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Abstract: Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the
regeneration of bone/tissue at a defective location, where the assistive material eventually degrades
to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft
tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane
exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue
integration, and clinical manageability are essential functional properties of a GTR/GBR membrane,
although no single modern membrane conforms to all of the necessary characteristics. This review
considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials
described in this review fulfill all of the basic ISO requirements for human use, as determined through
risk analysis and rigorous testing. Novel modified materials are in the early stages of development
and could be classified as synthetic polymer membranes, biological extraction synthetic polymer
membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development
are influenced by the physical features of GTR/GBR membrane materials, including pore size,
porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers
introduced into a polymer matrix include suitable surface area, better mechanical capacity, and
stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to
construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation
rate, osteogenesis, and clinical operability.

Keywords: guided tissue regeneration; guided bone regeneration; biodegradable polymer; membrane;
material modification

1. Introduction

Periodontitis is a bacterial infection-induced chronic inflammation that is associated
with enhanced neutrophil and macrophage infiltration, as well as osteoclast activation via
RANKL signaling [1]. It can lead to severe periodontal disease and the loss of alveolar bone.
Periodontal tissue, as well as alveolar bone and cementum, are part of the periodontal
region: a unit consisting of numerous tissues surrounding and functionally supporting teeth.
Periodontal disease damages the paradentium, which can lead to the loosening of teeth [2].
Extant treatments for periodontitis mainly target the symptoms, including the removal of
plaque and reducing inflammation [3,4]. Though these therapies retard disease progression,
they do not address the reattachment of periodontal tissue to the tooth or the restoration of
the periodontal tissue; thus, dental function remains inhibited [5,6]. An ideal approach to
treating periodontitis is to reestablish the complex hierarchical structure of the periodontal
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tissue, which includes fresh cementum, alveolar bone, as well as periodontal ligament
and gingival tissue. The restoration of the periodontal tissue by guided bone/tissue
regeneration is an increasingly important challenge faced by clinicians [1].

A basic requirement for guided tissue/bone regeneration (GTR/GBR) is the intro-
duction of an effective physical barrier between soft tissue and bone tissue (Figure 1) that
addresses the distinct migration speeds of periodontal tissue cells (in descending order of
growth rate, gingival epithelial > gingival connective tissue cells > periodontal membrane
cells > the alveolar bone cells). The membrane should prevent gingival soft tissue from
accessing the bone defect area before occupying the root surface, allowing pre-dental cells to
occupy the next surface and differentiate into cementum cells, fibroblasts, and osteoblasts,
promoting the healing process [7,8]. Bone graft materials are often used in conjunction with
the membrane in bone deficient areas, serving as a scaffold for new bone formation [9].
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Figure 1. The application of an electrospun membrane for guided tissue/bone regeneration
(GTR/GBR) in periodontitis and dental loss, respectively. Reprinted from Ref. [10].

An ideal GTR/GBR membrane should include a large membrane exposure area,
biocompatibility, hardness, ductility, a membrane void ratio, clinical manageability, along
with allowing for tissue integration and cell occlusion, though no such membrane is
currently available for therapeutic application. The GTR/GBR materials described in this
study meet all of the fundamental ISO requirements for human use, as determined through
risk analysis and rigorous testing. The standard we mentioned is ISO 22803.

According to their degradation capacity, GTR/GBR membranes are classified as ab-
sorbable and nonabsorbable. Nonabsorbable membranes were mainly developed for the
maintenance of postoperative clearance; they have mechanical properties that are suitable
for bone defect reconstruction and they inhibit cell migration [11,12]. Generally, nonab-
sorbable membranes include titanium mesh (Ti mesh), polytetrafluoroethylene (PTFE), and
titanium-reinforced PTFE membranes. Based on the structure, PTFE can further be classi-
fied into expansion-PTFE (e-PTFE) and high-density-PTFE (d-PTFE). e-PTFE, developed in
the 1990s, is considered a standard material for clinical applications, although it suffers from
high porosity and exposure [13]. The d-PTFE membranes have a comparatively smaller
pore size (less than 0.3 mm), which inhibits the integration of tissue into the membrane
and reduces the difficulty of membrane removal [14,15]. The greatest disadvantage of
nonabsorbable membranes is that they require a secondary surgery for removal, which
interferes with the healing process and increases the risk of bacterial infection.

Absorbable membranes can be made from natural or synthetic materials. Natural
absorbable materials include collagen, chitosan, and gelatin [16]. The most common
synthetic absorbable materials include organic aliphatic thermoplastic polymers such
as polylactic acid (PLA), polyglycolic acid, and their copolymers [9]. They have high
biocompatibility, low mechanical strength, and promote tissue healing. Because they are
absorbed and most have antibacterial properties, they reduce the probability of a second
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operation or other clinical intervention. However, the degradation process may affect the
surrounding tissues and even cause oral diseases. The main challenge of bioabsorbable
membranes is the synchronization of the absorption time with the tissue formation cycle.
The membrane degradation rate cannot be controlled, and the membrane’s low mechanical
strength can cause a loss of spatial support [17].

Although both absorbable and nonabsorbable membranes are superior to internal
applications, GTR/GBR membranes still require a considerable amount of research for
the development of ideal materials. Modern research of GTR/GBR membranes considers
structural (e.g., cell compatibility and degradability) as well as functional properties, such
as the incorporation of growth factors and antibiotics with chemically controlled release
times [11,18,19]. Although most of the research has occurred in vitro, the collective findings
of these studies reflect the immense potential for clinical application. The continuous
clinical development of GTR/GBR membranes necessitates a comprehensive review of
promising membrane modifications. In a review of related literature on PubMed, Wiley,
Cochrane, Embase, and ScienceDirect, we found very few resources related to modified
nonabsorbable membranes over the past five years. Due to the practical limitations of non-
absorbable membranes, most modern studies focus on absorbable membranes. Based on
this, the present review was focused on the improvements made in absorbable membrane
technology during the last five years.

