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The ability to produce novel ideas is central to societal progress and innovation;
however, little is known about the biological basis of creativity. Here, we investigate
the organization of brain networks that support creativity by combining functional
neuroimaging data with gene expression information. Given the multifaceted nature of
creative thinking, we hypothesized that distributed connectivity would not only be related
to individual differences in creative ability, but also delineate the cortical distributions
of genes involved in synaptic plasticity. We defined neuroimaging phenotypes using
a graph theory approach that detects local and distributed network circuits, then
characterized the spatial associations between functional connectivity and cortical
gene expression distributions. Our findings reveal strong spatial correlations between
connectivity maps and sets of genes devoted to synaptic assembly and signaling.
This connectomic-transcriptome approach thus identifies gene expression profiles
associated with high creative ability, linking cognitive flexibility to neural plasticity in the
human brain.
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INTRODUCTION

Creativity represents a defining quality of human cognition. Given the complexity of human
creativity, the production of novel ideas cannot be attributed to a single region of the brain. Rather,
increasing neuroscientific evidence links creative thinking to a complex interplay of interconnected
brain networks (Beaty et al., 2019). However, a detailed characterization of the brain networks and
neurobiological assembly supporting creativity remains elusive. Previous work using functional
brain imaging has identified cortical networks involved in idea production (Beaty et al., 2016,
2018), with a majority of neuroscientific work focusing on divergent thinking–the ability to
produce original ideas in response to open-ended problems (Plucker and Makel, 2010). Task-based
fMRI studies of divergent creative thinking have revealed dynamic interactions between cognitive
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brain networks (Beaty et al., 2015; Li et al., 2017), and
resting-state fMRI studies have further characterized intrinsic
connectivity networks associated with creative ability (Takeuchi
et al., 2012; Beaty et al., 2014; Shi et al., 2018). To date,
however, the biological significance of such large brain
networks supporting creative thinking remains unknown,
due in part to the challenge of linking distributed connectivity
networks to underlying neuronal properties, such as synaptic
signaling and plasticity. Here, we sought to overcome these
limitations by applying a novel connectomic-transcriptome
approach to identify the spatial intersection between brain
connectivity phenotypes related to creative ability and
cortical genetic expression profiles, providing insight into
the neurobiology of creativity.

Given the biological complexity of the human brain–a
structure that, at the macroscale level, is organized as a system
of interconnected networks–there is a growing demand for
analytical strategies that capture such complexity. Network
neuroscience and graph theory approaches can help to address
this problem (Fornito et al., 2016; Bassett and Sporns, 2017).
Graph theory analyses improve our ability to describe functional
brain networks and study the segregation and integration
patterns of connectivity. Conceptual models of the human
brain suggest a hierarchical network architecture, starting in
primary unimodal cortices and progressing toward areas of
multimodal integration (Sepulcre, 2014). Research into the
functional and structural composition of network assembly has
revealed modules with dense local connectivity associated with
specific cognitive function, and cortical hubs which integrate
information between distributed modules (Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Sepulcre et al., 2012). Areas
of multimodal integration, displaying distributed connectivity
across networks, are particularly important for higher-order
cognitive function, like creativity.

With the advent of new methods combining human
neuroimaging data with whole-brain cortical gene expression
(Diez and Sepulcre, 2018; Xin et al., 2019; Bueichekú et al.,
2020), it is now possible to characterize neurobiological features
of complex human cognitive abilities, such as creativity. Here,
we leverage a novel connectomic-transcriptome methodology
to provide insight into the network neurobiology of individual
creative ability. Using computational models of semantic
distance, we objectively quantify the creative quality of ideas
generated by a large sample of participants (n = 175) on
a common psychometric assessment of divergent creative
thinking (i.e., the alternate uses task). We define neuroimaging
phenotypes associated with creative ability using a graph theory
approach applied to resting-state fMRI data that detects local
and distributed functional connectivity (Sepulcre et al., 2012),
then characterize the spatial associations between connectivity
patterns and cortical gene expression distributions using the
Allen Human Brain Atlas (AHBA). We hypothesized that
distributed connectivity networks would be related to individual
differences in creative ability. Additionally, we hypothesized that
cortical expression of genes involved in synaptic plasticity would
share high spatial similarity with the distributed connectivity
maps. We thus provide a neurogenetic profile of highly creative

individuals and identify cortical expression of specific genes
related to high creative ability.

