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Abstract

Brain aging is a complex process that affects everything from the subcellular to the organ 

level, begins early in life, and accelerates with age. Morphologically, brain aging is primarily 

characterized by brain volume loss, cortical thinning, white matter degradation, loss of 

gyrification, and ventricular enlargement. Pathophysiologically, brain aging is associated with 

neuron cell shrinking, dendritic degeneration, demyelination, small vessel disease, metabolic 

slowing, microglial activation, and the formation of white matter lesions. In recent years, 

the mechanics community has demonstrated increasing interest in modeling the brain’s 

(bio)mechanical behavior and uses constitutive modeling to predict shape changes of anatomically 

accurate finite element brain models in health and disease. Here, we pursue two objectives. First, 

we review existing imaging-based data on white and gray matter atrophy rates and organ-level 

aging patterns. This data is required to calibrate and validate constitutive brain models. Second, we 

review the most critical cell- and tissue-level aging mechanisms that drive white and gray matter 

changes. We focuse on aging mechanisms that ultimately manifest as organ-level shape changes 

based on the idea that the integration of imaging and mechanical modeling may help identify the 

tipping point when normal aging ends and pathological neurodegeneration begins.
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1. Introduction

Aging and pathology are associated with significant changes of the brain’s intricate 

microstructure and results in cognitive decline (Rodrigue and Kennedy, 2011). Brain 

morphology, i.e., brain shape and anatomy, evolves with age and most commonly undergoes 

significant atrophy, i.e., cerebral tissue volume loss (Nyberg and Wåhlin, 2020). These 

changes are accompanied, if not directly the cause, for cognitive deficits that include 
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memory loss (Murman, 2015; Fjell et al., 2016), reduced motor performance (Seidler 

et al., 2010), and behavior (Park and Reuter-Lorenz, 2009). Due to extensive efforts in 

large population medical imaging studies, such as the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) (Jack et al., 2008b) or the Rotterdam Study (Vinke et al., 2018), structural 

features of healthy and accelerated brain aging have been identified (Lockhart and DeCarli, 

2014; Fox and Schott, 2004). Cross-sectional studies with healthy, or cognitively normal, 

elderly and subjects with mild cognitive impairment or Alzheimer’s disease (AD), have 

shown that neurodegenerative diseases accelerate aging mechanisms and lead to more 

pronounced structural changes of the brain (Coupé et al., 2019). The trajectories of cerebral 

atrophy in healthy aging and dementia are subject to extensive investigation because a 

clear distinction between healthy and abnormal changes remains challenging (Fjell et al., 

2014b) and early detection of abnormal shape changes may serve as a sensitive biomarker 

for accelerated aging due to the onset of neurodegeneration (Pini et al., 2016). A major 

limitation for early detection, however, is that each brain looks different such that it is 

challenging to identify subtle changes or abnormal developments from a single or even 

longitudinal magnetic resonance images (MRI) (Scahill et al., 2003; Fjell et al., 2009c, 

2013).

Thus far, age- and disease-related brain shape changes have been extensively studied by 

the neuroimaging community (Oschwald et al., 2020; Fjell and Walhovd, 2010). The 

development of widely accepted brain atlases and the corresponding tools to register any 

brain scan to such atlases have enabled direct comparison of shape features from cross­

sectional data (Fischl et al., 2002). These features include volume fractions of individual 

brain regions (Ge et al., 2002), cortical thickness (Madan and Kensinger, 2016), sulcal 

depth (Rettmann et al., 2006), loss of gyrification (Madan and Kensinger, 2016; Rettmann 

et al., 2006), and ventricular volume (Yue et al., 1997; Coffey et al., 2001b). While cross­

sectional data allows to detect pervasive dominant trends in respective cohorts, the data on 

personalized brain shape changes remains understudied (Fjell and Walhovd, 2010; Oschwald 

et al., 2020). Longitudinal image data requires registration of images from consecutive brain 

scans and physics-based models for interpretation of respective output data (Reuter et al., 

2012; Storsve et al., 2014; Wang et al., 2021). While several such registration methods exist 

(Fjell et al., 2009c; Fjell and Walhovd, 2010; Resnick et al., 2003), it remains challenging 

to adequately evaluate a subject’s state of health from the subtle changes detected in scans 

taken during a typically 3–7 year time frame (Reuter et al., 2012).

The progressive microstructural degeneration of white matter (WM) and gray matter (GM) 

tissue leads to tissue softening (Murphy et al., 2011; Kalra et al., 2019; Hiscox et al., 2021), 

tissue shrinking (Resnick et al., 2003), and tissue damage associated with such mechanisms 

as small vessel disease (Wardlaw et al., 2013; Makedonov et al., 2013), demyelination (Liu 

et al., 2017; Peters, 2002), and leakage of functional barriers such as the ventricular wall 

(Jiménez et al., 2014). Initially, these aging mechanisms occur predominantly on the cell 

level due to slowing metabolic activity and ischemia (Sikora et al., 2021), but then gradually 

manifest as tissue and ultimately organ-level alterations of brain shape (Fox and Schott, 

2004; Apostolova et al., 2012). The field of mechanics is suitable to provide a constitutive 

modeling framework to describe and predict the spatiotemporal evolution of atrophy 

patterns due to microstructural changes during aging. As such, multiphysics modeling 
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with the finite element method, i.e., the coupling of biology-driven aging mechanisms 

and structural changes, would allow to simulate healthy and pathological brain shape 

changes in order to identify abnormal atrophy patterns (Blinkouskaya and Weickenmeier, 

2021). To date, however, only few studies have aimed at modeling the mechanical, or 

mechanobiological, response of the aging brain; most frequently, a continuum approach 

is used to describe tissue-level changes such as volume loss or the coupling between 

neurodegeneration, observed in Alzheimer’s disease for example, and cerebral atrophy 

(Harris et al., 2019; Schäfer et al., 2019; Budday and Kuhl, 2020; Weickenmeier et al., 

2018; Blinkouskaya and Weickenmeier, 2021). Multiphysics models will provide new 

insight into the multiscale mechanisms of brain aging and reveal critical features, i.e., 

atrophy patterns, discerning accumulation of waste products, advanced cell- and tissue-level 

damage, that separate normal from accelerated brain aging. Moreover, the calibration and 

validation of such computer models and biomarkers will be made possible by increasingly 

available longitudinal imaging data and significantly improve the predictive capabilities of 

personalized brain aging simulations.

The present review is motivated by the development of advanced constitutive multiphysics 

models of age-related organ-level brain changes that relate cell- and tissue-level aging 

mechanisms to organ-level brain shape changes visible in medical imaging. We, therefore, 

split this review between two major objectives:

• The first objective is to provide an overview of the most prominent structural 

features associated with cerebral atrophy and how they change with age. 

In Section 3 we summarize quantitative changes reported in literature and 

differentiate between global brain volume changes, gray matter shrinking, 

cortical thinning, white matter volume changes, ventricular enlargement, and 

brain folding changes.

• The second objective is to present an overview of the most frequently observed 

cell- and tissue-level brain aging mechanisms that ultimately manifest as the 

previously discussed organ-level shape changes. To that end, we differentiate 

between gray matter mechanisms (Section 4), white matter mechanisms (Section 

5), ventricular mechanisms (Section 6), and vascular changes (Section 7).

We begin with Section 2 by reviewing the most frequently used neuroimaging tools to 

visualize and quantify structural changes of the brain.

2. Common neuroimaging tools and imaging sequences used to quantify 

aging-related brain changes

The development of neuroimaging tools, such as various MRI sequences and atlas-based 

medical image analysis techniques, has transformed our ability to study the brain by 

providing quantitative methods for in vivo visualization of both brain structure and 

function (Fjell et al., 2009a). Especially with respect to exploring age-related brain 

changes, the ability to perform repeated measurements holds the promise to uncover subtle 

morphological changes from longitudinal imaging data (Resnick et al., 2003; Lockhart 

and DeCarli, 2014). MRI is the most commonly used imaging technique to visualize 
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brain structure at increasingly high resolution. Most cross-sectional studies are based on 

T1-weighted MRI which provides enhanced contrast between GM, WM, and cerebrospinal 

fluid (CSF) (Lockhart and DeCarli, 2014). This image type allows to reliably evaluate 

volume, cortical thickness, degree of folding, and other shape features for the whole brain 

(Fischl and Dale, 2000; Gautam et al., 2015; Lemieux et al., 1999). Another frequently used 

MRI sequence is T2-weighted fluid attenuated inversion recovery, or FLAIR (Lockhart and 

DeCarli, 2014). In FLAIR, CSF signal is suppressed such that cerebral WM abnormalities 

appear as bright hyperintensities, or also referred to as white matter hyperintensities 

(WMHs) (Bhagat and Beaulieu, 2004; Kim, 1995). Diffusion tensor imaging (DTI) is used 

to analyze WM axon fibers, tissue anisotropy, and diffusivity by detecting the amount 

and direction of myelin water movement in extracellular and intracellular WM spaces 

(Sullivan and Pfefferbaum, 2006). In extracellular spaces fluid diffuses between fibers and 

in intracellular spaces fluid diffuses in the axoplasm (Sullivan and Pfefferbaum, 2006). 