Many investigations have attempted to modify the original membrane technology
to create the ideal membrane. In recent years, nanomaterials have become a major topic
of study in bioengineering. They have been used in directing bone/tissue regeneration
and exhibit excellent cell adhesion and bone regeneration properties. Nanofibers are
the most commonly used polymer structures in tissue engineering. Their microscopic
particles and intrinsic features allow for an excellent barrier membrane effect, prohibiting
cell transmission through the membrane [20]. Membranes, or scaffolds, are generated
with a high surface-to-volume ratio that can incorporate and release proteins, medicines,
and ligands. Because the fibers may be customized in size, orientation, filling, porosity,
and density, the mechanical and morphological features of these membranes are more
reliable within the desired context. Finally, the morphology of the extracellular matrix
(ECM) is replicated by the three-dimensional structure, which is mostly composed of
collagen fibrils with elastin and other macromolecules. Nanofibers can also influence stem
cell activity and enhance certain cellular processes including adhesion, proliferation, and
differentiation [21]. Electrospinning (ELS), which uses a polymer solution in a high-electric
field, is the most commonly employed technology for fabricating nanomaterials. ELS
technology has grown in popularity since its inception in the 1930s and has seen numerous
advancements in its fundamental components and applications [22,23]. ELS is one of the
most successful membrane production techniques and can generate nanoscale fibers that
promote the reestablishment of the natural ECM [24]. The traditional fiber membrane
has a two-dimensional structure, while the nanofiber membrane prepared by ELS has a
three-dimensional structure, which allows for the incorporation of various useful properties
with a simple and relatively inexpensive production method. The GTR/GBR scaffold is
composed of a loose, porous solution electrospinning writing (SEW) layer, which supports
and promotes bone growth, and a dense solution electrospinning (SES) layer, which is
resistant to interference by non-osteoblasts [25]. However, the dense arrangement and
lamellar assembly of electrospinning membranes make it suitable only in the construction
of dense layers and the performance of barrier functions. The layer-by-layer manner of
assembly allows for the generation of three-dimensional porous scaffolds with customizable
properties, which has, in recent years, sparked interest in 3D printing for tissue-engineered
scaffolds [26,27]. One of the most extensively used functional components of this process is
small molecule osteogenic medicines, or antibiotics [28–30].

The involvement of bioactive ions in antibacterial activity, tissue repair, and immuno-
logical modulation, among other processes, has received a great deal of attention in recent
years. Despite substantial advancements in membrane design, no effective electrospun



Polymers 2022, 14, 871 4 of 23

GTR/GBR membrane is currently available for clinical application. This paper classifies
GTR/GBR membranes into synthetic polymer membranes, natural polymer membranes,
and metallic membranes, according to their primary materials; reviews the modification
methods for different membranes, including new membrane manufacturing techniques,
surface modifications, and changes in membrane composition; and analyzes the effects of
various methods on membrane properties. The ultimate aim of this study is to provide a
reference for developing ideal GTR/GBR membranes.

2. Materials and Methods

In this review, only the literature published in English is included, and the last search
was conducted in August 2021 (Figure 2).
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3. Results and Discussion

A total of 965 articles were identified using an electronic database and a manual search;
68 articles met the inclusion criteria (Figure 2). Based on these articles, we divided the
barrier films into three categories (a total of nine subcategories) to discuss their material
advantages, disadvantages, and modification methods (Figure 3).
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3.1. Resorbable Membranes Based on a Synthetic Polymer
3.1.1. Polycaprolactone (PCL)

Polycaprolactone (PCL) is a biomedical synthetic polymer with suitable mechanical
properties and biocompatibility, good solubility in most organic solvents, and which is
easily processable, making it popular in the field of bone/tissue repair [31–36]. However,
its clinical application is limited by its slow degradation rates, poor osteoconductivity, and
low bioactivity [37–39]. To address these limitations, other materials can be combined with
PCL to form special membrane structures, or functional groups can be attached to improve
its clinical efficacy [7]. Additional functional properties can also be incorporated into PCL
by loading passively released drugs [33,37,40]. The various properties of modified PCL
membranes are shown in Table 1.

Table 1. The various properties of modified PCL membranes.

Year [Ref.] Main Membrane
Material Modifications Additional Properties Drawbacks

2019 [32] MNA, PCL,
polydopamine

Coated with
polydopamine and the

addition of MNA

Controlled MNA release for
antibacterial activity Not mentioned

2021 [33]

Polylactic acid
(PLA)/cellulose acetate

(CA) or PCL, AgNPs,
hydroxyapatite

nanoparticles (HANPs)

Adding AgNPs,
HANPs

Sustained antibacterial activity,
optimized mechanical

properties, lowered degradation
rate, enhanced cell proliferation

HANPs: 20 wt%,
decreased tensile

property

2018 [34] PCL, PEG, bioactive
glass (BGs) Adding BGs

Suitable mechanical and
biodegradable properties,

hydrophilic surface, higher
proliferation rates of

adipose-derived stem cells, good
bone mineralization capacity

Not mentioned

2018 [36] F18 bioactive glass,
PCL

Adding F18
bioactive glass

Enhanced osteogenesis and
excellent tensile strength Not mentioned

2017 [37] Si-NPs, PCL Adding Si-NPs Improved mechanical properties Not mentioned

2019 [39]

SiO2-CaO-P2O5 and
SiO2-SrO-P2O5,

bisphosphonate drug
ibandronate, PCL

Two different types of
mesoporous

bioactive glasses,
bisphosphonate drug

ibandronate

Bioactive glass enhanced
hydrophilicity and bioactivity; Sr+

bisphosphonate drug
ibandronate improved

osteogenesis

Not mentioned

2015 [40] PCL, ZnO Adding ZnO
Antibacterial properties,

enhanced cell
proliferation/wound healing

Decreased mechanical
suitability after adding

ZnO; adding 30 wt%
ZnO decreased

viability

2018 [41]
metronidazole (MNA),
nano-hydroxyapatite
(NHA), PCL, gelatin

Adding MNA, NHA,
forming core-shell

structure

Promoted osteogenesis and slow
MNA release for antibacterial

activity
Not mentioned

2018 [42] PCL, NHA/BG Adding NHA/BG Enhanced mechanical properties,
excellent cell attachment

The membrane with a
high nHA/BG loading
density was pooer than

the low one

2020 [43] EBPs, PCL,
hydroxyapatite (HA)

Forming
nanopattern and the

addition of EBPs

EBPs enhanced surface
hydrophilicity; nanopattern and
EBPs enhanced the osteogenic

phenotype of human dental pulp
stem cells (DPSCs)

Not mentioned
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Table 1. Cont.