MATERIALS AND METHODS

Participants
The total sample consisted of 175 participants (127 women,
mean age = 22.67 years, SD = 6.37). All participants were right-
handed with normal or corrected-to-normal vision and reported
no history of any neurological disorders, cognitive disabilities, or
medications that affect the central nervous system (Beaty et al.,
2018). All participants provided written informed consent and
the study was approved by the UNCG Institutional Review Board.

Creativity Assessment
Divergent thinking (DT) performance was assessed by the
Alternative Uses Task (AUT), conducted during a separate task-
based fMRI scan (Beaty et al., 2018), as well as on a computer
outside the scanner. Note that the task-based fMRI data are not
presented here (only the verbal responses; Beaty et al., 2018).
During the task-based fMRI scan, participants were presented
with a series of everyday objects (e.g., brick) and asked to imagine
new and unusual uses for each object. Participants had 12 s to
think of a single alternate use for a list of 23 objects, then had 5 s to
verbally report their response via an MRI compatible microphone
(Beaty et al., 2018; Benedek et al., 2019). For the computer-
based assessment, participants had 3 min to generate as many
alternative uses for two objects as possible (box and rope).

To objectively quantify the creative quality of responses,
we used several computational models of semantic distance
(Beaty and Johnson, 2020). Semantic distance captures the
novelty facet of creativity by computing the cosine similarity of
concepts in large corpora of natural language (Prabhakaran et al.,
2014; Kenett, 2019; Beaty and Johnson, 2020). We computed
semantic distance using an online application called SemDis, an
open platform developed to automate creativity assessment via
semantic distance1 (Beaty and Johnson, 2020). SemDis leverages
five compositional vector models to compute the relatedness
between inputted texts: three continuous bag of words (CBOW)
predict models and two count models. CBOW/predict models
were built using a neural network architecture (Mandera et al.,
2017) that employs a sliding window to move through text
corpora and aims to predict a central word from surrounding
context words (cf., word2vec); count models, in contrast to
predict models, compute the co-occurrence of words within
these large text corpora. All five spaces were used to compute
the semantic distance between the AUT item (e.g., box) and
participants’ responses, where the cosine angle between the word
vectors represents semantic similarity; semantic distance is then
computed by subtracting this semantic similarity score from one
(Prabhakaran et al., 2014; Green, 2016; Beaty et al., 2017; Kenett
and Faust, 2019). Following Beaty and Johnson (2020), we used
latent variable modeling to extract the common variance from the
five semantic models. This approach has the benefit of reducing

1http://semdis.wlu.psu.edu
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the influence of any one model–which has been shown to yield
idiosyncratic values (Mandera et al., 2017) specific to the given
model and text corpus employed, thus boosting the reliability and
generalizability of results.

FUNCTIONAL MRI ACQUISITION AND
IMAGE PROCESSING

Resting-state fMRI data were acquired for all participants on
a 3T Siemens Magnetom MRI system using a 16-channel head
coil. High resolution T1 scans were acquired for anatomical
normalization. Blood-oxygenation-level-dependent (BOLD)
T2∗-weighted functional images were acquired with gradient
echo-planar imaging sequence with the following parameters:
TR = 2,000 ms, TE = 30 ms, flip angle = 78◦, 192 mm FoV,
32 axial slices, 3.5 × 3.5 × 4.0 mm, interleaved slice ordering,
sequence length = 5 min. Participants were instructed to
relax awake in the scanner with eyes closed for the duration
of the scan. MRI data for both anatomical and functional
images were preprocessed using FMRIB Software Library v5.0.7
(FSL) and MATLAB 2017a (Mathworks Inc., Natick, MA,
United States). The anatomical and functional preprocessing
pipelines were adapted from previous work (Diez et al., 2019).
The anatomical T1 preprocessing included: reorientation to
right-posterior-inferior; alignment to anterior and posterior
commissures; skull stripping; gray matter, white matter and
cerebrospinal fluid segmentation; and computation of non-
linear transformation between individual skull-stripped T1
and 2 mm resolution MNI152 template images. The functional
MRI preprocessing pipeline included: slice time correction;
reorientation to RPI; realigning functional volumes within
runs with a rigid body transformations (six parameters
linear transformation); computation of the transformation
between individual skull-stripped T1 and mean functional
images; intensity normalization; removal of confounding
factors from the data using linear regression–including 12
motion-related covariates (rigid motion parameters and its
derivatives), linear and quadratic terms, and five components
each from the lateral ventricles and white matter. Global signal
regression was not applied due to the spurious correlations
this can introduce. Transformation of resting-state data to
MNI space was performed, concatenating the transformation
from functional to structural and from structural to MNI,
spatial smoothing with an isotropic Gaussian kernel of
6-mm FWHM, and band-pass filtering (0.01–0.08 Hz) to
reduce low-frequency drift and high-frequency noise were
also applied. Head motion was quantified using realignment
parameters obtained during image preprocessing, including
three translation and three rotation estimates. Scrubbing of
time points with excess head motion interpolated all time
points with a frame displacement > 0.2 mm was applied.
While several participants demonstrated head motion
above this 0.2 mm threshold, we correct for this motion by
interpolating time points before and after. The distributions of
the correlations across time series were reviewed for possible