DTI can detect deviations in these two compartments which would indicate abnormal 

WM degradation (Sullivan and Pfefferbaum, 2006). Functional MRI (fMRI) uses a specific 

T2-weighted sequence that is sensitive to the level of hemoglobin oxygenation in cerebral 

blood (Jezzard and Ramsey, 2003). This imaging sequence allows to detect neuronal activity 

during resting state or task performance, and is the primary technique to analyze cognitive 

performance (Jezzard and Ramsey, 2003). Lastly, positron emission tomography (PET) is a 

functional imaging technique that visualizes and measures cerebral blood flow, metabolism, 

regional chemical composition, absorption, and the presence of targeted disease biomarkers 

(Villemagne et al., 2021). Following the injection of a protein-specific tracer, PET is used 

to quantify the standardized uptake value which measures the concentration of the tracer 

that has adhered to its target (Phelps and Mazziotta, 1985). The quantification of biomarker 

concentrations, such as amyloid beta and tau, the two most prominent proteins in aging and 

neurodegenerative diseases, allows to uncover spatial and temporal brain changes and their 

impact on cognitive decline (Lowe et al., 2018).

Structural MRI, functional MRI, and PET imaging inform about anatomy, physiology, and 

biochemistry of the brain, respectively. Integration of these individual imaging sequences 

enables a multiphysics approach to characterizing brain changes in aging and help uncover 

spatiotemporal progression patterns of primary aging mechanisms. In one such effort, 

Fagan et al. combined PET imaging of brain amyloid load with a CSF measurement 

of beta-amyloid to investigate the potential use of those measures as a biomarker for 

pre-clinical AD (Fagan et al., 2006). Jack et al. investigated how biochemical changes, 

such as amyloid deposition, affect brain atrophy using both PET and MRI (Jack et al., 

2008a). They concluded that both imaging sequences provided complementary information 

and deliver better predictive outcomes than using either method in isolation. In conclusion, 

neuroimaging tools open multiple avenues to analyze the aging brain. The combination of 

longitudinal imaging and computational modeling of aging will deliver reliable biomarkers 

for early diagnosis of abnormal aging patterns.

3. Morphological changes associated with healthy brain aging

Aging changes brain morphology in both healthy and pathological, or accelerated, aging. 

Despite each brain’s unique morphology, cross sectional studies have identified hallmark 
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features of age-related changes that follow a persistent trend. Fig. 1 shows the most 

prevalent features of an aged brain which are GM and WM volume loss (Ge et al., 2002), 

cortical thinning (Madan and Kensinger, 2016), sulcal widening (Kochunov et al., 2005; 

Liu et al., 2013b), loss of gyrification (Madan and Kensinger, 2016; Rettmann et al., 2006), 

increased sulcal depth (Rettmann et al., 2006), and ventricular enlargement (Yue et al., 1997; 

Coffey et al., 2001b). The effect of aging on the brain’s morphology is highly heterogeneous 

and exhibits significant spatial and temporal variation (Fjell and Walhovd, 2010). In the 

following sections we will discuss GM volume changes, cortical thinning, brain folding 

changes, WM volume loss, and ventricular enlargement. We review quantitative changes 

presented in literature but would like to point out that these values vary significantly due 

to patient age range, state of health, MRI settings, and analysis approach. As such, a direct 

comparison is practically impossible; instead, we understand the following overview of 

values as a reference point for the comparison and calibration of future constitutive cerebral 

atrophy models (Blinkouskaya and Weickenmeier, 2021).

3.1. Global volume changes

The review of 56 longitudinal studies of healthy brain volume changes across the lifespan 

revealed an annual growth of 1% at nine years of age which gradually turns into atrophy at 

13 years of age; early adulthood is described as a period of insignificant volume growth or 

no change in volume; after 35 years of age annual total brain volume loss is found to be 

0.2%, which further accelerates and increases to 0.5% by the age of 60, showing a steady 

volume loss of more than 0.5%/year after that age (Hedman et al., 2012). Cerebral atrophy 

rates in the elderly are frequently reported on the order of 0.2–0.5%/year (Scahill et al., 

2003; Fotenos et al., 2005; Enzinger et al., 2005; Fjell et al., 2009c; Coupé et al., 2019). 

As such, Fotenos et al., reported longitudinal global brain volume decline in non-demented 

individuals to be around 0.45%/year (Fotenos et al., 2005). For the cross-sectional group in 

the same study this rate is reported to be from 0.31% to 0.46% for the 65–95 age range. 

Jack et al. compared annual rates of volume decline for healthy individuals and individuals 

with AD (Jack et al., 2004). They reported a median total brain volume loss of 0.4%/year in 

clinically healthy subjects and substantially higher rates in subjects with AD with an atrophy 

rate of 0.6–1.4%/year depending on disease severity. It is important to note, however, that 

values reported in literature vary substantially. Henneman et al., for example, observed total 

brain atrophy rates of 0.6 ± 0.6%/year in healthy subjects and 1.9 ± 0.9%/year in AD 

(Henneman et al., 2009); Josephs et al. measured total brain atrophy rates of 0.2%/year 

for healthy subjects and 1.4%/year for subjects with dementia (Josephs et al., 2008); and 

Fotenos et al. reported a strong linear, moderate quadratic pattern of total brain volume 

decline across the adult lifespan with later onset of WM than GM volume loss (Fotenos et 

al., 2005). In their cohort aged 60–95 healthy subjects observed a mean total brain volume 

atrophy rate of 0.45%/year; the same rate for individuals with mild AD was twice as high at 

about 0.98%/year (Fotenos et al., 2005).

A large cross-sectional study of 2200 participants aged 34–97 years provided one of the 

earliest comparisons of lobar brain volume loss during aging (DeCarli et al., 2005b). The 

frontal lobe shrunk most with about 12% volume loss across the cohort. The temporal 

lobe atrophied by about 9%. The occipital and parietal lobes were observed to undergo a 

Blinkouskaya et al. Page 5

Mech Ageing Dev. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



non-significant age-related volume change (DeCarli et al., 2005b) In a longitudinal study 

with a mean subject age of 75.6 (59.8–90.2) years and two one year follow up studies, Fjell 

et al. observed an annual decline of about 0.5% in prefrontal cortices and the temporal lobe 

after year one, while atrophy exceeded 1.0% for most regions (Fjell et al., 2009c).

3.2. Gray matter volume changes

Life-long GM volume changes strongly correlate with total brain volume decline and aging. 

GM atrophy rates have shown potential sex differences; while Fotenos et al. report no 

difference (Fotenos et al., 2005), Taki et al. observed an annual GM volume decline of 0.424 

± 0.017% in men and 0.298 ± 0.013% in women (Taki et al., 2011). Gunning-Dixon et al. 

measured a GM volume decrease by 14% in persons aged 30–90 years (Gunning-Dixon 

et al., 2009). Anderson et al. proposed GM atrophy rate as a biomarker to differentiate 

between healthy aging and disease progression in AD (Anderson et al., 2012). In a one year 

longitudinal follow up study, the observed mean annual GM atrophy rates were reported to 

be 0.49 ± 1.19% for healthy controls and 2.76 ± 1.64% for AD patients (Anderson et al., 

2012).