Year [Ref.] Main Membrane
Material Modifications Additional Properties Drawbacks

2019 [44]

PCL,
Strontium-substituted

hydroxyapatite
nanofibers (SrHANFs)

Adding SrHANFs
Promoted differentiation

and mineralization of
osteoblast-like cells

Not mentioned

2019 [45] PCL PolyHIPE Air plasma
treatment

PCL PolyHIPE layer promoted
osteogenesis, Ca and mineral
deposition of bone cells, the

deposition of collagen;
electrospun nanofibrous PCL layer

promoted cell-occlusion

Not mentioned

2018 [46] BG, PCL Adding BG Excellent mechanical properties Not mentioned

2016 [47] PCL, bioactive
CaO-SiO2, Hydroxyapatite-coated Osteoconductivity and

excellent bone formation ability Not mentioned

2018 [48]
PCL, gelatin, chitosan,

β-tricalcium
phosphate (β-TCP)

Adding β-TCP

Enhanced osteogenesis,
adjustable degradation rate, more

wettable surface, suitable
mechanical properties

Not mentioned

With the addition of other components, specialized structures can be generated to
achieve enhanced results. For example, a core-shell structure is generated by an ordered
assembly of nanomaterials that are attached through chemical/electrical bonds (Figure 4).
Wang et al. used core-shell structures to integrate the properties of both internal and external
materials. The core of the nanofiber was gelatin and metronidazole (MNA), while the shell
was composed of PCL and nano-hydroxyapatite (NHA). MNA imparted antimicrobial
properties to PCL, while NHA promoted osteogenesis [41]. In another study comparing
the incorporation of different amounts of bioactive glass (BG), PCL + 2%, BG showed
higher cell adhesion rates and cell survival, as well as enhanced fiber and pore diameter,
all of which are conducive for GTR membranes [42]. Another specialized structure, a
nanopattern (Figure 5), promoted cell growth on the membrane surface. Jang et al. utilized
a combination of equine bone powders (EBPs) and nanopatterning to modify the PCL
membranes. The addition of EBPs improved the hydrophilicity of the PCL membranes and
facilitated cell diffusion and aggregation, while the nano grooves facilitated cell elongation.
The growth and differentiation of human dental pulp stem cells (DPSCs) were enhanced by
the synergistic effects of EBPs and nanopatterning; this is considered an effective method
to boost the growth capacity of cells [43].

One drawback of PCL is its relatively low level of bioactivity that inhibits cell adhesion
and growth. BG is hydrophilic and its incorporation in the PCL membrane enhances cell
adhesion, elongation, and proliferation [34]. Membranes incorporating 7 wt% copper-free
BGs have shown good surface wettability and osteogenic ability while also facilitating cell
proliferation and the adhesion of adipose-derived stem cells (ADSCs) [34]. A new bioactive
glass material, F18, exhibits excellent stability, bioactivity, and antibacterial properties and
promotes vascular tissue and new bone growth, making it ideal for dental and orthopedic
applications [36]. The incorporation of BGs also enhanced the mechanical properties of the
PCL membrane [34,36,46]. Multiple BGs can also function collectively to enhance osteogen-
esis. In a study by Terzopoulou et al., two types of mesoporous BGs (SiO2-CaO-P2O5 and
SiO2-SrO-P2O5), compounded with PCL by spin-coating, increased the hydrophilicity and
bioactivity of the original membrane. Loading the PCL membrane with the bisphosphonate
drug ibandronate, together with Sr in BG, also enhanced osteogenesis [39].
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Silicate ions and calcium ions play a crucial role in the formation of hydroxyapatite
(HA), an essential component of bone, and can enhance the osteoconductivity of the PCL
membranes. The silicate ion is the initial nucleation point for HA crystal growth, and
calcium ions accelerate HA crystal growth. An HA coating was prepared on membranes
composed of PCL and CaO-SiO2 gel fibers. CaO-SiO2 released silicate ions and calcium ions,
and the HA coating significantly enhanced the osteoconductivity and osteogenesis of the
GBR membranes [45]. According to Ezati et al., a similar effect can be achieved by adding
different ratios of tricalcium phosphate (β-TCP) to PCL/gelatin/chitosan. β-TCP, like
CaO-SiO2 gel fibers, can act as a precursor for Ca2+ and PO4

3- to facilitate osseointegration.
Its degradation products neutralize changes in pH during degradation; thus, by adjusting
its content levels, the rate of membrane degradation can also be regulated. The mechanical
properties, wettability, and roughness of the membranes were all enhanced with increased
levels of β-TCP [48]. Interestingly, sterilization of PCL membranes with low-temperature
hydrogen peroxide gas plasma (LTP) not only promotes suitable cell morphologies, but
also allows for better osteogenic differentiation of pre-osteoblasts [44].

As a antimicrobial drug which plays an important role in treatment modification,
strontium-substituted hydroxyapatite nanofibers (SrHANFs) have excellent drug loading
capacity and the potential to release antimicrobial drugs. Tsai et al. also found that the
addition of SrHANFs to the PCL membranes promoted osteoblast mineralization and



Polymers 2022, 14, 871 8 of 23

differentiation [49]. However, the rapid release rate of antibiotics from SrHANFs inhibits
the overall antibacterial activity and emphasizes the importance of controlled release rates
in the development of optimal GTR/GBR membranes [7]. Shi et al. coated the PCL surface
with polydopamine and grafted metronidazole (MNA) onto the surface through ester
bonds; here, the release rate of MNA was determined by the concentration of cholesterol
esterase (CE) at the site of infection. Moreover, the rate of drug release depends on the type
of chemical bond that connects the drug to the nanofiber surface [32]. In a previous study
by the same authors, the rate of drug release was regulated by changing the ratio of gelatin
to drug, which is a relevant factor in explaining the rate of drug release from a macroscopic
point of view [32]. However, the incorporation of certain antimicrobial drugs may have
side effects. The incorporation of hydroxyapatite nanoparticles (HANPs) can promote
cell differentiation while imparting antimicrobial properties, but the amount of HANPs
can drastically alter the membrane’s mechanical properties: 10% particle incorporation
improves the tensile properties of the membrane, while 20% leads to a decrease in these
properties [33]. Münchow et al. found that, although it improved antibacterial activity, cell
proliferation, and wound healing, ZnO at ≥5 wt% weakened the mechanical properties,
and the addition of 30% ZnO actually decreased the biocompatibility of the membranes [40].
Therefore, it is particularly important to select and add appropriate amounts of reagents
to maintain/improve the structural properties of the PCL membranes, while imparting a
controlled drug release rate.

To conclude, choosing a variety of suitable materials in combination with the PCL
membranes may be the optimal modification method to remediate its multiple limitations
and make PCL membranes more suitable for GTR/GBR applications.

3.1.2. Polylactic Acid (PLA)

PLA is a biosafe neotype synthetic polymer with a low degradation rate that degrades
to produce carbon dioxide and water. PLA is commonly used to prepare scaffolds for tissue
regeneration, especially by electrostatic spinning [50,51]. However, PLA is limited by its
comparatively low mechanical strength. Researchers have developed various improve-
ments to the structural properties of PLA, such as the modification of the polymer structure,
the preparation of a polymer fiber blend, and the addition of nanoparticles [52,53]. The
PLA membranes are frequently created using the solvent casting method [54]. Eventu-
ally, 3D printing technology can be used to accurately determine the porosity of the PLA
membrane [55]. The incorporation of inorganic particles, such as bioceramics or BG, can
also improve the biological activity of the polymer [56]. Antibiotics and carbon nanotubes
(CNT) are also added to improve the antibacterial function of the PLA membrane [57]. The
United States Food and Drug Administration (USFDA) has approved the use of PLA in
biomedical engineering applications [58,59].

