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Abstract
Significant research has been dedicated to counteracting age-related muscle loss, 
but underlying mechanisms have not been clearly established. Previous research ex-
amining differences in basal protein kinetics between young and older individuals 
has been limited by a lack of evaluation of protein breakdown and net balance. The 
aim of this study was to more comprehensively examine differences in basal protein 
kinetics between younger and older males and females. Basal whole-body protein 
kinetics and muscle fractional synthetic rate (FSR) from 91 younger (18–38 years; 
52% female) and 66 older (51–81 years; 53% female) healthy adults were determined 
using stable isotope tracer techniques (L-[ring-2H5]phenylalanine and L-[ring-2H2]
tyrosine). There were no group × sex interaction effects (p > .05). Older individu-
als had greater whole-body protein synthesis (mean difference old-young (Δ) ± SE: 
28.54 ± 8.15 mg/kg LBM/hr; p = .001) and breakdown (Δ: 15.44 ± 7.33 mg/kgLBM/
hr; p = .038), but a less negative net balance (Mean ± SD: Young: −31.22 ± 7.42 mg/
kg LBM/hr; Old: −18.11 ± 21.60 mg/kg LBM/hr; p < .001) compared to young in-
dividuals. Basal FSR was not significantly different between young and older (Δ: 
0.007 ± 0.003%/hr; p = .052). Across the age range, females had greater whole-body 
protein turnover (PSΔ: 19.10 ± 7.00 mg/kgLBM/hr; PBΔ: 19.22 ± 6.31 mg/kgLBM/
hr; p < .01) compared to males. Results demonstrate a difference in basal whole-body 
protein kinetics between young and older adults, with older adults having a higher 
protein turnover rate and a less negative net balance. Across the age range, females 
were also found to have a higher turnover rate compared to males. Differences may 
represent a shift in older physiology toward mechanisms that increase the efficiency 
of amino acid reutilization, especially in women.

K E Y W O R D S

aging, anabolic resistance, protein metabolism, sarcopenia, stable isotopes

www.wileyonlinelibrary.com/journal/phy2
mailto:﻿
https://orcid.org/0000-0002-0899-0139
https://orcid.org/0000-0003-4918-5037
http://creativecommons.org/licenses/by/4.0/
mailto:krhirsch@uams.edu


2 of 8  |      HIRSCH et al.

1  |   INTRODUCTION

Beginning at approximately 30  years of age, relative mus-
cle size and strength begin to decrease until the age of 50, 
at which point the rate of decline accelerates, resulting in 
a loss of 0.5%–1% per year (Janssen et  al.,  1985; Mitchell 
et  al.,  2012). Age-related decline in muscle size and qual-
ity is associated with increased risk of metabolic disease, 
decreased physical function, increased fall risk, and lower 
overall quality of life (Tieland et al.,  (2018); Wolfe, 2006). 
Much research has been dedicated to counteracting age-re-
lated muscle loss, but the underlying mechanisms of sarcope-
nia have not been clearly established.

Suggested theories for age-related muscle loss include 
DNA damage, reduced protein synthesis, fiber type changes, 
physical inactivity, inadequate nutrition/protein intake, and 
hormonal changes (Doherty,  2001; Tieland et  al.,  2018). 
Significant attention has been directed at characterizing 
and counteracting anabolic-resistance, or the reduced ana-
bolic response to protein intake that occurs with aging (Burd 
et al., 2013; Phillips et al., 1985). Differences in basal pro-
tein kinetics have been less rigorously evaluated. Previous 
work in this area has generally shown minimal differences 
in basal muscle protein synthesis between young and older 
individuals (Cuthbertson et al., 2005; Markofski et al., 2015; 
Moore et al., 2015; Volpi et al., 2001), with a few studies sug-
gesting lower synthesis rates in older individuals (Balagopal 
et al., 1997; Welle et al., 1993; Yarasheski et al., 2002) and in 
men (Henderson et al., (2009); Smith et al., 2008). However, 
previous studies were limited in the number of subjects stud-
ied in each age group (young vs. older) and most did not eval-
uate skeletal muscle breakdown rates and net protein balance, 
which is important for discerning mechanisms of muscle loss. 
Measurement of muscle protein synthesis without the charac-
terization of muscle protein breakdown reflects changes in 
protein turnover, not necessarily protein anabolism. Further, 
the high variability in the measure of muscle protein syn-
thesis (fractional synthetic rate; FSR) reflects the potential 
insensitivity of this measure when utilizing it as the sole cri-
teria for determining body protein kinetics and interventional 
effects (Mittendorfer et al., 2005). The variability in muscle 
protein FSR is further exacerbated when comparing values 
between laboratories (Mittendorfer et al., 2005). These issues 
can make it difficult to distinguish small, but potentially sig-
nificant differences in basal rates, as is likely with age-related 
loss of body protein (Symons et al., 2007).