The hippocampus is of particular interest in assessing age-related changes in brain because 

of its role in memory and learning. Moreover, the hippocampus has been shown to be 

particularly vulnerable to aging and neurodegeneration (Geinisman et al., 1995). A number 

of works compared annual atrophy rates in hippocampus for healthy elderly individuals with 

patients at different stages of dementia. In a large cross-sectional cohort study of healthy 

elderly by Raz et al., an annual hippocampus volume loss of 0.35% was observed; strikingly, 

an accompanying study of longitudinal changes within the same cohort revealed a two-times 

higher atrophy rate of 0.79% (Raz et al., 2005). Henneman et al. reported atrophy rates 

of 2.2 ± 1.4%/year in healthy subjects, 3.8 ± 1.2%/year in mild cognitive impairment, 

and 4.0 ± 1.2%/year in AD (Henneman et al., 2009). In a review article on hippocampus 

volume changes, Barnes et al. reported an annualized hippocampal atrophy rate of 1.41%/

year in healthy adults and 4.66%/year in AD patients (Barnes et al., 2009). Similarly to 

the hippocampus, atrophy of the entorhinal cortex is considered a valuable indicator for 

neurodegenerative diseases (Raz et al., 2005); as such, the entorhinal cortex shrinks by 

0.11%/year based on cross-sectional data and by 0.32%/year based on longitudinal image 

data. Other studies reported an annual atrophy of the entorhinal cortex to be in the range of 

0.3–2.4% (Du et al., 2003; Coupé et al., 2019). Narvacan et al. observed that substructures 

of the limbic system decline faster, e.g., 0.4%/year for the hippocampus and 0.7%/year 

for the thalamus, than basal ganglia structures, e.g., 0.2%/year in the caudate (Narvacan et 

al., 2017). Their accompanying analysis of longitudinal data, showed that global volume 

loss ranged from 0.5%/year to 1.5%/year; in subjects aged 46–68 year the hippocampus 

shrunk by 0.6%/year and the nucleus accumbens, responsible for cognitive processing of 

motor function, by 0.9%/year; and between the ages 69–83, the hippocampus and amygdala 

showed an accelerated rate of decline of 1.5%/year and 1.2%/year, respectively (Narvacan et 

al., 2017).

Blinkouskaya et al. Page 6

Mech Ageing Dev. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Cortical thinning

Cortical thinning and the decrease of surface area are two hallmark features of brain aging. 

Consistently across many cross-sectional studies, the cortex gradually thins with age across 

all brain regions and is more correlated with age than surface area changes (Lemaitre et 

al., 2012; van Velsen et al., 2013; Fjell et al., 2014a). Thinning has also been shown to 

correlate with cognitive decline (Alegret et al., 2010) and disturbance in memory function 

(Fjell and Walhovd, 2010), such that it holds the promise to serve as a key biomarker 

for age-related cognitive decline. Cortical thickness is most frequently calculated from 

MRI using Free-Surfer (Fischl and Dale, 2000). This technique is well established and has 

facilitated a large body of work on comparative morphology. However, results on trajectories 

of cortical thickness changes throughout lifetime are contradictory as highlighted recently 

in the review by Walhovd et al. (Walhovd et al., 2016). A minor limitation is that today’s 

spatial resolution of MRI is insufficient to visualize the microstructural changes causing 

cortical thinning.

Total brain surface area decreases by 3.68 cm2/year and average cortical thickness decreases 

by 0.004 mm/year (Lemaitre et al., 2012). Another longitudinal study of 297 healthy 

individuals aged 23–87, reported a mean annual decrease of 0.19%/year for cortical area, 

a mean cortical volume loss of 0.51%/year, and a mean cortical thickness decrease of 

0.35 mm/year (Storsve et al., 2014). Region-wise cortical thickness is the most vulnerable 

to age-related atrophy in the prefrontal cortex (Lemaitre et al., 2012) and remains nearly 

constant in the entorhinal and temporal regions until 60 years of age (Hasan et al., 2016). 

Cortical thickness of the anterior cingulate cortex has an attenuated “U”-shape relationship 

with age (Sowell et al., 2007) and has been shown to have an extensive impact on superior 

and inferior frontal areas, medial and superior temporal areas, and supramarginal cortices 

based on a study of 684 subjects aged 18–94 (Fjell et al., 2009b; Westlye et al., 2010).

3.4. White matter volume changes

Following an initial focus of the neuroimaging community on the study of cortical and 

subcortical GM changes, we know today that WM integrity plays a fundamental role 

in age-related cognitive decline (Gunning-Dixon and Raz, 2000). WM mainly consists 

of myelinated and unmyelinated long distance axonal projections from neurons that are 

embedded in a dense microglial scaffold. These microglial cells, which include astrocytes, 

myelin depositing oligodendrocytes, and progenitor cells, regulate neural activity and 

nutrient supply (Béchade et al., 2013; Gibson et al., 2014). Over the course of life, WM 

volume changes very differently than GM volume. More specifically, WM volume increases 

well into adulthood and peaks at about 40–50 years of age (Liu et al., 2017); it then rapidly 

decreases in the later stages of life (Courchesne et al., 2000; Walhovd et al., 2005; Westlye 

et al., 2010; Salat et al., 2009). Despite its delayed onset in comparison to GM, WM volume 

loss typically exceeds GM volume loss in the elderly and shows a volume reduction of 

26% (Gunning-Dixon et al., 2009). It is estimated that WM volume reduction at 70 years 

ranges from 5.6% to 6.4% and at 80 years rapidly decrease to anywhere between 21.6% 

and 25.0% (Allen et al., 2005). Using atlas-based registration for cross-sectional comparison 

of individual regions of interest, annual WM volume loss in elderly was found to range 

from 0.77% in subjects with mean age 70.6 ± 6.1 years (Driscoll et al., 2009) to 0.88% in 
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subjects aged 71.4 ± 0.9 years (Thompson et al., 2003). These WM volume changes are not 

homogeneous across the brain, but are most prominent in the frontal lobe (Salat et al., 2009). 

In a cohort aged 59–85 years, the annual atrophy rate was 2.1% in the frontal, 1.1% in the 

parietal, 1.0% in the temporal, and 0.8% in the occipital lobe (Resnick et al., 2003).

Cross-sectional DTI-based studies have shown that WM axon integrity is compromised in 

the aged brain which leads to a decreasing fractional anisotropy (FA), i.e., the deterioration 

of myelin sheaths that are wrapped around axons, thus increasing the diffusivity of free 

myelin water through the tissue. In the first four decades of life, FA and diffusivity tend 

to increase due to continued deposition of myelin (Lebel and Beaulieu, 2011). At later 

stages, however, this trend reverses. Frontal areas appear to be affected the most while 

temporal and posterior WM regions undergo less drastic changes (Abe et al., 2008; Salat 

et al., 2005; Lebel et al., 2012). This anterior-posterior gradient has also been observed in 

the corpus callosum (Lebel et al., 2012). It has also been reported that low FA or high 

diffusivity correlate with poor cognitive and motor performance in healthy aging (Sullivan et 

al., 2010). In a cross-sectional study of 430 healthy subjects ranging age 8–85 years, Westlye 

et al. assessed both WM volume loss and DTI parameters and observed inverted “U”-shape 

trajectories for WM volume loss and FA (Westlye et al., 2010). WM volume peaked at 

50 years and FA peaked at 30 years of age; both measures then declined slowly into late 

adulthood followed by an accelerating decrease in senescence (Westlye et al., 2010).

3.5. Ventricular enlargement

The ventricular brain system is a network of communicating cavities that encloses and 

circulates CSF (Shook et al., 2014). The normal aging process can induce alterations in 

CSF circulation and, thus, impacting neuronal performance (Redzic et al., 2005; Johanson 

et al., 2008). Excessive accumulation of CSF in the ventricles in elderly individuals without 

neurological issues leads to ventricular enlargement and, consequently, induces compression 

of the brain parenchyma (Creasey and Rapoport, 1985; Drayer, 1988; Ambarki et al., 

2010; Todd et al., 2018; Meunier et al., 2020). It has been shown that ventricular total 

intracranial volume fraction may increase by a factor five over the course of life which 

potentially correlates with a doubling in ventricular volume (Coupé et al., 2019). This 

leads to the compression of blood vessels, glial activation, and stretching and destruction of 

periventricular axons that lead to functional and neuropsychological abnormalities (Attier­

Zmudka et al., 2019; Meunier et al., 2020). Through the analysis of T2-weighted MRI 

scans of non-demented, stroke-free subjects aged 65–84 years, Breteler et al. observed 

that increased ventricular volume correlates with significantly decreased performance on 

neuropsychological tests (Breteler et al., 1994). Vascular changes, the degeneration of 

cortical neurons, the subsequent degeneration of axons, and the loss of cerebral WM 

directly drives age-related ventricular enlargement (Breteler et al., 1994). Quantitative 

MRI morphometry has uncovered the relationship between cognitive aging and age-related 

changes in the size of the cerebral hemispheres and CSF spaces in elderly volunteers (ages 

66–90 years) (Carmichael et al., 2007). Although cerebral atrophy accelerates at age 50 and 

above, the actual starting age may vary from subject to subject (Nagata et al., 1987). In later 

stages of life, CSF volume expansion is one of the most visible changes in MRI (Coffey, 