Incorporation of nanoparticles is an effective way to modify the GTR/GBR membrane.
Abdelaziz et al. studied PLA/cellulose acetate (CA), or PCL nanofiber scaffolds made using
electrospinning techniques [33]. Adding different green-synthesized, silver nanoparticles
(AgNPs) improved the antibacterial performance and bone regeneration activity of the
membrane. Furthermore, the addition of HANPs to the nanofibrous scaffolds improved
cell viability by ~50% and enhanced the tensile properties of the scaffold at concentrations
of ~10 wt%, but decreased tensile strength at 20 wt% concentrations.

Composite fibrous electrospinning membranes based, on PLA and PCL with borate
bioactive glass (BBG), were prepared by Rowe et al., who characterized the membranes
using scanning and transmission electron microscopies [56]. After 7 days, the cell prolifera-
tion rates of the preosteoblast cells containing BBG were higher than that of membranes
without BBG.

Moura et al. incorporated CNT and BG in the PLA membranes and found that the
addition of 5 wt% BG improved the surface porosity and bioactivity of PLA [57]. According
to the agar diffusion method, CNT showed some antibacterial activity on the membrane.
In vitro experiments revealed that this porous membrane was not toxic to cells and allowed
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cell differentiation. Moreover, the addition of BG and CNT can change the pore shape of
the membrane from spherical to irregular. CNT promoted microbial activity and had a
synergistic effect with porous PLA, especially in PLA/5BG/1.0CNT.

The performance of the GTR/GBR membrane can also be improved by the fabrication
process of the PLA membrane. A bioresorbable polylactide membrane was made by Zhang
et al. using 3D printing and was compared with a membrane made by the conventional
solvent casting method [55]. The 3D-printed membranes performed better than the solvent
cast membranes. A preosteoblast culture experiment, which assessed the performance of
3D-printed membranes with various pore sizes, showed that cell growth was not affected
by variation in pore size. In addition, the PLA membranes with various pore sizes prepared
by 3D printing had diverse mechanical properties that could be suitable in a wide range of
medical applications.

Another modification method consists of fitting the PLA membrane with a metal ma-
terial. Du et al. fabricated an absorbable magnesium-enhanced PLA-integrated membrane
with a coated or bare magnesium AZ91 reinforcement core [60]. The membrane showed
good cell affinity, mechanical properties, corrosion resistance, and appropriate degrada-
tion rates and exhibited excellent potential for application as a bioresorbable GTR/GBR
membrane.

The performance of the PLA biomembrane can be improved by optimizing the produc-
tion process and/or adding the appropriate nanoparticles/reagents. Overall, PLA shows
great potential as a material for GTR/GBR membranes.

3.1.3. Polylactic-Co-Glycolic Acid (PLGA)

Polylactic-co-glycolic acid (PLGA) is a non-toxic polymer comprising hydroxyacetic
acid monomers and lactic acid monomers that shows remarkable bio-absorbability, sim-
ilar to that of collagen membranes, and excellent compatibility. PLGA is widely used
in biomedical engineering, pharmaceuticals, and modern industrial practices [61]. The
PLGA membrane shows exceptional cytocompatibility, bioactivity, and physicochemical
properties with the variation of the proportions of PLA and PGA, altering the methods of
polymerization [62]. However, on its own, PLGA is not a suitable material for GTR/GBR
membrane applications. Numerous studies have assessed the effects of various addi-
tions and technologies on the improvement of cell activity, antibacterial performance, and
degradation rates, among others properties [63,64].

The degradability and mechanical properties of the GTR/GBR membrane have re-
ceived a great deal of attention. Certain particles have been added to PLGA by electrostatic
spinning for specific functions, for instance, to effectively alter cell infiltration rates [65].
Higuchi et al. found that ultrasonic HA-coated membranes can retard biodegradation, pro-
mote wettability, and release calcium ions to neutralize acidification, even at comparatively
high levels of metabolic activity [66].

Modified PLGA membranes are still in the experimental stage and have only been
applied in in vitro and animal model studies. Santos et al. described the use of HA
in GBR membranes for increased bioactivity and bone conduction and found that HA
improved osteoblast size, diffusion, and migration to the membrane. The HA:TCP ratio
had varying degrees of effect on the fiber diameter and the crystalline structure and could
be manipulated to maximize the impact of the incorporated contents. By carefully adjusting
the HA:TCP ratio to 60:40, they could effectively enhance the membrane characteristics and
reconstruct the architecture of the bone [10,67].

To enhance bone regeneration and suppress microorganism proliferation, He et al.
incorporated internal and external medicines with the membrane. On the other hand, this
incorporation will reduce tensile strength by varying drug release durations to increase
entirety efficiency [68]. Jin et al. studied the effects of fish collagen (FC) and HA on the
tensile strength and degrading behavior of PLGA membranes with different proportions of
LA and GA (Figure 6). GTR/GBR membranes have the potential for various applications
due to their generally high degree of biosafety and bioactivity [69]. Additionally, a novel
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bi-layer scaffold structure can be modified to add several functions. Lian et al. created
a new type of GBR scaffold by extending the conception of “membrane”, which means
a two-dimension struction, to “scaffold”, which means a three-dimensional structure, to
develop numerous structures with enhanced osteogenic and antibacterial capabilities. A
loosened and cellular SEW layer was used to assist and facilitate bone ingrowth, while a
dense and close SES layer was used to oppose non-osteoblast interference. The two-layer
membrane can easily be generated and used in clinical practice because of its enhanced
mechanical characteristics and biodegradability [70].
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Figure 6. (a) The X-ray diffraction (XRD) patterns of HA, FC, and three different membranes; (b) the
TG curve and (c) the DMA curve of the membranes illustrating the characteristics; (d) the FTIR spectra
and (e) a schematic diagram of the P, PFC5, and PFC5H15 membranes and FC; (f) the morphology of
the edge of a fiber fracture, reprinted from Ref. [69].

Although PLGA is not widely used, it shows great potential for GTR/GBR membrane
modification and can be applied to higher clinical standards with more treatments. The
addition of CaP is one of the most promising ways to enhance the properties of the
membrane.

3.1.4. Other Materials and Improvements

In addition to the common membrane types, researchers are constantly developing
novel membrane types. Frequent improvements include developing new materials, adding
one or several cytokines, or the use of other methods that improve the functionality of
membrane materials. This also includes the verification of the structural and functional
properties and the clinical potential of these membranes in in vivo and in vitro experi-
ments. In addition, considering the importance of nanomaterials, we will expand on the
introduction of these substances in Section 3.1.4.3.