Consideration of kinetics at the whole-body level is lim-
ited in previous literature comparing age-related protein 
kinetics (Henderson et  al.,  2009). Evaluation of protein ki-
netics at the whole-body level not only accounts for changes 
in muscle protein (~24%–36%), but changes in organ protein 
and splanchnic utilization as well (Deutz & Wolfe, 2013; Nair 
et al., 1988). Thus, the examination of whole-body kinetics, 

in conjunction with muscle, offers insight into three of the 
four important kinetic variables required to determine body 
protein status: 1) whole-body protein synthesis, 2) whole-
body protein breakdown, and 3) muscle protein synthesis. 
Given that the methodology involved with the examination of 
protein kinetics is rather expensive, the sample size required 
to discern a difference in basal kinetics is also not often fea-
sible. Therefore, in order to more comprehensively examine 
potential differences in basal protein kinetics between young 
and older men and women, this study combined and exam-
ined data from eight different metabolic studies performed in 
the same laboratory, utilizing the same tracer methodology.

2  |   METHODS

2.1  |  Subjects

Basal protein kinetics from 91 younger (18–38 years; 53% 
female) and 55 older (51–81 years; 53% female) adults were 
combined for analysis (Table  1). Subjects were healthy, 
with no active malignancies, diabetes, chronic inflamma-
tory disease or other chronic diseases/unstable medical con-
dition, history of gastric bypass surgery, low hematocrit or 

T A B L E  1   Subject characteristics (Mean ± SD)

Young Older

N 91 55

Age (yrs) 25.1 ± 5.5 65.7 ± 7.3

Height (cm) 172.3 ± 9.2 172.0 ± 9.1

Weight (kg)* 74.5 ± 14.2 81.5 ± 11.2

%BF* 27.6 ± 8.3 34.6 ± 6.8

LBM (kg) 48.4 ± 10.6 49.5 ± 9.5

Young Male Older Male

N 44 26

Age (yrs) 25.7 ± 5.3 65.5 ± 7.5

Height (cm) 177.6 ± 6.5 179.8 ± 5.3

Weight (kg) 81.5 ± 11.9 89.7 ± 8.2

%BF 23.5 ± 6.8 29.6 ± 5.9

LBM (kg) 56.3 ± 7.0 58.1 ± 5.7

Young Female Older Female

N 47 29

Age (yrs) 24.7 ± 5.7 65.9 ± 7.3

Height (cm) 167.3 ± 8.6 165.0 ± 5.4

Weight (kg) 67.9 ± 13.1 74.2 ± 7.9

%BF 31.5 ± 7.8 39.0 ± 4.0

LBM (kg) 40.9 ± 7.6 41.9 ± 4.0

Note: %BF: percent body fat; LBM: lean body mass.
*Significant difference between young and old (p < .05). 
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hemoglobin concentrations, or using corticosteroids; women 
were not pregnant. All individuals were participating in <2d/
wk of resistance exercise. All participants provided writ-
ten informed consent and protocols were approved by the 
Institutional Review Board at the University of Arkansas for 
Medical Sciences.