2000).
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Size of the lateral and third ventricles are related to poorer performance on visual 

delayed memory, attention, and psychomotor speed (Coffey et al., 2001a). Common 

neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, vascular 

dementia, progressive supranuclear palsy, and idiopathic chronic hydrocephalus, have been 

linked to accelerated ventricular enlargement (Missori and Currà, 2015; Apostolova et 

al., 2012). Ventricle size may therefore serve as a biomarker for early abnormal brain 

changes (Ott et al., 2010). Ventricular volume is typically assessed via morphometry (Penn 

et al., 1978; Gado et al., 1982; Nagata et al., 1987; Breteler et al., 1994). Nagata et al. 

observed that the CSF volume remains nearly constant until the age of 50 years and then 

gradually increases afterwards (Nagata et al., 1987). More recently, Irimia et al. reported 

averaged CSF volumes of 159 cm3 at age 20, 266 cm3 at age 45, and 365 cm3 at age 

70 (Irimia, 2021). Strikingly, ventricular CSF volume increases by 0.3 mL/year whereas 

cortical CSF increases by 0.6 mL/year (Pfefferbaum et al., 1994). Ventricular CSF volume 

starts to increase around age 30 as a result of early GM atrophy associated with cell 

shrinkage and cellular compacting (Pfefferbaum et al., 1994). Resnick et al. observed from a 

cross-sectional and a longitudinal neuroimaging study of non-demented participants aged 

59–85 years, that ventricular volumes is significantly larger in men in comparison to 

women, and that GM and WM volumes were significantly smaller in men in comparison 

to women (Resnick et al., 2000). Their longitudinal analysis also revealed a ventricular 

volume increase of on average 1.5 cm3/year while the cross-sectional findings provided 

an increase of 1.3cm3/year (Resnick et al., 2000). Similarly, Scahill et al. observed an 

average ventricular volume expansion rate of 0.65 cm3/year, which they link to brain 

atrophy, changes in CSF dynamics, and the distribution of CSF in the ventricular and sulcal 

spaces (Scahill et al., 2003). While most studies report total ventricular volume changes, 

Lundervold et al. observed a left-right ventricle expansion asymmetry and reported an 

annual 2.9% increase of the left and 3.1% of the right ventricular volume (Lundervold et al., 

2019).

3.6. Brain folding changes

The brain’s highly folded morphology is one of its many fascinating features. Organ-level 

properties of these folds, such as position, orientation, and growth during development, are 

very consistent among individuals (Welker, 1990; Borrell and Reillo, 2012; Wang et al., 

2021) and those similarities greatly exceed inter-individual variations (White et al., 1997). 

There are two frequently used ways to describe brain folding: the gyrification index and the 

depth and spacing between sulci (Madan, 2021). These measures can be derived from MRI 

using Free-Surfer (Fischl, 2012).

3.6.1. Gyrification index—Gyrification is the process of brain folding. Quantification 

of gyrification was first developed by Elias and Schwartz using a stereological approach 

(Elias and Schwartz, 1969). Zilles et al. suggested the use of the gyrification index (GI), i.e., 

the ratio between the concise outline of the pial surface and the smoothed outer contour of 

the cortical layer (Zilles et al., 1988). This measure is often reported for individual coronal 

sections (Madan, 2021) or as a local or global measure (Schaer et al., 2008; Lamballais 

et al., 2020). A small GI corresponds to a smoother brain with a less profound folding 

pattern, while a large GI corresponds to a highly folded section. The consistency of lobes 
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and folds across individuals suggests that gyrification is not simply a random mechanical 

process (Ronan and Fletcher, 2015). Theories of brain gyrification are mostly concentrated 

on brain development at young age and can be split into two main theories: folding caused 

by growth processes in cortical development and folding based on mechanical tension in 

axons (Zilles et al., 2013; Wang et al., 2020). Examples of that could be theories based on 

a tension aroused from restricted space in the skull (Mota and Herculano-Houzel, 2012), 

mechanical tension exerted by fiber tracts (Van Essen, 1997), axonal pushing (Nie et al., 

2012), differential growth caused by stress (Bayly et al., 2013), protein regulated radial 

and tangential expansion (Stahl et al., 2013), and minimization of effective free energy 

associated with cortical shape (Mota and Herculano-Houzel, 2015).

The degree of gyrification varies across the brain with highest GI values measured in the 

temporal and parietal lobes (Zilles et al., 1988; Hogstrom et al., 2013). Post-mortem studies 

(Armstrong et al., 1995; Zilles et al., 2013) and longitudinal imaging studies (Li et al., 2014) 

have shown that gyrification increases after birth up to adulthood and linearly decreases 

subsequently (Magnotta et al., 1999; Hogstrom et al., 2013). In a cross-sectional study on 

lifespan changes from age 4–83 years, Cao et al. confirmed these findings and showed that 

the GI trajectory follows a logarithmic function of age with a decrease of the GI starting as 

early as four years old (Cao et al., 2017). Other studies suggest that gyrification continues to 

increase into adolescence (Blanton et al., 2001) and into the thirties for the entorhinal cortex 

(Hasan et al., 2016). Lamballais et al. studied late life gyrification with participants mean 

age of 63.5 years (age range: 45.7–97.9 years) and found a mean annual decline of the GI 

of about 0.0021 (Lamballais et al., 2020). Madan and Kensinger evaluated structural MRI of 

adults aged 20–86 and observed a global gyrification decrease of around 0.035 per decade 

(Madan and Kensinger, 2016). They also reported, however, that their cross-sectional data 

exhibited a large amount of age-unrelated variability, indicating that longitudinal datasets 

are prudent for estimating age-related GI changes. In a recent longitudinal study with at 

least two MRI from 280 healthy adults aged 45–92, Madan observed a decreasing slope 

of 0.04291 per decade (Madan, 2020). They also showed that there is no consistent anterior­

posterior gradient with respect to changes of the GI, but much rather reported a uniform 

decrease of the GI across all regions with a maximum decline observed in parietal lobe.

3.6.2. Sulcal morphology—Sulcal morphology is automatically estimated from MRI in 

a similar manner to GI. A number of studies have revealed its relation with age (Kochunov 

et al., 2005; Rettmann et al., 2006; Liu et al., 2010, 2013a; Li et al., 2011; Shen et al., 2018). 

A cross-sectional study with participants aged 20–82 years showed that the average sulcal 

width increases at an approximate rate of 0.7 mm/decade, while the average sulcal depth 

decreases at an approximate rate of 0.4 mm/decade (Kochunov et al., 2005). A study with 

two groups of participants consisting of middle aged adults and older healthy individuals 

found that sulci were, on average, 17.3% wider in the elderly with the largest difference 

in the left superior frontal sulcus (Jin et al., 2018). Liu et al. observed the biggest increase 

in superior frontal sulcus in a group of older non-demented individuals (Liu et al., 2010). 

A longitudinal study of 35 subjects aged 59–84 years reported the decrease in surface area 

and sulcal depth within a four-year period between scans (Rettmann et al., 2006). A larger 

longitudinal study with 132 participants followed over a seven year period found the largest 
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rate of increase in fold opening in the superior frontal sulcus with 0.131 mm/year (Shen 

et al., 2018). Furthermore, this rate appeared to be accelerated after age 80 years. Superior 

temporal sulci had comparatively low rates of fold opening with 0.035 mm/year for the 

left hemisphere and 0.085 mm/year for the right hemisphere. It has been shown, that sulcal 

width and depth mediated the effects of age on GI and accounted for 49.9% of its variability 

(Madan, 2020). Most of it was connected to sulcal depth (36.2%) and sulcal width explained 

less mediation (7.2%) with the remaining part associated with direct effect of age (10.6%). 

Overall, this study showed that sulci morphology is more strongly associated with age than 

GI (Madan, 2020).

4. Gray matter aging mechanisms

GM atrophy manifests as volume loss and cortical thinning. These changes are driven by 

microstructural changes on the molecular-, cell-, and tissue-level that are specific to the 

cortex. The GM layer consists of neuronal cell bodies and blood vessels which account for 

16% of the cortex, axons and dendrites each making up around 29%, and glial cells and 

extracellular space occupying the rest of the GM layer (Braitenberg and Schüz, 2013). Here, 

we differentiate between aging mechanisms on the cellular and the molecular level.

For several decades, neuron cell death was considered to be the leading cause of cortical 

atrophy in healthy aging (Pakkenberg and Gundersen, 1997; Šimić et al., 1997; Fjell and 

Walhovd, 2010). This notion has been increasingly challenged due to growing evidence that 

GM volume loss is caused by cell shrinkage and a degeneration of the dendritic network 

(Haug et al., 1984; Gómez-Isla et al., 1996; Pakkenberg et al., 2003; Pelvig et al., 2008). 