3.1.4.1. Developing New Materials

There are two main schools of thought for the development of new materials. One is
to form new membranes by changing the proportion of common chemicals and controlling
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the chemical reactions. Pajoumshariati et al. synthesized a copolyester-polybutadiene
succinate-glycolate (PBSGL) based on polybutylene succinate (PBS) and polyglycolic acid
(PGA) by esterification of a diol (bis[4-hydroxybutyl] succinate, BHBS) and a di-acid
(polyglycolic acid, PGL) with different glycolic acid ratios. This new copolyester combined
the biocompatibility of PGA with the excellent mechanical properties of PBS. The same
authors also evaluated the effect of the glycolic acid ratio on the biocompatibility and
osteogenic differentiation of mesenchymal stem cells at a histological level and found that
a high glycolic acid ratio was beneficial to bone formation without adverse inflammatory
reactions [71].

The combination of multiple preparation methods to form multilayers with multiple
characteristics is another promising idea. Wang et al. prepared a gelatin methacrylamine
(GelMA)/poly (ethylene glycol) diacrylate (PEGDA) fiber membrane, a bilayer struc-
ture with fiber nanostructure and hydrogel properties, through electrostatic spinning and
photocrosslinking [72]. The mechanical strength and degradation time of GelMA fiber
membranes were superior to that of crosslinked GelMA fiber membranes. High porosity at
the bottom of the membrane favored the adhesion and proliferation of osteoblasts, while
the low porosity at the top of the membrane prevented the migration of fibroblasts to the
bone defect area. Controlling cross-linking time and PEGDA can also modulate physical
properties, degradation rate, cell adhesion, and proliferation [73].

3.1.4.2. Addition of a Functional Substance

Common additives include proteins, cytokines, or nanoparticles that promote bone
regeneration. Bone morphogenetic protein (BMP), which belongs to the TGF-β family,
is a group of highly conserved functional proteins with similar structures. BMP can
stimulate DNA synthesis and cell replication, thus promoting the directed differentiation
of mesenchymal cells into osteoblasts. A membrane has been developed with a novel bone
graft drug delivery coating composed of biomimetic calcium phosphate (BCAP) layered
with a polylysine/polyglutamic acid polyelectrolyte multilayer (PEM). BMP-2 is added
to the coating, and BCAP PEM is then deposited. Fibroblast growth factor-2 (FGF-2),
which will lead to immediate cell reaction, is adsorbed into the PEM layer and BCAP
PEM temporarily delays the cell response to BMP-2. The BMP-2-coated and FGF-2-coated
scaffolds were implanted into mouse skull models. One week later, low-dose FGF-2 and
BMP-2 showed cell proliferation, including Sca-1+ progenitor cells. The addition of the
BCAP layer in PEM delays the entry of BMP-2 and allows FGF-2-stimulated progenitor
cells to fill the scaffold before the differentiation of BMP-2. To improve bone defect healing,
bone mesenchymal stem cells (BMSCs) were pretreated with bFGF and BMP-2 [74]. The
results showed that bFGF promoted the proliferation of BMSCs better than BMP-2. The
process of bone differentiation induced by the BMP and FGF acellular dermal matrix (ADM)
membrane was compared in a critical size defect model, which showed that bFGF-ADM
was more effective in recruiting BMSCs [75].

Compared with BMP, nanoparticles play a greater role in bone regeneration at the
cellular level, mainly enhancing the mechanical properties and antibacterial ability of the
membrane. Kouhi et al. added fibrinogen (FG) bredigite (BR) into polyhydroxybutyrate-
co-3-hydroxyvalerate and found that the osteogenic differentiation and mineralization of
cells was enhanced by adding BR. The addition of FR and BR improved hydrophilicity and
increased hydrolytic degradation. However, the Young’s modulus and the ultimate strength
were reduced by the incorporation of FG and strengthened by further the incorporation of
BR nanoparticles [76]. In the mussel-inspired method of Wang et al., a poly-L-lactic acid
(PLLA) membrane was treated with dopamine to form polydopamine (PDA) coated PLLA,
and PLLA was then coated with AgNPs using the reduction effect of PDA, which imparted
antimicrobial activity to the modified membrane [77].

In addition, some other additives also enhance the performance of the membrane.
PCLF is a derivative of PCL, with similar characteristics and structures. Ahmadi et al., by
adding silicon and magnesium with fluorapatite nanoparticles to a PCLF/gelatin composite
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membrane, created a complex network in which various components interacted with each
other to boost membrane performance. Membranes with 5% Si-Mg-FA nanoparticles
showed suitable biological qualities and a reasonable degradation rate, with a 1.5-fold
increase in mechanical properties [78].

3.1.4.3. Addition of Nanoparticles

Many studies have mentioned that modifications in the form of nanoparticles can
enhance the properties of raw materials for biocompatibility, bone regeneration prop-
erties, and mechanical strength [79]. Nanoparticles can improve the surface roughness
of membranes and facilitate cell attachment and growth. Ye et al. found that a higher
electrospinning solution density increased the precipitation of Sr-CAP nanoparticles and
increased the surface roughness of PCL/chitosan membranes [80]. In addition, to com-
bat the drawbacks of the low bioactivity of PCL, Jang et al. utilized the nano grooves to
facilitate cell elongation [43]. The change of membrane mechanical strength depends on
the distribution of nanoparticles, fiber diameter, and the interaction between nanoparti-
cles and polymers [78]. R. Socrates found that by increasing the concentration of silver
nanoparticles added to collagen-hydroxyapatite membranes, the mineralization increased,
thus enhancing the mechanical properties [81]. In the study by José, ternary bioactive glass
nanoparticles (BGNPs) were also shown to induce mineralization [82]. However, in some
cases, the addition of nanoparticles can also cause a weakening of the mechanical properties,
for example, crosslinking alginate with high amounts of nanohydroxyapatite can lead to a
weakening of membrane plasticity [83]. Tahmineh et al. also found that the incorporation
of either 5 or 10 wt% silicon and magnesium co-doped fluorapatite nanoparticles reduced
the mechanical strength of PCLF/gelatin membranes, likely due to stress concentration
caused by nanoparticle aggregation [78].

