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Abstract: (1) Background: Natural constituents are still a preferred route for counteracting the
outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising
molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has
spread in many countries, which has raised awareness of the role of natural constituents in attempts
to contribute to therapeutic protocols. (2) Methods: Using various chromatographic techniques, triter-
penes (1–7), phenolics (8–11), and flavonoids (12–17) were isolated from Euphorbia dendroides and com-
putationally screened against the receptor-binding domain (RBD) of the SARS-CoV-2 Omicron vari-
ant. As a first step, molecular docking calculations were performed for all investigated compounds.
Promising compounds were subjected to molecular dynamics simulations (MD) for 200 ns, in addition
to molecular mechanics Poisson–Boltzmann surface area calculations (MM/PBSA) to determine bind-
ing energy. (3) Results: MM/PBSA binding energy calculations showed that compound 14 (quercetin-
3-O-β-D-glucuronopyranoside) and compound 15 (quercetin-3-O-glucuronide 6”-O-methyl ester)
exhibited strong inhibition of Omicron, with ∆Gbinding of −41.0 and −32.4 kcal/mol, respectively.
Finally, drug likeness evaluations based on Lipinski’s rule of five also showed that the discovered
compounds exhibited good oral bioavailability. (4) Conclusions: It is foreseeable that these results
provide a novel intellectual contribution in light of the decreasing prevalence of SARS-CoV-2 B.1.1.529
and could be a good addition to the therapeutic protocol.
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1. Introduction

In October 2021, a new SARS-CoV-2 B.1.1.529 variant emerged in South Africa, desig-
nated Omicron by the World Health Organization (WHO). By early 2022, over 100,000 Omi-
cron genomes had evolved as Omicron begun to dominate SARS-CoV-2 infections around
the world [1]. Because it contains more mutations than any other strain, it is more transmis-
sible than previous strains. Many of the changes are found in the spike protein, which is
involved in the transmission of the virus.

Natural ingredients offer a wide range of chemical properties, including antiviral
activity, and thus could be used to treat coronavirus infections. Plants and their secondary
metabolites that act against targets associated with SARS-CoV-2 infection could be useful
leads for developing drugs against the newly emerged Omicron. The discovery of antiviral
drugs and effective therapeutic techniques is lengthy and laborious. Therefore, natural
chemicals are often considered as attractive alternative treatment solutions because they are
also the main sources of antibacterial and antiviral drugs. Recently, it was suggested that
dietary flavonoids could regulate the severity of SARS-CoV-2 disease by affecting ACE2
prevalence and function [2,3]. Several publications have also stated that polyphenols target
the renin–angiotensin system by modulating angiotensin II levels in mice [4,5].

In silico studies recently reported that flavonoids such as quercetin and rutin and
polyphenols such as epigallocatechin gallate, myricetin, and quercetagetin showed a high
rate of inhibition against the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 [6].

Euphorbia dendroides L. (family Euphorbiaceae), one of the species with high polyphenol
content, is a perennial small tree growing in Sollum and Mersa Matruh in Egypt [7]. The
genus Euphorbia is unique in that it includes highly reputed species used in traditional
medicine against various human diseases, such as respiratory diseases, inflammation, skin
diseases, diarrhea, migraine, gonorrhea, warts, and intestinal parasites and exerts a laxative
effect [8–10]. In addition to E. dendroides, other plants in the genus Euphorbia and their
constituents have also recently gained medicinal importance and are used for various
diseases, including as anticancer [11–13], antioxidants [14], and antiviral agents, and to
target multidrug resistance [15,16] and COVID-19 [17–19]. Our previous phytochemical
studies on E. dendroides’ aerial parts revealed the presence of ten phenolic compounds,
including six flavonoids, one phenolaldehyde, and three phenolic acids [20], as well as six
cycloartane triterpenes and lupeol triterpenes, in addition to β-sitosterol and three fatty
acids [13]. The constituents of medicinal plants may serve as targets for the development
of therapeutic candidates against some SARS-CoV-2 proteins [21,22]. Consequently, in
this study, seventeen phytoconstituents from the categories of flavonoids, phenols, and
triterpenes that we had previously obtained from this plant were evaluated by in silico
studies as potential candidates against the Omicron variant of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2).