2.2  |  Experimental design

Measures of basal protein kinetics from eight different stud-
ies collected over five years were combined for analysis. Five 
of the studies included older individuals (Kim, et  al., 2018; 
Kim et  al.,  2015; Kim, et  al.,  2018; Park, et  al.,  2020)
(IRB#204291); three of the studies included young individu-
als (Kim et al., 2016; Park, et al., 2020)(#205366). All studies 
had equal or near equal representation of males and females. 
All participants underwent a metabolic study to determine 
whole-body protein kinetics and muscle FSR using a primed 
continuous infusion of stable isotope tracers. Plasma essential 
amino acid concentrations were also measured. Body compo-
sition was determined from a dual-energy X-ray absorptiome-
try whole-body scan (QDR-4500A; Hologic, Waltham, MA). 
Prior to the metabolic study, all participants were instructed 
to arrive at the lab following an overnight fast, beginning at 
2200hrs the night before, and refrain from strenuous physical 
activity  >72  hr prior. In five of the studies, accounting for 
53% of the older and 82% of the young cohorts, participants 
consumed a run-in diet for 2–3  days prior to the metabolic 
study. Diets were based on habitual dietary intake, designed to 
maintain weight and provide 10%–15% calories from protein.

2.3  |  Stable isotope tracer infusion

In vivo whole-body protein kinetics was determined via 
primed continuous infusions of L-[ring-2H5]phenylalanine 
(prime: 3.92 µmol/kg; infusion rate: 4.60 µmol kg-1 h-1) and 
L-[ring-2H2]tyrosine (prime: 1.57  µmol/kg; infusion rate: 
0.95  µmol  kg-1  h-1). A catheter was placed into each arm; 
one for infusion of stable isotope tracer and the other for the 
sampling of arterialized blood via the heated hand method 
(Abumrad et  al.,  1981). Prior to tracer infusion, a baseline 
blood sample was collected for the determination of back-
ground isotope enrichments. To achieve isotopic equilib-
rium of L-[ring-2H4]-tyrosine enrichment derived from 
L-[ring-2H5]phenylalanine tracer infused, a priming dose of 
L-[ring-2H4]tyrosine was also given (prime: 0.33 µmol/kg). 
Blood samples were taken throughout the basal steady-state 
(Mean [Range]: 180min [120–270min]) to determine tracer 
enrichment and plasma essential amino acids. Muscle biop-
sies from the vastus lateralis were obtained in the basal state 
for the determination of muscle protein FSR; average time 

between biopsies was 120min (Range: 90–210min). All pro-
cedures were performed by the same research personnel for 
all studies. Isotope tracers were purchased from Cambridge 
Isotope Laboratories (Andover, MA). All metabolic studies 
were completed at the Reynolds Institute on Aging at the 
University of Arkansas for Medical Sciences.

2.4  |  Analytic methods

Plasma and muscle isotopic tracer enrichment were deter-
mined by gas chromatography-mass spectrometry (GC-MS; 
Models 7890A/5975; Agilent Technologies, Santa Clara, 
CA). Essential amino acid concentrations were measured 
by liquid chromatography-mass spectrometry (LC-MS; 
QTRAP 5,500 MS; AB SCIEX, Foster City, CA) utilizing 
the internal standard technique as previously described. (Kim 
et al., 2016; Kim, et al., 2018).

2.5  |  Calculations

Whole-body protein kinetics were calculated based on the 
rate of appearance (Ra) of isotope tracers, since the rate of 
appearance and disappearance is equal during the basal state 
(Equations 1–6). Protein synthesis (PS) was calculated as 
the difference between Ra of phenylalanine (Phe) and the 
rate of hydroxylation of Phe to tyrosine (Tyr) (Equation 4). 
Protein breakdown (PB) was determined from the Ra of Phe 
(Equation 5). Net balance (NB) was calculated as the differ-
ence between PS and PB (Equation 6).

F is the rate of infusion into the venous side. Enrichment 
(E) is expressed as tracer to tracee ratio (TTR; for PB) or 
mole percent excess (MPE = TTR/(1 + TTR)); for PS). ETyr 

M+4 and EPhe M+5 are plasma enrichments of L-[ring-2H4]
tyrosine and L-[ring-2H5]phenylalanine relative to the basal 
atomic mass. HydX is the rate of appearance of Tyr de-
rived from Phe via hydroxylation. To convert amino acid 
to protein, the conversion factor of 0.04 is based upon the 
assumption that the contribution of Phe to protein is 4% 
(Biolo et al., 1995).