Moreover, the addition of nanoparticles can change the chemical activity of the mem-
branes. Gheorghe found that TiO2 nanoparticles in polysulfone-silica microfiber composite
membranes offered increased chemical resistance to acid oxidizers and bases [84]. TiO2
nanoparticles also have a photocatalytic effect and can produce reactive oxygen species
by UV light irradiation, resulting in some antibacterial properties [84]. In addition, due
to the high surface area to volume ratio of membranes co-blended with nanoparticles,
they are able to carry and release drugs. In a study by Meifei et al., mesoporous silica
nanoparticles (MSNs) loaded with dexamethasone can achieve targeted delivery and thus
improve osteogenicity [79]. The addition of some antimicrobial nanoparticles, such as
AgNPs, in membranes also leads to enhanced antimicrobial action due to their ability to
expand the surface area [85].

3.2. Resorbable Membranes Based on a Natural Polymer
3.2.1. Collagen

Collagen is the most widely used natural material in the creation of GTR/GBR mem-
branes and, owing to its excellent biocompatibility and facilitation of wound healing and
GBR, researchers have explored its application in the field of oral medicine [86]. Based on
its absorbability, low immunogenicity, and ability to carry medicinal agents, among other
factors, clinical results were nearly equivalent to those of nonabsorbable membranes [87].
Nevertheless, collagen itself is not mechanically suitable, since it lacks rigidity. It is more
appropriate for applications in alveolar bone, such as for use in bone dehiscence and bone
fenestration, where it can maintain stability without additional fixation. Collagen is also
not particularly suitable for in vitro treatment and long-term cell culture. Additionally,
it shares a common problem with absorbable membranes in that it does not offer space
maintenance and it has a short degradation time [88].

Different experiments have been conducted to enhance the properties of collagen
membranes. Simple collagen molecules are unstable so, in nature, they typically have a
three-screw structure known as collagen fibrils, and these fibrils are arranged together
to form collagen fibers by covalent cross-linking. Collagen is divided into various types,
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depending on its location and features. Among more than 20 kinds of collagen, type
I collagen has a similar composition to periodontal connective tissue and is the main
component for 90% of commercial collagen membranes (CM) [89].

The pure natural collagen membrane degrades relatively quickly, which means that
it allows little support for bone regeneration. By contrast, the cross-linking of collagen
membranes built by ultraviolet irradiation or chemical solution (e.g., glutaraldehyde)
immersion, among other methods, shows better thermal stability and mechanical strength,
effectively resisting the decomposition of collagenase solution for up to 50 days [90].
Research by Hong et al. has shown that by adding BCP (BCP, a mixture of HA and β-TCP)
after UV cross-linking, the modified crosslinked collagen membrane has a greater ability to
enhance neonatal bone formation and shows high biocompatibility and degradability [91].
Chia-Lai et al. reported that, after the monomer collagen was reconstituted into collagen
fibrils, GLYMATRIX technology was used to glycosylate it with ribose, and ethylene oxide
was used for sterilization (ribose cross-linking technology), to enhance the barrier function
of the membrane [92].

Other attempts have been made to decelerate the degradation rate of the membrane.
For instance, collagen membranes can be immersed and activated in autologous plasma
rich in growth factors (PRGF) to add growth factors, enhancing and accelerating bone
regeneration and predictable soft-tissue growth. The results revealed that the ultrastruc-
ture of three commercial collagen membranes showed excellent development in different
directions, and their degradation rate slowed down at varying degrees [93]. Li et al. found
that by adding 10% proanthocyanidins (OPCs) to the cross-linking agent of oligomeric
OPCs in different concentrations, the OPCs-col membrane formed by type I collagen had
the best overall performance and delayed the degradation of the membrane [90]. Using the
gas-phase treatment of atomic layer deposition (ALD), Choy et al. introduced metal suture
bonds, and collagen with Ti suture bonds was prepared by using TiO, which delayed the
biodegradation time and enhanced the mechanical stability of the membrane [94].

In addition to extending the degradation time, the antibacterial performance of the
collagen membrane has also been a focal point for collagen membrane improvement. In
the process of GTR/GBR, it is easy to expose the membrane, and resulting infection is a
significant problem existing in the clinical application of GTR/GBR membrane technology.
Membrane exposure and infection have been reported in many clinical studies. Tempro and
Nalbandian found that 1–2 weeks after surgery, the membrane was exposed, even though
the soft tissue flap was completely covered [95]. Therefore, good antibacterial performance
can reduce the infection caused by membrane exposure while promoting osteogenesis and
soft tissue healing.

Socrates et al. mixed diverse percentages of spherical silver nanoparticles (tAgNPs)
with collagen at 4 ◦C and added biomimetic HA composites for mineralization. The
modified membrane showed excellent antibacterial properties and was suitable as a bone
repair material that promoted calcified tissue repair potential [81].

Tovar et al. have explored a safer and more feasible method of sterilization. Commer-
cially available acellular/degreased porcine pericardial collagen membranes were treated
with supercritical CO2 (scCO2). The thickness of the membranes increased significantly,
but the quality of the membranes did not change after treatment. Considering that scCO2
sterilization is a cold process, the possibility of changing the structure of the collagen
material is reduced. Compared with traditional sterilization with radiation or acid/alkali
solutions, which easily degrades the collagen structure, scCO2 treatment is a more reliable
sterilization method [96].

Many efforts have been made to promote cell and bone differentiation, improve
bone quality, and enhance other properties directly affecting bone regeneration. Gou
et al. improved the mechanical properties (creating thicker and more organized fibers)
and the hydrophilicity of membranes by cross-linking epigallocatechin-3-gallate (EGCG),
promoting cell adhesion and osteogenic differentiation while maintaining good cellular
compatibility [97]. Cho et al. prepared a collagen sponge (CS) using a 1% (w/v) collagen
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solution and added 0.1% (w/v) alendronate (ALN) to prepare an ALN-loaded collagen
sponge (ALN-CS) as a carrier of growth factor rhBMP-2. Comparing CS, ALN-CS, CS
containing rhBMP-2, and ALN-CS containing rhBMP-2, they found that the ALN-CS-
rhBMP-2 group effectively inhibited bone resorption and promoted bone marrow formation,
which was beneficial to the long-term and continuous improvement of bone quality [98].

Membrane improvement is mainly driven by the enhancement of barrier membrane
function, the convenience of operation, and the ease of use. Various modifications have
been attempted to improve the effectiveness of collagen membrane materials in alveolar
bone augmentation and implantation, with varying degrees of effectiveness. Whether these
modified membranes would be effective in clinical settings remains to be seen.

3.2.2. Chitosan

Chitosan is employed in guided tissue regeneration as a linear polysaccharide con-
taining glucosamine and N-acetyl glucosamine units linked by B-1,4 glycosidic bonds and
is only dissolved in acidic solutions [99–101]. Due to its low cost and excellent immuno-
genicity, biocompatibility, biodegradability, and natural bacteriostatic fungal-suppressive
characteristics, chitosan is commonly used in biomedical research. Many studies have
incorporated chitosan with other polymers to strengthen the mechanical functions and
bioactivity of scaffolds [102].