In this study, we performed computational molecular screening against the Omi-
cron receptor-binding domain (O-RBD) to explore and develop drugs from natural plant
constituents that are effective against the current pandemic virus.

2. Results and Discussion
2.1. Identification of Phytoconstituents from E. dendroides

The phytochemicals of E. dendroides (1–17) were elucidated using NMR (Figures S1–S52)
as well as LC-ESI-MS/MS spectra and by comparison with the literature data. These
compounds were identified as 24-methylene cycloartan-3β-ol (1) [11], cycloart-23-ene-3β,25-
diol (2) [23], cycloart-23-ene-3β,25-diol monoacetate (3) [23], 3β-hydroxy-cycloart-23-ene-25
methyl ether (4) [24], 24 R/S-3β-hydroxy-25-methylene cycloartan-24-ol (5) [24], 23 R/S-
3β-hydroxycycloart-24-ene-23-methyl ether (6) [13], lupeol (7) [25], gallic acid (8) [26],
vanillin (9) [27], protocatechuic acid (10) [28], trans-caffeic acid (11) [29], luteolin (12) [30],
kaempferol-3-O-β-D-glucuronopyranoside (13), quercetin-3-O-β-D-glucuronopyranoside (14) [31],
quercetin-3-O-glucuronide 6”-O-methyl ester (15) [31,32], kampferol-3-O-glucuronide 6”-
O-methyl ester (16) [32], and quercetin-3-O-β-D-glucopyranoside (17) [33].
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2.2. Molecular Docking

An important aspect of the drug discovery strategy is molecular docking analysis,
which can be used to specify protein–ligand interactions in the active site of the target
protein. In this context, all seventeen compounds were subjected to molecular docking cal-
culations to investigate their potency as anti-Omicron drugs. For each compound, only the
docking pose with the highest docking score was selected from the nine docking poses. The
estimated docking scores for all seventeen compounds are shown in Table S2. As shown
in the data deposited in Table S2, eight compounds had docking scores of less than
−7.0 kcal/mol. For the remaining compounds, three compounds were in the range of
−7.2 to −7.7 kcal/mol and six compounds were in the range of −7.9 to −8.8 kcal/mol. The
average docking score for the seventeen compounds was calculated to be −7.04 kcal/mol.

Remdesivir is a nucleotide analog prodrug and has been recently subjected to in vitro
experiments as an anti-Omicron drug [34]. In order to assess the potentiality of the dis-
covered compounds, the binding features and affinities of the top six compounds were
compared to those of remdesivir against Omicron. Table 1 provides a deeper under-
standing of the binding characteristics for the top six compounds, as well as remdesivir,
with Omicron.

The docking features in Table 1 reveal that remdesivir demonstrated four hydrogen
bonds with TYR453, SER494, and TYR501 with bond lengths ranging from 2.27 to 3.01 Å.
The six top-ranked compounds exhibited similar binding modes and abundant hydrogen
bonds with three main residues: SER496, TYR501, and HIS505. For instance, compound 15
achieved the highest value of docking score towards Omicron equal to −8.8 kcal/mol, form-
ing multiple hydrogen bonds with SER496 (2.99, 3.01 Å), in addition to TYR501 (2.92 Å) and
HIS505 (3.17 Å). Compound 14, the second-highest-ranked compound, had a docking score
equal to −8.7 kcal/mol, forming triple hydrogen bonds with SER496 (2.13, 2.93, 3.01 Å), as
well a single bond with TYR501 (2.89 Å) and HIS505 (3.18 Å).