(1)Total rate of appearance into plasma
(

Ra

)

=F∕E

(2)Fractional Ra of Tyr from Phe=ETyr M+4∕EPhe M+5

(3)HydX=Fractional Ra of Tyr from Phe×RaTyr

(4)PS=
[(

RaPhe−Phe hydroxylation rate
)

∕0.04
]

(5)PB=
[

RaPhe×25
]

(6)NB=PS−PB
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Muscle protein FSR was determined using the precur-
sor-product method, (Baumann et al., 1994) calculated using 
the plateau in Phe enrichment in the basal state (Equation 7). 
Plasma enrichment was used as the precursor for better inte-
gration of whole-body and muscle rates; however, calculation 
of FSR was also performed with intracellular enrichment as 
the precursor.

ΔEp represents the difference in enrichments of bound 
L-[ring-2H5]phenylalanine in the first and second biop-
sies. Em is the calculated mean value of the enrichments of 
L-[ring-2H5]phenylalanine in the plasma pool. T is the time 
(min) between biopsies. To express FSR in percent per hour, 
factors of 60 and 100 were used.

2.6  |  Statistical analysis

Prior to analysis, data were examined for potential outliers. 
One older individual was found to have an FSR > 3 stand-
ard deviations from the mean and removed from the analy-
sis. Differences in basal protein kinetics (PS, PB, NB, FSR), 
EAA concentrations, and hydroxylation between young and 
older men and women were evaluated using separate two-
way (age × sex) ANOVAs. Significant interaction and main 
effects were evaluated using pairwise comparisons with 
Bonferroni corrections for multiple comparisons and inde-
pendent samples t tests, respectively. FSR was not meas-
ured in one of the previous studies with older adults (Kim 
et al., 2015); EAA concentrations were not measured in two 
of the previous studies with older adults (Kim, et al., 2018; 
Kim et  al.,  2015). Thus, FSR and EAA were evaluated in 
a subsample of 45 (51% female) and 32 older adults (50% 

female), respectively. All analyses were performed using 
SPSS (Version 26, IBM, Armonk, NY, USA), using an 
α = 0.05 to determine statistical significance.

3  |   RESULTS

There were no group × sex interaction effect for whole-body 
protein kinetics (p > .05). Relative to LBM, older individu-
als had greater basal PS (mean difference old-young (Δ) 
± SE: 28.54 ± 8.15 mg/kg LBM/hr; p =  .001) and PB (Δ: 
15.44 ± 7.33 mg/kgLBM/hr; p = .038), but a less negative 
NB (Mean  ±  SD: Young: −31.22  ±  7.42  mg/kg LBM/hr; 
Old: −18.11 ± 21.60 mg/kg LBM/hr; p <  .001) compared 
to young individuals (Table  2). Females had greater basal 
PS (Δ: 19.10 ± 7.00 mg/kgLBM/hr; p =  .007) and PB (Δ: 
19.22 ± 6.31 mg/kgLBM/hr; p = .003) compared to males, but 
there was no difference in NB (Males: −26.22 ± 14.32 mg/
kgLBM/hr; Females: −26.34 ± 17.09 mg/kgLBM/hr).

There were no group  ×  sex interaction effect for FSR 
(p  =  .739; p  =  .575). When calculated with plasma en-
richment as the precursor, basal FSR was not significantly 
different between young and older (Δ: 0.007 ± 0.003%/hr; 
p = .052), but was higher in females compared to males (Δ: 
0.008 ± 0.003%/hr; p = .012). When calculated with intracel-
lular enrichment as the precursor, there was not a significant 
difference between young and old (Δ: 0.003  ±  0.004%/hr; 
p = .370), or between males and females (Δ: 0.007 ± 0.004%/
hr; p = .075).