In fact, the total number of neurons is estimated to decrease by 2–4% which may account 

for only up to 10% of overall GM volume loss (von Bartheld, 2018). Instead, a decrease in 

neuronal body size, degeneration of neuropil, and de-arborization of the dendritic network, 

and resulting synaptic loss are the driving forces behind cortical changes in the aging brain 

(Esiri, 2007; Fjell and Walhovd, 2010). Especially neurons with particularly large cell bodies 

experience substantial volume loss due to gradual metabolic slowing and mitochondrial 

dysfunction (Castelli et al., 2019). Dendritic arborization plays a central role in neuronal 

connectivity since spines are the principal sites of signal transmission between neurons 

(Dickstein et al., 2013). Loss of spines or decay of the dendritic network are likely to affect 

synaptic events and lead to cognitive decline (Dickstein et al., 2007; Peters et al., 2008). In 

the healthy brain dendritic spines have an average length of 0.5–2 μm and contain excitatory 

synapses. Their density varies across the brain and within the dendritic tree itself. Their 

average density ranges from 1 to 10 spines per micrometer dendritic length (Sorra and 

Harris, 2000). It is estimated that the average number of dendritic spines in human brain 

exceeds 1013 (Nimchinsky et al., 2002). In aging primates, Duan et al. observed a loss of 

cortical neuronal dendritic spines of up to 43% on the apical surface and 27% on the basal 

surface (Duan et al., 2003). Regression in dendrites was also found in pyramidal neurons 

located in the prefrontal, pre-central, and superior temporal cortical regions in humans (De 

Brabander et al., 1998). A post-mortem study by Jacobs et al. revealed a significant decline 

of dendritic neuropil in older brains when compared to younger subjects. In the aged human 

brain, dendritic length decreased by 9–11% and spine density decreased nearly 50% (Jacobs 

et al., 1997). These dendritic changes are very location specific; as such, the spine density of 
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cerebellar Purkinje cells decreases with aging by 17% (Rogers et al., 1984); the caudate of 

the striatum loses around 50% of its spine density (Levine et al., 1986); and the substantia 

nigra undergoes severe spine loss in aged subjects (Cruz-Sanchez et al., 1995).

4.1. Cell level

On the cell level, glial cells, such as astrocytes and microglia, play a major role in aging 

mechanisms. Astrocytes fulfill a wide range of critical functions to maintain homeostasis 

through nutrient support and ion transport, mitigate neuroinflammation, and preserve the 

blood brain barrier (BBB) (Liddelow et al., 2017). In the aged brain, however, astrocytes 

lose their ability to carry out their normal functions and release a toxic factor which kills 

neurons and oligodendrocytes (Clarke et al., 2018). These two processes directly impact the 

integrity of GM tissue and contribute to the structural decline in vulnerable brain regions in 

normal aging.

Microglia, i.e., cells that act as macrophages, form the brain’s immune defense. The brain’s 

gradual metabolic slowing, clearance of waste products, and potential ischemia leads to a 

neuroinflamatory response (Norden and Godbout, 2013). It has been shown that a modest 

increase in the level of microglia activation may already impact cognition (Norden and 

Godbout, 2013) and exacerbate neurodegeneration in the aging brain (Lull and Block, 

2010). Strikingly, pharmacological suppression of a microglial response demonstrated a 

neuroprotective response (Mattson and Arumugam, 2018; Colonna and Butovsky, 2017).

4.2. Molecule level

Mitochondria play a crucial role in cellular energy metabolism, Ca2+ homeostasis, and 

apoptosis, i.e., the programmed cell death that occurs in both healthy and pathological 

conditions (Mattson and Arumugam, 2018; Yun and Finkel, 2014; Mattson, 2000). Studies 

on the influence of aging on mitochondria revealed a number of age-related changes such 

as mitochondrial enlargement or fragmentation and increased numbers of mitochondria with 

depolarized membranes (Grimm and Eckert, 2017), as well as impaired Ca2+ handling 

(Morozov et al., 2017; Lores-Arnaiz et al., 2016; Pandya et al., 2015). Dysregulation 

of Ca2+ in hippocampal mitochondria is a common observation in AD and other 

neurodegenerative diseases which leads to the generation of reactive oxygen species and 

activation of apoptosis (Calvo-Rodriguez and Bacskai, 2020). Accompanying oxidative 

stress in neurons as well as the progressive accumulation of misfolded amyloid beta plaques 

and neurofibrillary tangles impair healthy energy metabolism and ultimately disrupt protein 

function that controls subcellular calcium dynamics (Camandola and Mattson, 2011).

Aging typically causes an increasing inability to clear oxidatively damaged molecules 

and an overall low antioxidant protection level are common comorbidities during aging 

(Paul et al., 2007). For neuronal cells to maintain their structural and functional integrity 

throughout life, removal of dysfunctional molecules and processes such autophagy and 

the proteasomal degradation of proteins are vital (Mattson and Arumugam, 2018). It is 

commonly understood, however, that these mechanisms are compromised in the aging 

brain (Nixon, 2013). Keller et al., for example, showed that vulnerability to proteasome 

dysfunction during aging is region-specific because proteasome activity was significantly 
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decreased in hippocampus and cerebral cortex in comparison to the cerebellum and 

brainstem (Keller et al., 2000).

Aging neurons are characterized by the accumulation of dysfunctional and misfolded 

proteins (Mattson and Arumugam, 2018). Once misfolded, these proteins turn toxic 

and initiate a cascade that leads to their progressive recruitment of healthy neighboring 

proteins and the spreading of plaques and tangles (Jack and Holtzman, 2013). Amyloid 

beta primarily aggregates in the form of plaques in the extracellular space and 

hyperphosphorylated tau forms neurofibrillary tangles that accumulate intracellularly 

(Villemagne et al., 2018; Jucker and Walker, 2013). Amyloid beta and tau are characterized 

by complex interactions that occur in both healthy and diseased aging brains (Bloom, 2014; 

Jack et al., 2017; Knopman et al., 2021; Vogt et al., 2021b). It appears that an elevated 

presence of amyloid beta likely causes the onset of tauopathy which in turn accelerates 

amyloid beta plaque formation (Bloom, 2014; Knopman et al., 2021). Using PET imaging, 

it has been shown in cognitively unimpaired subjects with normal amyloid beta loads that 

aging leads to a minimal accumulation of tau in the temporal lobe; cognitively impaired 

subjects exhibit progressive tau accumulation in the temporal, parietal, and the frontal 

lobes with age and amyloid beta load (Bloom, 2014). While elevated amyloid beta is 

an important precursor for tau accumulation, cognitive decline appears to correlate with 

tau infiltration (Hanseeuw et al., 2019; Malpetti et al., 2020; Raj et al., 2012). Hence, 

significant effort has gone into the identification of spatiotemporal trajectories of tau 

spread (Lowe et al., 2018; Harrison et al., 2019). Given the predominant intracellular 

accumulation of tau, it has been shown that tau spreads along the axonal network and is 

able to appear in non-proximal regions of the brain (Braak and Braak, 1991; Raj et al., 

2012; Vinke et al., 2018). Vogel et al. recently identified four distinct trajectories that are 

associated with clinically observed AD progression patterns (Vogel et al., 2021a). These 

trajectories are characterized by repeatedly observed spatial pathways which include two 

frequently observed limbic-predominant and medial temporal lobe-sparing patterns as well 

as a posterior and lateral temporal pattern linked to atypical clinical variants of AD. By 

adapting initial seeding locations and incorporating secondary seeding locations, Vogel et 

al. demonstrated that spreading along the corticolimbic network follows various pathways 

that reproduce PET-based patterns (Vogel et al., 2021a). Our understanding of AD biomarker 

progression will continue to improve as more longitudinal imaging data becomes available.

5. White matter aging mechanisms

WM changes in the aging brain are characterized by atrophy (Lemaître et al., 2005; Liu et 

al., 2017), WM tract disruption (Shenkin et al., 2005; Coelho et al., 2021), demyelination 

(Marner et al., 2003; Faizy et al., 2018), vascular impairment (Kalaria, 2010), and increased 

inflammation (Raj et al., 2017). Fig. 2 shows a schematic summary of the most prevalent 

WM aging mechanisms that lead to the tissue-level morphological changes discussed in 

Section 3.4. The majority of the WM volume is occupied by myelinated axons (~60%), 

while the extracellular space accounts for about 20%, blood vessels for less than 3%, and the 

rest of the volume is filled by glial cells (Duval et al., 2016). Age-related WM degeneration 

has been linked to behavioral changes and cognitive impairment (Madden et al., 2008; 

Bennett and Madden, 2014). In the following, we will review WM aging mechanisms related 
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to axonal architecture, demyelination, and WMHs. While structural imaging methods are 

used to quantify organ-level morphological changes, DTI shows increased sensitivity for 

detecting age-related microstructural alternations in WM (Maillard et al., 2019; Xie et al., 

2016; Salami et al., 2012).