To recognize the other types of interactions, two-dimensional representations of the
interactions of these six potent compounds with the main active site residues are displayed
in Figure 1. It is worth mentioning that compound 15 exhibited a pi–alkyl interaction with
LEU455 (4.96 Å) and ARG493 (4.17 Å). Moreover, it also formed a pi–cation interaction
with ARG403 (4.92 Å), as well pi–pi stacked and pi–pi T-shaped with TYR501 (4.24 Å) and
HIS505 (4.92, 4.99 Å), respectively. In the case of compound 14, it formed two extra types
of interactions, pi–pi T-shaped with HIS505 (4.92, 5.05 Å) and a pi–cation interaction with
ARG403 (4.90 Å). Similar to compound 15, compound 16 formed pi–alkyl, pi–pi stacked,
and pi–cation interactions with the same residues but different bond lengths. Excluding
pi–alkyl interaction, compound 17 showed the same types of interactions that existed
in compound 16. Notably, compound 13 was the only one that exhibited no pi–cation
interaction. Compound 12, the lowest-ranking of the six compounds in terms of docking
score, showed only two additional interactions other than hydrogen bonding. It is worth
highlighting that residues ARG403, TYR501, and HIS505 favored the formation of pi–cation,
pi–pi stacked, and pi–pi T-shaped interactions, respectively, with RBD residues.

2.3. Molecular Dynamics (MD) Simulations

The main purpose of applying molecular dynamics (MD) simulations is to investi-
gate the conformational flexibilities and stabilities of studied protein–ligand complexes.
Accordingly, MD simulations up to 200 ns were performed for the best-ranking six com-
plexes. Binding energy calculations were also run using the MM/PBSA approach. Data of
estimated binding energies are represented in Figure 2.

Notably, compounds 14 and 13 showed similar binding energies over 50 ns with
values equal to −44.8 and −46.4 kcal/mol, respectively. Furthermore, compound 15 and
compound 16 showed identical values of binding energy. Interestingly, compound 12, the
lowest of the six compounds in terms of docking score, also exhibited the lowest binding
energy, with a value equal to −18.6 kcal/mol.
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Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir
against Omicron.

Molecule 2D Chemical Structure Docking Score (kcal/mol) Binding Features (Hydrogen
Bond Length in Å)

15

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir 
against Omicron. 

Molecule 2D Chemical Structure 
Docking Score 

(kcal/mol) 
Binding Features (Hydrogen Bond 

Length in Å) 

15 

 

−8.8 
ARG403 (3.23 Å), TYR453 (2.94 Å), 
SER496 (2.99, 3.01 Å), TYR501 (2.92 

Å), HIS505 (3.17 Å) 

14 

 

−8.7 
ARG403 (3.18 Å), SER496 (2.13, 2.93, 

3.01 Å), TYR501 (2.89 Å), HIS505 (3.18 
Å) 

16 

 

−8.4 
GLU406 (2.94 Å), TYR453 (2.87 Å), 
SER496 (2.92, 3.01 Å), TYR501 (2.90 

Å), HIS505 (3.17 Å) 

17 

 

−8.3 
TYR453 (2.97 Å), SER496 (2.99, 3.03, 

3.08 Å), TYR501 (2.94 Å), HIS505 (3.17 
Å) 

13 

 

−8.1 

TYR453 (2.26 Å), SER496 (2.93, 2.98, 
3.01 Å), TYR501 (2.87 Å), HIS505 (3.15 

Å) 
 

−8.8
ARG403 (3.23 Å), TYR453 (2.94 Å),

SER496 (2.99, 3.01 Å),
TYR501 (2.92 Å), HIS505 (3.17 Å)

14

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir 
against Omicron. 

Molecule 2D Chemical Structure 
Docking Score 

(kcal/mol) 
Binding Features (Hydrogen Bond 

Length in Å) 

15 

 

−8.8 
ARG403 (3.23 Å), TYR453 (2.94 Å), 
SER496 (2.99, 3.01 Å), TYR501 (2.92 

Å), HIS505 (3.17 Å) 

14 

 

−8.7 
ARG403 (3.18 Å), SER496 (2.13, 2.93, 

3.01 Å), TYR501 (2.89 Å), HIS505 (3.18 
Å) 

16 

 

−8.4 
GLU406 (2.94 Å), TYR453 (2.87 Å), 
SER496 (2.92, 3.01 Å), TYR501 (2.90 

Å), HIS505 (3.17 Å) 

17 

 

−8.3 
TYR453 (2.97 Å), SER496 (2.99, 3.03, 

3.08 Å), TYR501 (2.94 Å), HIS505 (3.17 
Å) 

13 

 

−8.1 

TYR453 (2.26 Å), SER496 (2.93, 2.98, 
3.01 Å), TYR501 (2.87 Å), HIS505 (3.15 

Å) 
 

−8.7
ARG403 (3.18 Å),

SER496 (2.13, 2.93, 3.01 Å),
TYR501 (2.89 Å), HIS505 (3.18 Å)

16

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir 
against Omicron. 