contamination; no outliers were observed from the whole-brain
connectivity distributions.

LOCAL AND DISTRIBUTED
CONNECTIVITY

Complex brain networks are highly modular, meaning that nodes
(or voxels) are organized into local communities, corresponding
to specific cognitive functions. Local connectivity describes the
large number of connections within well-defined communities;
distributed connectivity represents the relatively small set of links
which communicate across modules (Figure 1). We generated
local and distributed maps using whole-brain stepwise functional
connectivity analyses (Sepulcre et al., 2012). Additionally, we
conducted weighted degree (WD) analysis to calculate all links
in the brain, then identify individual variability between WD
maps for local and distributed connectivity (Diez and Sepulcre,
2018). Local and distributed maps were computed in different
regression analyses.

To compute the voxel-wise stepwise connectivity maps, we
followed the steps described below.
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Where r is the fdr corrected association connectivity matrix, i
and j represents a pair of voxels, n is the number of voxels,
and NSFCs is the normalized stepwise connectivity matrix for
number of steps (s).
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FIGURE 1 | Methods overview. Participants underwent resting-state functional MRI scans, from which we extracted BOLD data of all gray matter voxels in the
cerebral cortex. Based on coactivation patterns between voxels, we performed local and distributed functional connectivity analysis to characterize network
modularity. Local connectivity describes links within modules, whereas distributed connectivity captures the relatively smaller set of links which communicate
between modules.

NDCs =
DCs −min(DCs)

max(DCs)−min(DCs)

Final WD maps for local and distributed connectivity were
computed as the sum of steps 2–7.

After obtaining local and distributed maps for all participants,
a general linear model was used to compute the association
between connectivity and DT. For each voxel, a statistical analysis
was applied. DT was used as the independent variable and that
particular voxel value (local or distributed connectivity) was the
dependent variable. All statistical analyses were corrected for
participant age and sex. Whole-brain correction for multiple
comparisons was computed using Monte Carlo simulation with
10,000 iterations to estimate the probability of positive clusters
with a two-tailed p-value < 0.05 (3dClustSim2).

To reduce the dimensionality of the functional networks, after
preprocessing the time series were down-sampled to 6 mm.
Pearson Correlation was used to obtain a 5,742 × 5,742
voxel-wise connectivity matrix. Then, Fisher transformation
was applied, and negative values were removed due to their
controversial interpretation in graph theory integration analysis
(Qian et al., 2018). A false discovery rate (fdr) correction of
q-level = 0.005 was applied to remove the weakest connections.

COMBINATION OF NEUROIMAGING
AND CORTICAL GENE EXPRESSION

Spatial Similarity Analysis
We used the AHBA to study the spatial similarity between
protein-coding genetic profiles and our local-distributed
connectivity maps associated with DT. The AHBA provides
whole-brain expression distributions for six human subjects
(Hawrylycz et al., 2012). The atlas is comprised of 20,737 protein-
coding genes, based on 58,692 measurements of gene expression
in 3,702 brain samples taken from these six subjects. One

2http://afni.nimh.nih.gov

limitation of this approach is that the AHBA subjects are mostly
male, whereas the fMRI data was collected in a sample containing
mostly females. We used anatomical surface transformations of
these genetic transcription profiles within 68 cortical regions
of the Desikan–Killiany atlas (Desikan et al., 2006) to capture
mean cortical expression of genes across these regions. Spatial
Similarity Analysis was conducted by means of a MATLAB
in-house coding, available upon request (MATLAB R2015b; The
MathWorks INC.). The objective of this analysis was to identify
which genes, from the 20,737 genes of the AHBA, had a cortical
expression profile corresponding to the connectivity maps
associated with DT. We created a null hypothesis distribution,
comparing the entire AHBA transcriptome with the DT network
connectivity map, then generated a list of candidate genes with
cortical expression profiles associated with DT. We identify
genes with both highly positive and negative scores, beyond a
significance threshold (>2 SD).