There was a group × sex interaction for [EAA] (p = .032), 
with young males having greater [EAA] than young females (Δ: 
97.65 ± 18.92 µmol/L; p < .001), but no differences between 
older males and females (Δ: 17.31 ± 31.88 µmol/L; p = .588), 
young and older men (Δ: 46.46 ± 26.33 µmol/L; p = .080) or 
young and older women (Δ: 33.88 ± 26.10 µmol/L; p = .197) 

(7)FSR=
(

ΔEp∕
(

Em× t
))

×60×100

T A B L E  2   Basal protein kinetics (Mean ± SD): updated

Full Group Male Female

Young Older Young Older Young Older

PS (mg/kg 
LBM/hr)*#

206.39 ± 28.13 234.93 ± 56.31 195.61 ± 24.50 226.80 ± 66.37 216.48 ± 27.79 242.22 ± 45.46

PB (mg/kg 
LBM/hr)*#

237.61 ± 30.80 253.05 ± 48.83 226.66 ± 5.67 244.86 ± 7.37 247.86 ± 5.48 260.39 ± 6.98

NB (mg/kg 
LBM/hr)*

−31.22 ± 7.42 −18.11 ± 21.6 −31.05 ± 7.86 −18.06 ± 18.68 −31.38 ± 7.06 −18.17 ± 24.26

FSR (%/hr)# 0.049 ± 0.014 0.056 ± 0.023 0.045 ± 0.012 0.053 ± 0.022 0.053 ± 0.014 0.059 ± 0.024

[EAA] (µmol/
min)β

834.98 ± 96.81 830.30 ± 105.22 885.41 ± 72.53 838.95 ± 100.04 787.76 ± 93.32 821.64 ± 112.75

Hydroxylation 
(µmol/min)*

0.150 ± 0.027 0.114 ± 0.047 0.156 ± 0.027 0.116 ± 0.045 0.145 ± 0.026 0.112 ± 0.049

Note: PS: protein synthesis; PB: protein breakdown; NB: net balance; FSR: fractional synthetic rate; Significant difference between *young and old, #male and female, 
βyoung male and female (p < .05).
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(Table 2). Relative to LBM, females had greater [EAA] than 
males (Δ: 4.17 ± 0.51 µmol/L/kgLBM; p <  .001). For hy-
droxylation, there was no interaction effect (p  =  .628). 
Hydroxylation was significantly higher in young compared 
to older (Δ: 0.036  ±  0.007  µmol/min; p  <  .001; Table  2); 
there was no difference between males and females (Δ: 
0.008 ± 0.007 µmol/min; p = .200).

4  |   DISCUSSION

Previous research examining differences in basal protein ki-
netics between young and older individuals has been limited 
by a lack of evaluation of whole-body protein breakdown 
rates and net balance. Results of the current study show that 
in the basal state, older individuals have greater whole-body 
PS and PB and a less negative NB compared to younger in-
dividuals, but no differences in muscle protein synthesis. 
Women were also found to have higher protein turnover than 
men, but no difference in net balance. These data demon-
strate a difference in fasted protein kinetics between young 
and older adults, with a potential influence of sex that does 
not explain age-related loss of body protein.

Previous research on basal protein kinetics has focused 
on differences in muscle protein synthesis, with most studies 
showing no significant differences between young and older 
individuals (Cuthbertson et  al.,  2005; Kumar et  al.,  2009; 
Markofski et al., 2015; Moore et al., 2015; Volpi et al., 2001). 
The present study uniquely evaluated whole-body protein 
kinetics, which not only allows for the consideration of PB 
and NB, in addition to PS, but also allows for the consid-
eration of the whole-body protein pool. In the fasted state, 
muscle protein synthesis contributes about  ~24%–36% to 
whole-body protein turnover (Nair et al., 1988). Contribution 
of muscle to whole-body catabolism has been shown to be 
reduced in healthy, older adults (Morais et al., 1997), mak-
ing consideration of the whole-body protein pool important 
when evaluating aging populations, especially in the fasted 
state. More importantly, the combined measures provide a 
better representation of body protein status/balance. In the 
current study, higher PS and PB observed in older individ-
uals reflect a greater basal turnover in whole-body protein. 
Greater protein turnover may be reflective of a greater need 
for the replacement of less effective/efficient proteins in older 
individuals (Fitts et al., 2007). The less negative NB reflects 
a more efficient reutilization of the existing amino acid pool, 
oxidizing fewer amino acids compared to young individuals. 
This idea is generally supported by the lower hydroxylation 
rates observed in the older group. When evaluating synthesis 
and breakdown rates across the leg, Volpi et al. (2001) found 
older adults to have greater synthesis and breakdown rates 
compared to young adults. Net balance was also found to be 
similar between young and older adults; however, the authors 

