical
and machine learning approaches. And the combination of
complementary methods (e.g., biological data andmetabolomics,
chemical profiling and genomics, or multi-omics techniques) has
the potential to provide even more efficient and robust tools to
advance authentication and discovery efforts.
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