BIOLOGICAL PROCESSES OF GENES
MEDIATING DT

The list of genes whose spatial cortical expression demonstrated
inverse spatial correlation with the local and distributed DT
connectivity network was entered in a GO term enrichment
analysis tool (The Gene and Ontology Consortium, 2019).
GO is an open-access, genetic annotation resource available
to investigate gene functionalities. To characterize our findings
within GO, we used the annotation system of biological processes.
Biological processes deal with gene function that lead to specific
objectives, often in a highly regulated manner and particular
temporal sequence (The Gene and Ontology Consortium,
2019). The Protein Analysis Through Evolutionary Relationships
(PANTHER) resources enable inference about gene functions,
by classifying protein sequences in terms of their evolutionary
history and function. We ran a PANTHER Overrepresentation
Test (Mi et al., 2017) using the combined lists of genes
whose cortical expression demonstrated high spatial correlations
with local and distributed connectivity maps associated with
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FIGURE 2 | Local connectivity maps. (A) Cortical surfaces display t-statistic of the regression between the local connectivity and DT. Above, data is projected to 68
cortical regions of the Desikan–Killiany atlas to capture mean connectivity across these regions. Below, projection of the t-statistic at the voxel-level, showing regions
that survive to multiple comparison with cluster wise Monte Carlo simulation. Each analysis result is displayed in left and right hemispheric surfaces, with lateral and
medial projections. (B) The similarity distribution represents the results of topographical similarity analysis between the local connectivity network and the brain
transcriptome maps (∼20,000 protein-coding genes). Genes which have a highly negative similarity score (below dotted line at 2 SDs) are inversely related to our
local connectivity map, meaning they are highly expressed in regions with low connectivity. (C) Gene Ontology enrichment analysis reveals this subset of 363 genes
exhibit overrepresented functionalities in key domains of neuron generation and differentiation (FE > 2; statistically significant FDR-corrected q < 0.05).
(D) Scatterplots show the spatial similarity relationship throughout brain regions between independent expression of three genes (CAMK2B, FGF13, and SLITRK3)
and the local connectivity map (linear fit represented with a black line).

DT. A Bonferroni correction for multiple comparison was
run at threshold q < 0.05. The results of the PANTHER
analysis were based on the relative term enrichment, which
indicates the degree to which each gene is represented in a
given set of genes.

INTERACTOME ANALYSIS

Using an interactome approach, we validated our genetic results
beyond the spatial similarities with the local and distributed
DT cortical maps. We used Cytoscape (Lopes et al., 2010) and
Genemania (Mostafavi et al., 2008) to perform an interactome
analysis and closeness centrality assessment of the set of
candidate genes obtained from the spatial similarity analysis.
We used the Genemania composite gene–gene interaction profile
from predicted physical interactions and shared protein domains

to determine centrality of the identified genes within the
combined genetic functional network.

RESULTS

Local and Distributed Connectivity
We generated separate local and distributed maps using whole-
brain stepwise functional connectivity analyses applied to
resting-state fMRI data (Sepulcre et al., 2012). Additionally,
we conducted weighted degree (WD) analysis to calculate all
links in the brain, then identify individual variability between
WD maps for local and distributed connectivity (Diez and
Sepulcre, 2018). Local connectivity maps revealed a negative
association between individual creative ability and connectivity
within the primary occipital cortex, lateral occipital cortex,
and inferior parietal areas (Figure 2). Distributed connectivity

Frontiers in Human Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 694274

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-694274 July 22, 2021 Time: 15:38 # 6