pointed out that their findings were underpowered and that 
a large number of subjects (100+) would be needed to ob-
serve a significant age-related difference in basal muscle pro-
tein turnover in a cross-sectional study (Volpi et al., 2001). 
Although the current study did not evaluate MPB, the ob-
served elevation in whole-body PS and PB in this study is 
consistent with the conclusion of Volpi et  al.  (2001) of 
greater protein turnover in older subjects. Finally, differences 
in whole-body kinetics with minimal differences in muscle 
protein kinetics may reflect age-related metabolic alterations 
centered on the splanchnic bed, rather than skeletal muscle, 
in the fasted state (Volpi et al., 1999).

Previous research has consistently reported no signifi-
cant difference in FSR between young and older individu-
als (Cuthbertson et al., 2005; Kumar et al., 2009; Markofski 
et  al.,  2015; Moore et  al.,  2015; Volpi et  al.,  2001), but 
potentially higher in older women compared to older men 
(Henderson et al., 2009; Smith et al., 2008). The consolida-
tion of our data is consistent with these findings, showing 
minimal differences in FSR between young and older adults, 
but potentially slightly higher FSR in women compared to 
men, regardless of age. Measurements of muscle protein 
metabolism are highly variable, between and within studies 
and individuals (Smith et al., 2011). Basal values range from 
0.021% to 0.055% for young to middle-aged individuals, 
making it difficult to distinguish differences. Previous stud-
ies have reported a slightly higher FSR in older compared to 
young individuals (Δ: 0.002%–0.004%/hr) and in women (Δ: 
0.003%–0.004%/hr)( Henderson et al., 2009), despite nonsig-
nificant statistical differences (Kumar et al., 2009; Markofski 
et al., 2015; Volpi et al., 2001), with an equal number show-
ing slightly lower FSR in older (Δ: 0.001%–0.004%/hr) 
(Cuthbertson et  al.,  2005; Henderson et  al.,  2009; Moore 
et al., 2015). Of greater importance, few studies, including 
the current study, have examined both MPS and MPB si-
multaneously. Without the evaluation of both variables, con-
clusions about anabolism are difficult to make. In the fasted 
state, muscle serves as an amino acid reservoir to maintain 
protein balance in essential organs and plasma amino acid 
levels. Differences between young and older at the whole-
body level, but not at the muscle level, suggest differences 
in nonmuscle protein metabolism. This emphasizes the im-
portance of accounting for nonmuscle protein requirements 
when considering strategies to maintain muscle in aging 
individuals.