5.1. Alterations in white matter axonal architecture

DTI is the most prominent imaging technique to quantify the degree of anisotropy in WM 

tissue and reconstruct axonal bundles and WM tracts (González-Reimers et al., 2019). There 

are four primary diffusion-based measurements of WM structural architecture: fractional 

anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) 

(Basser and Pierpaoli, 2011). To measure these values the eigenvalues of the diffusion tensor 

are calculated by diagonalization; AD is the first eigenvalue of the diffusion tensor and is 

associated with diffusion parallel to fiber tracts. A decline in AD may reflect injuries to 

axons, reduced axonal diameter, or progressively less coherent axonal orientation (Sullivan 

and Pfefferbaum, 2006). RD is the average of the second and third eigenvalues and is 

associated with diffusion perpendicular to fiber tracts. RD is sensitive to the local properties 

of myelin, however high RD may also indicate the presence of axonal loss, loss of myelin, 

or low axonal packing density (Solowij et al., 2017). Changes in WM diffusivity are driven 

by tissue degeneration, demyelination, and age-related WM lesion formation (Minati et 

al., 2007; Liu et al., 2017). FA measures the degree of anisotropy with respect to the 

axonal network based on the diffusivity of water molecules inside myelinated axons and the 

extracellular space; in a cohort with 282 subjects aged between 20.2 and 84.2 years, the 

annual FA percentage change decreased by 0.3 ± 0.8% globally, 0.5 ± 0.9% in the frontal, 

0.2 ± 0.8% in the parietal, 0.2±0.8% in the occipital, and increased by 0.1 ± 1.2% in the 

temporal lobe (Sexton et al., 2014). In myelin-rich axon tracts diffusion is highly anisotropic 

although axonal diameter, fiber density, and myelin structure will vary spatially (González­

Reimers et al., 2019). MD, which is derived from radial and axial diffusivity, represents 

the overall magnitude of water diffusion (Basser and Pierpaoli, 2011). An increase in MD 

reflects impaired WM integrity due to local axon and myelin degeneration. Sexton et al. 

observed an annual MD percentage change of 0.3 ± 0.7% globally, 0.5 ± 0.8% in the frontal, 

0.7 ± 0.7% in the parietal, 0.1 ± 0.7% in the occipital, and 0.0 ± 0.9% in the temporal lobe 

(Sexton et al., 2014). Cross-sectional studies have repeatedly confirmed that FA and MD 

change at increasing rates in older subjects in comparison to younger adults (Sexton et al., 

2014; Pfefferbaum and Sullivan, 2003; Salat et al., 2005; Sullivan and Pfefferbaum, 2006; 

Minati et al., 2007; Giorgio et al., 2010).

On DTI images, multiple brain areas, especially in mid-hippocampal and posterior thalamic 

areas, show increased AD and RD values with age resulting from progressive deterioration 

of axons and supporting myelin (Kumar et al., 2013). Between the age of 20 and 80 

years, the length of myelinated fibers reduces by almost 10%/decade, or a total reduction 

of 45% (Marner et al., 2003). Age-related axon degeneration predominantly affects axons 

with small diameters with slender myelin sheaths in comparison to thicker axons (Stahon 

et al., 2016). Additional factors linked to changes in imaging measures are changes in 

cell density, orientation, size and numbers, as well as volume of axonal fibers (Faizy et 

al., 2020). A decrease in axonal packing density, e.g., due to a greater loss of myelin or 
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axons in aging, may result in a global increase of extracellular water and the formation 

of WM lesions (Faizy et al., 2020; Yu et al., 2021). The accumulation of extracellular 

fluid is frequently associated with the build-up of harmful substances such as plasma 

proteins that originate from a leaky BBB (Yu et al., 2021). These proteins can be toxic 

to surrounding WM microstructures including myelin and axons. BBB dysfunction is linked 

to increased glial cell activation and contributes to age-related neuroinflammation (Norden 

and Godbout, 2013) and WM lesions (Simpson et al., 2010; Farrall and Wardlaw, 2009). 

Microglial senecences is characterized by morphological changes in the form of fewer 

and shorter processes, increased soma volume, and formation of spheroid swellings (Von 

Bernhardi et al., 2015). These dystrophic microglia co-localize with degenerating neurons 

and show clumping and accumulation of phagocytic inclusions (Von Bernhardi et al., 2015). 

Resulting loss of microglial plasticity and immune surveillance is associated with cognitive 

decline (Norden and Godbout, 2013). Another common factor driving WM change is linked 

to stiffening of vessels (Maillard et al., 2017). While concise pathological pathways are 

still being investigated, wall stiffening changes pressure gradients in capillaries and results 

in increased extravascular free water content due to the accumulation of solutes in the 

interstitial space. Moreover, age-related hypertension in cerebral vasculature contributes to 

BBB dysfunction and changes to the composition of the interstitial fluid within WM (Xu et 

al., 2017).

5.2. Demyelination

Oligodendrocytes form multiple extensions to neighboring axons to deposit and maintain 

myelin sheaths that wrap around axon segments (Salzer and Zalc, 2016). Myelin not 

only accelerates signal transduction along axons by up to a factor of 10 (Baumann and 

Pham-Dinh, 2001), but also provides mechanical integrity and increases WM stiffness 

(Weickenmeier et al., 2016). Demyelination of WM axon bundles is a common feature 

in healthy brain aging (Callaghan et al., 2014).

Oligodendrocytes have a unique metabolic demand that includes production and 

maintenance of myelin sheaths and synthesizing the brain’s cholesterol supply. 

Consequently, they are vulnerable to a variety of insults including chronic hypoperfusion, 

toxic products of activated microglia, iron toxicity, and excitotoxicity (Bartzokis, 2004). Age 

is a deciding factor in the ability of oligodendrocyte progenitor cells to differentiate into 

myelin-producing oligodendrocytes (Spitzer et al., 2019). These cells are responsible for the 

long process of intracortical myelination and increase the local cholesterol and iron levels 

in the process causing increased toxicity to the intracortical environment (Bartzokis, 2004). 

The loss of myelin in aging WM may be caused by immune-mediated, metabolic, ischaemic, 

and excitotoxic pathways (Chen et al., 2020b). Immune-mediated myelin injury is mostly 

driven by activated microglial cells or macrophages which are thus activated, release 

toxins, and ultimately cause myelin sheath and oligodendrocyte degeneration. Moreover, 

oligodendrocytes and glial cells are particularly sensitive to ischemia-induced apoptosis 

(Lassmann, 2001). Hypertensive vascular alterations may gradually obstruct blood flow to 

WM regions and cause chronic ischemia which leads to progressive loss of myelin and 

oligodendrocytes (Chen et al., 2020b).
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5.3. White matter hyperintensities

WMHs are a common observation in the aging brain and are found in over 90% of WM 

images of subjects ages 60–64 (Wen and Sachdev, 2004). They show as bright-appearing 

WM lesions in FLAIR imaging and are associated with vascular degeneration (Fazekas et 

al., 1987; DeCarli et al., 2005a; Wardlaw et al., 2015). WMHs appear in cerebral WM 

as a result of hypoperfusion caused by vascular obstruction, reactive gliosis, infarcts, or 

ministrokes (Fazekas et al., 1998; Salat et al., 2004; Wardlaw et al., 2015). The prevalence 

of WMHs increases with increasing vascular risk factors, including hypertension, diabetes, 

and smoking (Habes et al., 2016; Wardlaw et al., 2019). WMHs are typically differentiated 

into periventricular and deep WM lesions based on their locations (DeCarli et al., 2005a; 

Kim et al., 2008; Chen et al., 2020a). Both forms are linked to vascular pathology, i.e., small 

vessel disease (SVD), although periventricular and deep WMHs show some differences 

with respect to microstructural properties and pathophysiology (Todd et al., 2018; Wardlaw 

et al., 2015). DTI suggests that periventricular WMHs show significantly lower FA and 

increased MD, AD, and RD in comparison to deep WMHs (Zhan et al., 2009; Griffanti et 

al., 2018). Periventricular WMHs have discontinuous ependyma, gliosis, loosening of the 

WM fibers, and myelin loss around tortuous venules in perivascular spaces; deep WMHs 

are characterized by less gliosis, but increased axonal loss around perivascular spaces, 

demyelination, and arteriolosclerosis (Wardlaw et al., 2015; Griffanti et al., 2018).