Orwig et al. Synaptic Plasticity and Creativity

FIGURE 3 | Distributed connectivity maps. (A) Cortical surfaces display t-statistic of the regression between the distributed connectivity and DT. Above, data is
projected to 68 cortical regions of the Desikan–Killiany atlas to capture mean connectivity across these regions. Below, cortical projection of the t-statistic at the
voxel-level, showing regions that survive to multiple comparison with cluster wise Monte Carlo simulation. (B) The similarity distribution represents the results of
topographical similarity analysis between the distributed connectivity network and the brain transcriptome maps (∼20,000 protein-coding genes). Genes which have
a highly negative similarity score (below dotted line at 2 SDs) are inversely related to our distributed connectivity map, meaning they are highly expressed in regions
with low connectivity. (C) Gene Ontology enrichment analysis reveals this subset of 516 genes exhibit overrepresented functionalities in key domains of post-synaptic
assembly (FE > 15; statistically significant FDR-corrected q < 0.05). (D) Scatterplots show the spatial similarity relationship throughout brain regions between
independent expression of three genes (SHANK3, EPHA5, and NRXN2) and the distributed connectivity map (linear fit represented with a black line).

from the left inferior temporal lobe was negatively associated
with creative ability (Figure 3). Thus, the ability to produce
novel ideas–quantified objectively using computational semantic
distance–was negatively associated with local connectivity within
occipital-parietal regions and distributed connectivity to the
left temporal pole.

GENES WITH ASSOCIATED CORTICAL
EXPRESSION PROFILES

To characterize the neurobiological basis of creative ability,
we compared local and distributed connectivity maps with the
cortical expression of genes (N = 20,737) from the AHBA. We
obtained a similarity score between each comparison, then
identified genes in the lower tail which were highly expressed
in cortical regions with lower connectivity. Resulting lists
contained 363 and 516 genes whose cortical expression levels
were associated with local and distributed connectivity maps,
respectively (Supplementary Table 1). Among these, we find
125 shared genes, present in both local and distributed lists

(Supplementary Table 1). We then performed a PANTHER
overrepresentation analysis of these gene lists to identify
significant roles in specific biological processes [Fisher’s Exact,
Bonferroni correction for multiple comparison and fold
enrichment (FE) > 2].

Local Genes
Similarity analysis revealed spatial correlations between our local
connectivity profiles and cortical expression of genes involved
in neuron generation and differentiation (Figure 2). The set
of genes associated with local connectivity maps exhibited
overrepresented functionalities in key domains of neuron
differentiation (FE = 2.40), generation of neurons (FE = 2.16),
and neurogenesis (FE = 2.13). Among these genes, we highlight
several with high spatial correlation to the local connectivity
phenotype: CAMK2B (r =−0.49, p < 0.001), FGF13 (r =−0.51,
p < 0.001), SLITRK3 (r = 0.51, p < 0.001).

Distributed Genes
We identified a list of candidate genes that share a spatial
correlation with our distributed connectivity phenotype

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 694274

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-694274 July 22, 2021 Time: 15:38 # 7

Orwig et al. Synaptic Plasticity and Creativity

FIGURE 4 | Common genes associated with DT. Scatterplots show the spatial similarity relationship throughout brain regions between independent expression of
three genes (EPHA3, CAMK1, and NLGN1), the local connectivity map (left) and the distributed connectivity map (right). Linear fit represented with a black line.

(Figure 4). The genes associated with distributed connectivity
were more functionally engaged in postsynaptic membrane
assembly (FE = 20.93), excitatory synapse assembly (FE = 17.94),
post-synapse assembly (FE = 15.43), synapse assembly
(FE = 5.28), and regulation of synaptic vesicle cycle (FE = 4.97).
From the nineteen total genes identified in the GO database as
being associated with post-synapse assembly, our distributed
gene list contained seven. We highlight individual genes sharing
high spatial similarity with the distributed connectivity maps:
SHANK3 (r =−0.38, p < 0.001), EPHA5 (r =−0.38, p < 0.001),
NLGN2 (r = −0.32, p < 0.01), NRXN1 (−0.28, p < 0.05), and
NRXN2 (r =−0.43, p < 0.001).