In contrast to the results of the current study, Henderson 
et al. (2009) found whole-body protein kinetics and muscle 
protein synthesis to be lower in older adults compared to 
young. Explanations for the contrasting results are not im-
mediately clear, but may be related to modifiable lifestyle 
factors, such as diet and exercise, in addition to high pop-
ulation variability. The implementation of run-in diets, or 
the lack thereof, has been suggested to potentially influence 
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protein kinetics (Henderson et al., 2009). Run-in diets were 
used in a majority, but not all of the studies included in the 
current analysis, which may have introduced some level of 
variability. However, Gorissen et al. (2017) found no effect 
of 14 days of protein habituation on FSR in the basal period 
(Gorissen et al., 2017), suggesting that a 3-day run-in diet 
would have minimal impact. The run-in diets were also de-
signed to provide protein intakes similar to habitual intake 
(10%–15%); therefore, the implementation or lack thereof, 
likely had a minimal impact on basal kinetics. Habitual 
protein intake may also have an impact on protein kinet-
ics. Recent results from Højfeldt et al. (2020) show that 
three weeks of habituation to a high protein diet (>2.1 g/
kgLM/d) altered basal, whole-body protein kinetics in older 
men, resulting in a more negative fasted net balance that 
resembled that of young individuals (Højfeldt et al., 2020). 
Although habitual protein intake was not evaluated in the 
current study, population-level data indicate that, on av-
erage, older individuals consume less dietary protein than 
young individuals (88–87g vs. 81–71g or 1.3 g/kg vs. 1.0 g/
kg) (Berryman et al., 2018; Traylor et al., 2018). In the con-
text of the current study, this would amount to ~ 97g of pro-
tein for the average young individual and ~ 81g of protein 
for the average older individual, a difference that has been 
shown to impact muscle protein synthesis in older adults 
(Dillon et al., 2009). These data, in combination with those 
of the current study, support the notion that the basis for 
age-related loss of body protein is related to the inefficient 
handling of dietary protein, not changes in basal, protein 
kinetics or impaired synthetic capacity. Inefficient handling 
of dietary protein may be due to a number of factors, in-
cluding impaired protein digestion and amino acid absorp-
tion, and greater first-pass splanchnic uptake with aging 
(Boirie et al., 1997; Burd et al., 2013; Volpi et al., 1999). 
All of these changes would translate to decreased postpran-
dial availability of exogenous amino acids with aging. In 
contrast, higher protein intakes are often associated with 
greater protein turnover. Future research with detailed 
characterization or control of dietary intake is needed to 
elucidate this theory. Finally, of significance, inter-individ-
ual variability in whole-body kinetics is likely very high. 
Results from Henderson et al. fall within the variability (1 
SD) of the current study, suggesting that data from both 
studies may reflect high population variability, especially 
in older adults. Future studies that control or account for 
lifestyle factors are needed to establish these differences. 
Despite differences between the current study and those of 
Henderson et al., both studies did find greater turnover and 
potentially higher FSR in women compared to men, regard-
less of age. Reason for sex differences in protein and mus-
cle kinetics have not been elucidated, but are commonly 
attributed to the effects of sex hormones, with estrogen 
suggested to have protective effects (Hansen, 2018; Smith 

et al., 2008). However, the presence of differences between 
men and women, both at pre and postmenopausal stages 
suggests other factors beyond hormones, such as lifestyle or 
genetics, may also have an effect (Henderson et al., 2009). 
Women have been shown to consume less protein on av-
erage than men, both at young (70g vs. 110g) and older 
ages (69g vs. 92g) (Berryman et al., 2018). Although there 
was no difference in net balance, higher protein turnover 
in women may reflect a similar mechanism of protein re-
cycling observed in older adults, but further research is 
needed to understand sex-related differences in protein ki-
netics, especially in the context of aging.

It is important to consider that the current study focuses 
on kinetic differences in the basal state. The imbalance be-
tween PS and PB in the fasted state is small, making it dif-
ficult to fully elucidate the impact of these differences over 
time. The fasted state also only represents approximately 
1/3 of the daily kinetic response, whereas the repeated 
kinetic responses following nutrient/protein ingestion are 
likely have a greater impact on overall protein balance over 
time. These results do suggest that basal whole-body pro-
tein kinetics may change with age and sex. These changes 
may be a compensatory mechanism for less-optimal pro-
tein intake and/or a reduced efficiency in nonmuscle pro-
tein metabolic processes, such as digestion and absorption 
kinetics in older individuals requiring greater retention and 
more efficient utilization of amino acids. Further research 
is needed to confirm this theory. The considerable research 
demonstrating anabolic-resistance in older individuals 
indicates a reduced protein intake, digestion, and utiliza-
tion of protein compared to young individuals. Therefore, 
given the realities of differences in nutritional intake and 
physiological efficiency, it would be advantageous to alter 
protein turnover to utilize endogenous amino acids as ef-
ficiently as possible. This is consistent with the require-
ment for higher protein intake to maximally stimulate MPS 
(Burd et  al.,  2013; Moore et  al.,  2015) and greater first-
pass splanchnic uptake in older adults (Volpi et al., 1999). 
Further research into these mechanisms may be insightful 
for continuing to understand the mechanisms associated 
with age-related muscle loss.
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