The severity of WMHs in the brain has been shown to correlate with age and is an indicator 

for the degree of cognitive decline in subjects and accelerated aging (Schmidt et al., 2005). 

Cross-sectional imaging data suggests that age-dependent WMH volume growth rates differ 

for periventricular and deep WMHs with periventricular WMHs increasing by 12%/year and 

deep WMHs by 7%/year (Nyquist et al., 2015). Periventricular WMHs consistently first 

appear in the anterior and posterior horns of the ventricles (Fazekas et al., 1987). They are 

likely associated with a progressive deterioration of the ventricular wall formed by a single 

layer of ependymal cells leading to CSF leakage into the deeper layers of the ventricular 

wall and subsequent inflammation (Fernando et al., 2006; Jiménez et al., 2014). On FLAIR 

images they first show as small linings, then increase to caps, and ultimately penetrate 

into deep WM (Fazekas et al., 1987). Deep WMHs appear in diffuse locations throughout 

WM and are linked to ischemic damage from SVD (Fernando et al., 2006; Griffanti et al., 

2018). SVD is linked to alterations in the walls of small blood vessels caused by aging, 

arterial hypertension, and diabetes (Tuladhar et al., 2015). These alterations may cause the 

consequent narrowing of the lumen and cause small WM infarcts and microbleeds. WM 

lesions may also be caused by the breakdown of the BBB and macromolecule-leakage, 

which causes astrocyte activation and gliosis (Wardlaw et al., 2017). It is also known that 

BBB damage can occur due to traumatic brain injury (TBI); in fact, TBI can lead to 

oxidative stress and an increase in inflammatory mediators (Song et al., 2020).

6. Ventricular aging mechanisms

Aso et al. have investigated a possible link between venous drainage and ventricular 

enlargement in both normal and accelerated aging (Aso et al., 2020). They found that 

changes encountered in cerebral venous drainage stems from venous insufficiency occur in 
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normal aging processes. They motivate ventricular enlargement to result from this change 

in the venous drainage pattern as well as cerebral atrophy (Aso et al., 2020). This agrees 

with work by Apostolova et al. that link ventricular enlargement to parenchymal volume 

loss following the progressive loss of neurons and de-arborization of the dendritic network 

(Apostolova et al., 2012).

The brain contains three fluid systems: interstitial fluid (ISF), CSF, and vasculature. While 

the ISF is secreted by endothelial cells, the majority of CSF is produced by the choroid 

plexus, which is located within the lateral ventricles (Redzic et al., 2005; Brinker et al., 

2014). The choroid plexus is a lobulated structure that floats in the CSF space and is formed 

by a unique and continuous line of epithelial cells that originated from the ependymal 

wall of the ventricles (Marques et al., 2013). The ependyma is a single layer of ciliated 

ependymocytes lining the ventricular cavity separating the parenchyma from the CSF. The 

ependymal cell layer is connected by tight gap and adherens junctions, and contains the 

water channel protein aquaporin4 (AQP4). These junctions and water channel proteins allow 

the ependymal lining to act as a bidirectional barrier and a fluid transport system for CSF 

and ISF, helping to keep the brain free from toxins (Shook et al., 2014). Biochemical 

changes to the ependymal monolayer affect the efficiency of the bidirectional transport 

and its clearance mechanisms. Moreover, glial scarring due to age-related ependymal wall 

failure is accompanied by an increase in AQP4 water channels and inadvertently results in a 

disruption of CSF/ISF homeostasis and interstitial solute clearance (Shook et al., 2014).

The ventricle’s volume can also be modified by disorders that cause rupture of the BBB’s 

endothelial cells and epithelial choroidal cells forming the blood–cerebrospinal fluid barrier 

(Solár et al., 2020). The ventricles and the BBB are responsible for solute clearance of 

the brain (Shook et al., 2014). It is known that the contraction and expansion of the 

ventricles involve the interplay of three main factors: changes in brain tissue properties, 

CSF dynamics, and vascular parameters (Johanson et al., 2008; Meunier et al., 2020). 

Furthermore, the hemodynamic loading of the ventricles throughout life, causes cyclic 

ependymal cell stretching and eventually leads to micro tears in the ventricular membrane 

that cause ependymal cell loss and gliosis (Shook et al., 2014; Todd et al., 2018). Gliosis 

can lead to glial scar development which replaces ependymal cells with dense astrocytic 

patches (Acabchuk et al., 2015). In fact, the astrocytic ribbon layer was consistently thicker 

in regions with decreased ependymal cell coverage (Shook et al., 2014). The deterioration 

of the ependymal wall compromises periventricular ISF homeostasis and disrupts trans­

ependymal bulk flow mechanisms required to clear proteins and metabolites from the brain 

parenchyma (Shook et al., 2014; Todd et al., 2018). Serot et al. confirmed that aging leads to 

epithelial atrophy, thickening of the basement membranes, and a decrease in CSF production 

(Serot et al., 2003). Strikingly, a decrease of epithelial cell height of as low as 10% (15 μm 

high in newborns and 13.7 μm in elderly) decreases CSF secretion volume by about 50% 

(Serot et al., 2003). Specifically, CSF secretion volume decreases from 0.41 mL/min at 28 

years to 0.19 mL/min at 77 years; CSF turnover drops from six times a day in young adults 

to 1.7 times a day in elderly subjects (Serot et al., 2003).

CSF circulates from the lateral ventricles through the interventricular foramina into the 

third ventricle, then through the cerebral aqueduct into the fourth ventricle from where 
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it splits into the central canal of the spinal cord and the cisterns of the subarachnoid 

space. CSF finally drains into the venous system via the arachnoid villi and cervical 

lymphatics (Redzic et al., 2005; Brinker et al., 2014). CSF is critical to the central nervous 

system since it allows exchange of water, small molecules and proteins between the brain 

parenchyma, and arterial and venous blood by passive diffusion and active transport (Brinker 

et al., 2014). The ventricular system is important for the movement of nutrient-rich CSF, 

providing a wide range of vitamins, growth factors, peptides, and nucleosides that are 

essential to proper brain function (Johanson et al., 2008). Furthermore, CSF is responsible 

for absorbing mechanical and thermal stress, removing waste products that are formed in 

the central nervous system, creating an appropriate extracellular molecular composition 

and transporting humoral mediators and nutrients contributing to brain development, brain 

homeostasis, and regulation of intracranial pressure and blood supply (Jiménez et al., 2014; 

Attier-Zmudka et al., 2019; Meunier et al., 2020).

7. Vascular changes

Adequate blood supply to the brain is crucial, and the brain is sensitive to excessive changes 

in pressure, ischemia, and flow pulsatility changes that result from vascular aging. One of 

the main characteristics of vascular aging is arterial stiffness and damage to blood vessels 

(Lin et al., 2017). Other changes include the decrease in capillary density and the increase 

in BBB permeability (Watanabe et al., 2020). Major limitations of our current understanding 

of vascular changes are associated with the determination of the most pathological vascular 

dysfunctions, reversibility of vascular abnormalities, and concise mechanisms of lesion 

progression (Wardlaw et al., 2019).

The most prominent features of vascular aging are associated with cerebral small vessel 

disease (CSVD) (Ter Telgte et al., 2018). CSVD is an umbrella term that describes 

pathologies that affect small arteries, arterioles, and venules (Li et al., 2018; Ter Telgte et al., 

2018). Some of these pathologies are intracranial atherosclerosis, cerebral arteriosclerosis, 

and cerebral amyloid angiopathy (CAA). In cerebral arteriosclerosis, the arterial walls 

harden and thicken which results in a loss of elasticity (Shim et al., 2015). With aging, 

the deposition of excess collagen in the walls of veins and venules constricts vessel lumen 

and causes decreased WM blood flow. It also disturbs the clearing of toxins via the blood 

stream and the glymphatic system, leading to irreversible WM damage. This pathology is 

accompanied by a decline in vascular density and impaired autoregulation in the cerebral 

vascular system which exacerbates WM hypoperfusion (Liu et al., 2017).