Convergence of Local and Distributed
Genes
We find 125 genes present in both local and distributed lists
(Figure 4). Among these, we identify CAMK1 to be significantly

associated with local (r = −0.54, p < 0.001) and distributed
(r = −0.45, p < 0.001) connectivity maps. NLGN1 also shared
a spatial correlation with both local (r = −0.49, p < 0.001) and
distributed (r = −0.45, p < 0.001) maps. In addition, EPHA3
shared high spatial correlation with local maps (r = −0.63,
p < 0.001) and moderate association with distributed maps
(r = −0.38, p < 0.001). Similarly, NPTN shared a highly
significant correlation with local maps (r = −0.64, p < 0.001)
and moderate association with distributed maps (r = −0.37,
p < 0.05). Moreover, we found that cortical expression of
two GABAergic protein coding genes–GABRA6 (r = −0.52,
p < 0.001) and GABRB2 (r = −0.53, p < 0.001)–shared high
spatial similarity with the local connectivity map. These genes
were also present in the distributed gene lists, though correlations
were not as strong–GABRA6 (r = −0.30, p < 0.05) and
GABRB2 (r =−0.27, p < 0.05). An interactome-based validation
approach, with independent gene-gene interaction profiles,
revealed that CAMK1, CAMK2B, EPHA3, EPHA5, and SHANK3
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FIGURE 5 | Genetic network analysis. (A) Protein-coding genes from the AHBA with high cortical expression within the local and distributed networks (>2 SDs) are
presented in the network topological space. (B) Genes are plotted as a function of the closeness centrality in the network. Genes related to synaptic plasticity and
post-synaptic assembly are highlighted in corresponding colors. CAMK1 and CAMK2B genes are represented in yellow, EPHA3 and EPHA5 are represented in
magenta, and SHANK3 is represented in green.

were centrally localized within the gene interaction network of
combined (local and distributed) lists of genes (Figure 5).

DISCUSSION

Despite the critical importance of creativity, the neurobiology
of human creativity has remained undefined. For the first

time, we provide a comprehensive gene-brain model of
high creative ability, combining computational modeling of
behavior with a novel connectomic-transcriptome analysis
to identify a neurobiological profile characterizing high
creative ability. We identified brain connectivity phenotypes
through the application of novel graph theory metrics of
local and distributed connectivity, revealing patterns of
functional network organization related to creative ability.
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Moreover, AHBA data of gene expression levels permitted
us to characterize topological distributions of protein coding
genes in relation to functional connectivity profiles. Critically,
we found that the spatial topology of genes devoted to the
regulation of postsynaptic assembly and synapse organization
resembled the distributed connectivity related to high creative
ability, thus linking cognitive flexibility with neural plasticity
in the highly creative brain. We discuss our findings in
relation to specific genes previously associated with synapse
formation and plasticity.

POST-SYNAPTIC ORGANIZATION
MODULATES DISTRIBUTED
CONNECTIVITY

We found that distributed connectivity profiles shared a high
correlation with the spatial cortical expression of genes involved
in postsynaptic assembly and synapse organization. Among
these genes, we identify SHANK3, NRXN1, NRXN2, NLGN1,
and NLGN2 to share spatial topology with the distributed
connectivity map. Neurexins (NRXN) and neuroligins (NLGN)
are synaptic cell adhesion molecules; NRXN are primarily located
in presynaptic membrane and NLGN are present in postsynaptic
membrane (Bang and Owczarek, 2013). The SHANK family
of protein coding genes, located in the post-synaptic density
of glutamatergic synapses, has been associated with synapse
assembly, postsynaptic density assembly, and regulation of
long-term synaptic potentiation. Our results indicate higher
expression of SHANK3 in association with decreased functional
connectivity in the left temporal pole, an area known to be
involved in associative memory and semantic processing. Higher
expression of SHANK3 in more creative individuals may promote
efficient synaptic organization within this region, reflected in
lower functional connectivity.

The NLGN–NRXN–SHANK pathway plays a primary role in
regulating synaptic formation, maturation, and plasticity. NRXN
and NLGN play a central role in presynaptic and postsynaptic
differentiation (Craig and Kang, 2007). Additionally, the
neuroligin-neurexin complex is thought to promote maturation
and organization of synapses through bidirectional signaling
(Taniguchi et al., 2007). Studies of NRXN and NLGN knockout
in mice indicate an essential role in synapse maturation and
function (Südhof, 2008). Our findings suggest that cortical
expression of genes involved in the assembly of synapses in the
human brain are essential for shaping the neural networks which
underpin creativity. Specifically, the biological processes of post-
synaptic organization are overrepresented in our set of genes
associated with the creative ability in the brain.