In addition to the characteristics already mentioned, chitosan shows low mechanical
strength and a fast degradation rate. Fixed HA was mixed with CS to create a complex
membrane, and the effect of the additive load on the membrane properties was studied.
SEM analysis revealed that the surface of the composite membrane was both smooth and
rough, with the roughness increasing as the HA content increased. After two months of
culture, the degradation rates of the membranes were less than 22% of the initial weight, and
they decreased with an increase in HA. These findings imply that HA derived from chicken
can be formulated as an osteogenic filler to improve and regulate the bio-properties and
degradation behavior of CS membranes, thereby guiding bone regeneration [103]. Su and
his colleague are currently working on developing a GBR membrane made of PCL, gelatin,
and chitosan that has been improved with β-tricalcium phosphate (β-TCP) for enhanced
biocompatibility, mechanical properties, and antibacterial ability. Additionally, the results of
electrospinning a chitosan-elastin solution to improve the mechanical properties of chitosan-
based GBR membranes were presented in this study. Chitosan membranes containing
elastin exhibited thicker fiber diameters, higher hydrophilicity, faster degradation rates,
and higher mechanical strengths than chitosan membranes alone [104]. A layer of solid
chitosan membrane and electrospun collagen nanofibers was used to create another type of
membrane [105]. According to the biological and mechanical properties of collagen, the
chitosan–collagen composite material can change the performance of the material when
compared to chitosan or collagen alone [106].

Vale and his colleague developed a new type of antibacterial free-standing film by
combining chitosan with hyaluronic acid (HAIB) to promote bactericidal and bioactive
properties. Silver-doped bioglass nanoparticles (AgBGs) can be additionally combined to
promote antibacterial and bioactivity properties [107] (Figure 7). Using electrospinning,
they created a CS-AgNP/polyurethane composite (AgCSP) nanofiber membrane. Employ-
ing the ELS approach, they created a natural polymer membrane with a high antibacterial
effect. The level of biocompatibility was adjusted by adding a reasonable amount of Ag-
NPs. The AgNPs inside the membrane effectively promoted antibacterial activity. This
membrane can be employed as a medical dressing material [85].
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In an ideal GTR/GBR multilayer, one layer should sustain osteoblast attachment
and proliferation, and the other layers should restrain cell adhesion. Therefore, mixing
chitosan with other materials in multilayer structures is a promising technique to consider.
Based on this idea, Vale et al. developed a novel antibacterial self-supporting membrane
using natural polymer chitosan and hyaluronic acid in which AgBGs were incorporated to
boost bactericidal and bioactive properties [107]. Another method consisted of developing
a novel three-layer graded chitosan membrane (FGM) with bioactive glass gradients:
BG and Pluronic F127 were joined inside of the membrane using a combination of the
electrochemical and freeze-drying methods. Each layer provides an independent surface
function and acts as a guide for the GTR membrane, resulting in a porous structure on the
underside of the three-layer chitosan membrane that facilitates bone regeneration and also
prevents bacterial entry [108].

As a high molecular polymer, chitosan has been widely studied and applied for use in
GTR/GBR membranes due to its specific biological properties. It has immense potential,
but because of its low mechanical strength, further research is needed to ensure its success
in clinical practice.

3.2.3. Gelatin

In the reconstruction of oral tissue and facial surgery, the hydrogel membrane is often
used as a physical barrier [109]. Natural water-soluble polymers, such as gelatin, collagen,
chitosan, hyaluronic acid, and synthetic polymers, especially PGA, PLA, and PCL, can be
obtained from the thermal denaturation of collagen [110–112].

Compared with collagen, gelatin shows greater biocompatibility, biodegradability,
lower cost with high efficacy, low immunogenicity, and good bioavailability. Therefore,
gelatin is suitable for cell attachment, growth, and the maintenance of physiological func-
tions. Developed in a previous study, an absorbable polycaprolactone-polyethylene glycol-
polycaprolactone (PCEC)/gelatin-bismuth doped bioglass-graphene oxide bilayer showed
superior mechanical, biochemical, and biological properties [113].

Due to the special location of the membrane, the gelatin-hyaluronic acid membrane
was crosslinked with gelation and added with hydrogel to improve antibacterial per-
formance and inhibit microbial contamination in the regeneration of soft tissue during
potential acute inflammation [109]. In general, protein membranes and gel are indispens-
able in periodontal treatments.
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3.2.4. Silk Fibroin

Some membranes made from natural materials have been observed to have architec-
tural and inflexible limitations, variable rates of degradation, and limited immune reactivity,
preventing their clinical application. The silk fibroin membrane, a natural polymer and
protein membrane, can be produced at a low cost and also has suitable mechanical proper-
ties with proven biocompatibility. Compared with the collagen membrane, the silk fibroin
membrane promoted a greater amount of bone regeneration [114].

Although easy to produce, it is usually brittle under dry conditions, resulting in upper
tensile strength, but low prolongation at breaking point [109]. One method to improve the
elongation power, flexibility, and operability of the membrane is to add a plasticizer to the
polymer resolvent. Here, the mixture of the silk fibroin protein, glycerin, and polyvinyl
alcohol plasticizer can be verified by low-temperature thermal annealing coupled with a
feasible and ordinary stabilization process. Compared with pure silk fibroin membranes,
blends showed increased ductility, hydrophilicity, and subsequent proteolytic degradation.

Using this method, fibroin mixtures can be designed with customized mechanical,
physicochemical, and biological properties for use in in vivo experiments and in the reha-
bilitation of injuries related to moderate periodontitis [114].

3.3. Magnesium Metal

We may deduce from the preceding study that magnesium and its alloys play an
essential role in GTR/GBR. Coated magnesium or its compounds and surface modifications
can limit biodegradability and enhance material properties.

There are many varieties of biocompatible membranes, although absorbable mem-
branes are preferred because they do not require secondary operations. Metal membranes,
in particular, outperform polymer composites and organic ceramic–polymer materials in
terms of mechanical strength and structural integrity [115]. Magnesium, an absorbable
metal membrane material, offers a variety of applications due to its excellent mechanical
properties [116]. Magnesium is an important mineral used in the circulatory system of
mammals and humans [117], with a daily recommended dose of 250–300 mg [118]. Mag-
nesium also exhibits similar mechanical properties to those of human bone (e.g., elastic
modulus, density, tensile strength) [117]. Scaffolds, bone plates, and wound closure devices
are just a few of its modern medicinal applications [115,119,120]. Detailed in vivo exper-
imentation using magnesium alloy implants within bone was described by Zheng et al.,
who demonstrated the osteoconductive potential of these implants [121]. However, the use
of magnesium is limited by its rapid rate of degradation, especially in human fluids, due to
pH and ion type in the physiological environment [122,123]. Scientists have tested a range
of membranes deposited on the surface of magnesium metal and its compounds, as well as
different procedures to modify these compounds, such as adding calcium, but no effective
modification has yet been developed [124].