Intracranial atherosclerosis is a specific form of arteriosclerosis. It occurs when there is 

a buildup of cholesterol lipids within blood vessels which eventually leads to stenosis 

(Wang et al., 2019). This causes blood vessels to harden and lose elasticity resulting in 

reduced blood flow or stroke (Ritz et al., 2014). Atherosclerotic plaque formation is often 

associated with the large arteries in the Circle of Willis, but there is a lack of plaque 

formation in smaller arteries such as the anterior inferior cerebral artery and posterior 

inferior cerebral artery (Denswil et al., 2016). Intracranial atherosclerosis is often detected 

using high resolution MRI. However, autopsy studies allow for the direct visualization of 

atherosclerotic plaques (Suemoto et al., 2018). The gold standard of diagnosis remains to be 
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intra-arterial angiography (Qureshi et al., 2009). The third mechanism, CAA, occurs when 

amyloid beta begins to build in blood vessels, typically observed in people over the age of 

65 years (Ghiso et al., 2010). It can lead to the loss of smooth muscle cells within blood 

vessels which results in thickening of the vessel wall. This can make the blood vessels 

extremely brittle and susceptible to rupture. CAA first affects the occipital cortex followed 

by the frontal, temporal, and parietal cortices (Magaki et al., 2018). Patients with CAA 

were shown to have pronounced cortical atrophy in the posterior cingulate cortex, precuneus, 

parietemporal regions, and throughout the medial temporal lobe along with the hippocampus 

(Kim et al., 2018). The volume of the left hippocampus in CAA patients was found to be 

approximately 3.5 mm3 whereas the right hippocampal volume was around 3.2 mm3 (Kim 

et al., 2018). CAA is often associated with stroke and intracerebral haemorrhaging (Weller 

and Nicoll, 2003). These pathological mechanisms are visible in MRI sequences such as 

FLAIR and are categorized as microbleeds, lacunes, WMHs, and small subcortical infarcts 

(Cuadrado-Godia et al., 2018).

7.1. Microbleeds and lacunes

Microbleeds are small circular hypointensities that are commonly seen in the basal ganglia 

or thalamus. They form upon rupture of a blood vessel caused by sustained hyperintensive 

vasculopathy or CAA (Martinez-Ramirez et al., 2014). Lobar microbleeds in CAA are 

typically caused by vessel fragility and rupture following the progressive deposition 

of amyloid beta within the vessel (Viswanathan and Greenberg, 2011). Hyperintensive 

vasculopathy describes endothelial dysfunction and arterial remodeling which is often 

associated with hypertension (Touyz and Montezano, 2015). In hyperintensive vasculopathy, 

total peripheral vascular resistance increases with age due to a gradual decrease in lumen 

diameter. Both of these processes severely damage blood vessels and ultimately cause 

failure.

Lacunes are 3–15 mm CSF-filled cavities in the basal ganglia and WM (Benjamin et al., 

2018). They appear following small subcortical infarcts as well as haemorrhages in the 

vicinity of a perforated arteriole (Mustapha et al., 2019). Small subcortical infarcts are the 

result of occlusions of small perforating brain arteries, also referred to as atherosclerosis 

(Nah et al., 2010). Increased levels of cholesterol within blood vessels are a common 

trigger for the onset of intracranial atherosclerosis. This typically causes hardening of the 

arterial wall and can lead to progressive stenosis and hypoperfusion (Xu et al., 2017). WM 

lacunes develop in areas where the perfusion is already compromised, whereas basal ganglia 

lacunes are more likely to be caused by arterial occlusions due to intracranial atherosclerosis 

(Gouw et al., 2008). The rupture of an unstable atherosclerotic lesion can lead to platelet 

activation, thrombus formation, and occlusion of blood vessels (Wang et al., 2019). All 

these mechanisms are associated with local ischemia that leads to neurodegeneration and 

progressive cognitive decline.

8. Multiphysics modeling of the brain

Multiphysics modeling allows to formalize the interplay between cell- and tissue-level 

changes during development, aging, and disease and their gradual manifestation in 
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organ-level structural changes. In the case of brain aging, cellular and subcellular 

biological processes, many of which were described in previous sections, drive local 

neurodegeneration. On a constitutive level, it is possible to model the slowing of metabolic 

activity, the aggregation of waste products, progressive cell and tissue damage, changes in 

mechanical and structural properties, e. g., FA, diffusivity, and elasticity, or the spreading 

of neurotoxic proteins and inflammation. The respective measures of these processes can 

be coupled to local volume change and respective brain deformations that are governed by 

mechanics.

Many examples of this multiphysics modeling approach exist. For example, brain 

development, i.e., the early formation of brain folds, has been shown to result from repeated 

buckling of the cortex due to relative volumetric expansion in the subcortical and cortical 

layer (Bayly et al., 2014; Budday et al., 2014). Meanwhile, this theory of morphoelastic 

growth has been extended to incorporate biological processes such as cellular migration 

from the subventricular zone to the cortical periphery (Verner and Garikipati, 2018; de 

Rooij and Kuhl, 2018; Zarzor et al., 2021; Wang et al., 2021). These models couple 

an advection–diffusion equation for cell density changes mimicking cell migration to a 

mechanical model of volumetric expansion representing the accumulation of neuron cells 

in the cortical layer. Brain injury is another field of study where mechanics plays a crucial 

role and aims to provide insight into the relationship between organ-level brain deformations 

and local damage measures. Work has been done on TBI (Hajiaghamemar et al., 2020; Li 

et al., 2017; Giordano et al., 2017; Ghazi et al., 2021), chronic traumatic encephalopathy 

(Noël and Kuhl, 2019; van den Bedem and Kuhl, 2017; Bakhtiarydavijani et al., 2020), 

and the mechanical-electrophysiological coupling in dislocation injury (Kwong et al., 2019). 

There are many other examples, including models of neuronal transport (Li et al., 2021), and 

medical applications such as a decompressive craniectomy (Weickenmeier et al., 2017; Bing 

et al., 2020), deep brain stimulation (Bikson et al., 2012), and focused ultrasound techniques 

(Salahshoor et al., 2020). With respect to aging, recent studies modeled cerebral atrophy 

in the brain during healthy (Harris et al., 2019) and accelerated aging (Weickenmeier et 

al., 2018; Schäfer et al., 2019; Blinkouskaya and Weickenmeier, 2021). These models 

couple mechanical shrinking to the spreading of neurotoxic proteins through the brain 

representative of the biology in neurodegenerative diseases such as Alzheimer’s disease.

Going forward, the combination of multiphysics modeling with cross-sectional and 

longitudinal imaging data will allow to systematically study the origin of WM and GM 

changes and uncover the underlying mechanisms driving the onset and progression of 

neurodegeneration and ultimately cognitive decline.

9. Conclusion

Brain aging is characterized by cell-, tissue-, and organ-level damage and deterioration 

processes that lead to morphological brain shape changes. Through large scale cross­

sectional medical imaging studies, hallmark features of brain aging have been identified and 

paint a picture of progressive brain volume loss, cortical thinning, ventricular enlargement, 

and WM deterioration. The brain’s intricate structure-function relationship is significantly 

impacted by these age-related changes and is commonly accompanied by memory loss, 

Blinkouskaya et al. Page 20

Mech Ageing Dev. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cognitive decline, and behavioral changes. Continuum mechanics theory is particularly 

suited to model and simulate how cell- and tissue-level damage mechanisms manifest as 

organ-level morphological changes. Such predictive and personalized brain aging models 

would prove useful in the differentiation between healthy and accelerated aging. Especially 

so, because early diagnosis of a particular neurodegenerative disease and immediate 

personalized intervention have the highest chance of slowing the decline in the quality of life 

of patients facing long-term disease progression common for AD and related dementias.
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Fig. 1. 
Cerebral atrophy is the most prominent morphological change in the aging brain and 

includes white and gray matter volume loss, cortical thinning, sulcal widening, and 

ventricular enlargement. Cross-sectional medical imaging studies have shown that these 

features gradually intensify in subjects aged 50 years and older (Fjell and Walhovd, 2010; 

Coupé et al., 2019). Longitudinal imaging data, i.e., two or more scans of the same subject 

taken at least a couple months apart, are increasingly used to determine the rate of change 

Blinkouskaya et al. Page 37

Mech Ageing Dev. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for individual subjects with the goal to differentiate between healthy and pathological aging 

processes (Resnick et al., 2003).
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Fig. 2. 
White matter changes are a major source for brain atrophy and loss of brain function. The 

resulting cognitive decline is linked to neurodegeneration, but is just as impacted by the 

deterioration of the axonal network (Xiong and Mok, 2011; Chen et al., 2020b). White 

matter aging is characterized by demyelination, axon degeneration, white matter lesions, and 

small vessel disease which is associated with microbleeds, lacunes, and ministrokes. White 

matter lesions drive neuroinflammation and disturb the intricate homeostasis in the brain. 

Lastly, ischemia is a common driver of gradual cell death through the brain and causes the 

progressive degeneration of white matter tissue (Mattson and Arumugam, 2018; Liu et al., 

2017).
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