Bidirectional Synaptic Plasticity in the
Creative Brain
Investigation of general genotype-phenotype connectivity maps
highlighted select genes linked to nervous system development
and synaptic plasticity. CAMK1 and CAMK2B are members
of calcium/calmodulin-dependent protein kinase, involved in

synapse formation and neuronal plasticity. CAMK2B is a protein-
coding gene which plays an essential role in synaptic plasticity
and maturation, promoting synapse formation, particularly in
hippocampal neurons. CAMK2B expression promotes synaptic
remodeling in mature neurons. Previous work has shown
an influx in CAMK2 activity in post synaptic density of
dendrites following LTP induction (Strack et al., 1997). We
find a high spatial similarity between CAMK2B and our local
connectivity maps. This shared topology possibly indicates a
role of CAMK2B in synaptic organization which enables creative
thinking. Defining the genetic basis of bidirectional synaptic
plasticity may be essential for understanding the flexible cognitive
processes involved in creative problem solving.

Related to synaptic plasticity, we find two prominent genes
belonging to the ephrin (EPH) family of cell adhesion proteins.
A distinctive feature of these binding proteins is in the
bidirectional communication between neurons (Pasquale, 2008).
EPHA3 is involved in axon guidance and synaptic plasticity.
EPHA3 shared a strong negative spatial correlation with our local
connectivity phenotype–higher expression was associated with
lower connectivity. Regulation of bidirectional communication is
also thought to depend on the interaction between presynaptic
NRXN and postsynaptic NLGN, described above. Among
our set of genes associated with our local and distributed
connectivity phenotypes, we identify an overrepresented sample
of genes involved in bidirectional synapse communication.
This finding suggests bidirectional communication, reflected in
lower functional connectivity at rest, may be central to the
neurobiological organization of creativity in the brain.

Neuroplastin (NPTN) is a protein-coding gene involved in
synaptic plasticity. GO database specifies NPTN expression
in relation to axon guidance and dendrite self-avoidance–
the process by which dendrites avoid contact with sister
dendrites of the same cell. Extensive study in mice has
demonstrated retrograde amnesia after an associative learning
task induced by NPTN ablation (Bhattacharya et al., 2017).
Our results show NPTN as sharing a spatial correlation with
both local and distributed connectivity maps: increased NPTN
expression was related to lower functional connectivity. We
interpret this negative association as a neurobiological profile,
wherein cortical expression of these select neuroplasticity genes
underlies individual differences in brain functional organization
related to creativity.

Inhibitory Neurotransmission in Creative
Brain Networks
Gamma-Aminobutyric acid (GABA) is the predominant
inhibitory neurotransmitter in the human brain and
mediates synaptic inhibition as a GABA-gated ion channel.
Among our lists of candidate genes, both NRXN1 and
NLGN2 are associated with inhibitory synapse formation.
Additionally, we identified two protein coding genes involved
in GABAergic synaptic transmission: GABRB2 and GABRA6.
These genes play a role in inhibitory synapse assembly and
regulation of postsynaptic membrane potential (The Gene
and Ontology Consortium, 2017). Studies of resting-state
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GABA concentrations have revealed high regional GABA
expression within Default Mode Network regions is associated
with enhanced deactivation (Hu et al., 2013). Recent investigation
of the genetic basis of creativity has suggested GABA/Glutamate
ratio may be closely related to creative ability (Liu et al., 2018).
Transcutaneous vagus nerve stimulation (tVNS) further supports
the role of GABA in creative thinking (Colzato et al., 2018). Our
findings indicate that cortical expression of GABAergic genes is
related to regional functional connectivity in the creative brain
at rest. We thus find a negative association between expression
of inhibitory neurotransmitters and functional connectivity.
The present study further highlights the role of inhibitory
neurotransmission in creativity. Genes modulating synaptic
inhibition may be essential to understanding the neural circuitry
underpinning creativity, but more work is needed to explain
how these biological processes of inhibitory neurotransmission
facilitate creative cognition.

CONCULSION

Our results identified neurogenetic underpinnings of the cortical
connectivity of creativity, highlighting their contribution to
synapse plasticity. More work is needed to understand the
role of synaptic plasticity in creative cognition. Future research
could explore possible manipulation of cortical plasticity via
non-invasive brain stimulation, to selectively induce or inhibit
functional communication between large-scale networks. Taken
together, our results pave the way toward elucidating the
complexity of brain networks and neurobiological mechanisms
underlying human creativity.
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