Magnesium can now be encapsulated using a variety of methods. Chitosan or col-
lagen membranes, for example, can be destroyed while the magnesium core retains a
certain mechanical strength. Physical vapor deposition (PVD)-coated materials can also be
used to passivate magnesium. Jang et al. achieved the passivation of magnesium using
plasma electrolytic oxidation and hydrothermal treatment, reducing the degradation rate
by forming a dense layer of magnesium hydroxide containing phosphorus and calcium
on the surface, maintaining the inner magnesium layer’s mechanical properties and bio-
compatibility [125]. Because magnesium materials can be used in a 100% biological water
environment, Barbeck et al. used hydrofluoric acid to process the magnesium network
and form magnesium fluoride [126]. The modified HF-Mg mesh was embedded into a
collagen membrane to form a novel GTR/GBR membrane that has a lower degradation
rate and good biocompatibility and mechanical strength. Ion-injection PVD coating is a
new method to create a GTR/GBR membrane, although compared with non-PVD-coated
membranes, this method does not provide a significant improvement; compared with the
actual production and application of the membrane, pure magnesium is more suitable for
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GTR/GBR [127]. Furthermore, the use of chitosan coating can retard the rate of deteriora-
tion of magnesium. The composite chitosan–magnesium membrane (CS-Mg membrane)
shows considerable potential for development as a conductive bone regeneration mem-
brane with good osteogenic activity [128]. Lin et al. devised a novel ecologically friendly
magnesium casting technology, which provides a broad platform for future application
of magnesium materials [129]. To eliminate the significant amount of greenhouse gases
produced in the magnesium casting process using sulfur hexafluoride (SF6), Lin et al.
combined solid-solution heat treatment with surface treatment, replacing the Mg-5Zn-0.5Zr
(ECO505) alloy with a new degradable and sustainable oral material. Du et al. created
a magnesium-reinforced PLA polymer membrane, which showed good biocompatibility
in animal experiments. Generally, magnesium contributes to mechanical properties [130].
Zhang et al. innovatively applied a magnesium-reinforced PLA membrane to the site of a
bone defect. The membrane was made of a double-layer PLA membrane and a fluoride-
covered AZ91 (9 wt% Al, 1 wt% Zn) (faz91) magnesium alloy core. After immersing the
membrane in Hank’s Balanced Salt Solution (HbSS), among other conducted experiments,
the researchers found that adding faz91 to PLA was biosafe, specifically for human use.
This bioabsorbable PLA composite film can replace the traditional pure PLA film [60].

Magnesium and its alloy materials have been modified to provide improved perfor-
mance and can be employed in the field of GTR/GBR. The methods described above lend
substantial support for the utilization of magnesium materials in dentistry.

4. Clinical Trials & Future Research

The most important characteristics of chitosan materials for dental treatment are their
biodegradability, biocompatibility, hydrophilicity, biological activity, and their antibacterial
and antibacterial properties. In the past few decades, chitosan and its derivatives have been
widely used in mouthwash, toothpaste, varnish, denture adhesive gel, dental pulp sealant,
glass ion repair materials, and root canal sealant. In recent studies, chitosan biomaterials
have also been used as titanium implant coatings, dental membranes, stents, hemostatic
dressings, and carriers for drug or gene delivery. According to the success of the treatments,
chitosan has been widely used in various dental applications. However, more research
is needed to further determine the properties of chitosan biomaterials and expand their
effective use in dental treatment. Hydrogels are polymer networks composed of cross-
linked hydrophilic chains [131]. With a high affinity for water’s physical properties, water
gel allows excessive integration with the surrounding tissue, reduces the possibility of the
inflammatory response from the natural water gel to the synthetic hydrogels, allows for
its application as a bioactive molecule carrier, and is ell suited for additive manufacturing
technology; deeper research is required into the application of natural water gel [132].

The most important reason why magnesium material can be widely used in dental-
clinics is the good mechanical properties due to its degradability and biocompatibility.
By using different methods to modify it, its degradation rate can be reduced, allowing
for wider clinical use. Scientists have used an environmentally friendly way to cast a
degradable and regenerative film [129]. As a traditionally popular GTR GBR film, collagen
has many advantages while being less mechanically stable. It is now clinically possible to
glycosylate and sterilize this film using ethylene oxide for enhanced mechanical purposes
during the disinfection step [92]. In addition, the introduction of metal seams can improve
the mechanical properties while reducing the degradation rate [94]. In the future, the
traditional collagen membrane may become even more valuable through the use of more
scientific research results. Similar to collagen films, PLA (Polylactic acid) has relatively low
mechanical properties. Clinically, PLA tissue regeneration scaffolds are often prepared by
electrospinning, providing a greater application potential in a three-dimensional space, and
their porosity can be accurately measured using 3D-printing technology. As a new synthetic
membrane, PLA has greatly reduced clinical application costs due to its renewability. In
short, PLA offers great potential in the future. Polylactic-co-glycolic acid (PLGA) shows
similar bioresorption to collagen. Clinically, additional factors may be added to modify its
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cell permeability. [65]. However, the modified PLGA membrane is still in the experimental
stage and is currently only used for in vitro and in vivo studies in animals; in the future,
PLGA may be used in the clinic as a unique GTR/GBR membrane to improve cell activity
and antimicrobiality.

5. Conclusions

The results of the above studies generally described moderate to substantial advances
in the modification of degradable membranes for GTR/GBR. For various biodegradable
materials, the commonly applied modification methods include: (1) the addition of sub-
stances to enhance membrane performance, such as proteins and growth factors for bone
and tissue regeneration; nanoparticles that can enhance several properties of the membrane;
components that can release silicate, calcium ions, and phosphate to enhance osteoconduc-
tivity and bone formation; and plasticizers that improve the elongation ability of silk fibroin
membranes; (2) the application of novel preparation methods or a combination of various
existing preparation methods such as, the use of 3D printing, air plasma, the combination of
electrostatic spinning and photo-crosslinking, the combination of ultraviolet irradiation or
chemical solution immersion and cross-linking, to enhance multiple membrane properties.

The formation of composite membranes from different materials is a new and growing
trend and can be applied to overcome the deficiencies of the respective materials. The
identification of suitable combinations of modification methods and materials should
remain the focus of future research. In addition, in vivo experiments, as well as clinical
studies, should apply promising modification methods following extensive risk assessment.
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