Molecule 2D Chemical Structure 
Docking Score 

(kcal/mol) 
Binding Features (Hydrogen Bond 

Length in Å) 

15 

 

−8.8 
ARG403 (3.23 Å), TYR453 (2.94 Å), 
SER496 (2.99, 3.01 Å), TYR501 (2.92 

Å), HIS505 (3.17 Å) 

14 

 

−8.7 
ARG403 (3.18 Å), SER496 (2.13, 2.93, 

3.01 Å), TYR501 (2.89 Å), HIS505 (3.18 
Å) 

16 

 

−8.4 
GLU406 (2.94 Å), TYR453 (2.87 Å), 
SER496 (2.92, 3.01 Å), TYR501 (2.90 

Å), HIS505 (3.17 Å) 

17 

 

−8.3 
TYR453 (2.97 Å), SER496 (2.99, 3.03, 

3.08 Å), TYR501 (2.94 Å), HIS505 (3.17 
Å) 

13 

 

−8.1 

TYR453 (2.26 Å), SER496 (2.93, 2.98, 
3.01 Å), TYR501 (2.87 Å), HIS505 (3.15 

Å) 
 

−8.4
GLU406 (2.94 Å), TYR453 (2.87 Å),

SER496 (2.92, 3.01 Å),
TYR501 (2.90 Å), HIS505 (3.17 Å)

17

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir 
against Omicron. 

Molecule 2D Chemical Structure 
Docking Score 

(kcal/mol) 
Binding Features (Hydrogen Bond 

Length in Å) 

15 

 

−8.8 
ARG403 (3.23 Å), TYR453 (2.94 Å), 
SER496 (2.99, 3.01 Å), TYR501 (2.92 

Å), HIS505 (3.17 Å) 

14 

 

−8.7 
ARG403 (3.18 Å), SER496 (2.13, 2.93, 

3.01 Å), TYR501 (2.89 Å), HIS505 (3.18 
Å) 

16 

 

−8.4 
GLU406 (2.94 Å), TYR453 (2.87 Å), 
SER496 (2.92, 3.01 Å), TYR501 (2.90 

Å), HIS505 (3.17 Å) 

17 

 

−8.3 
TYR453 (2.97 Å), SER496 (2.99, 3.03, 

3.08 Å), TYR501 (2.94 Å), HIS505 (3.17 
Å) 

13 

 

−8.1 

TYR453 (2.26 Å), SER496 (2.93, 2.98, 
3.01 Å), TYR501 (2.87 Å), HIS505 (3.15 

Å) 
 

−8.3
TYR453 (2.97 Å),

SER496 (2.99, 3.03, 3.08 Å),
TYR501 (2.94 Å), HIS505 (3.17 Å)

13

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

Table 1. Docking scores (in kcal/mol) and binding features for best six compounds and remdesivir 
against Omicron. 

Molecule 2D Chemical Structure 
Docking Score 

(kcal/mol) 
Binding Features (Hydrogen Bond 

Length in Å) 

15 

 

−8.8 
ARG403 (3.23 Å), TYR453 (2.94 Å), 
SER496 (2.99, 3.01 Å), TYR501 (2.92 

Å), HIS505 (3.17 Å) 

14 

 

−8.7 
ARG403 (3.18 Å), SER496 (2.13, 2.93, 

3.01 Å), TYR501 (2.89 Å), HIS505 (3.18 
Å) 

16 

 

−8.4 
GLU406 (2.94 Å), TYR453 (2.87 Å), 
SER496 (2.92, 3.01 Å), TYR501 (2.90 

Å), HIS505 (3.17 Å) 

17 

 

−8.3 
TYR453 (2.97 Å), SER496 (2.99, 3.03, 

3.08 Å), TYR501 (2.94 Å), HIS505 (3.17 
Å) 

13 

 

−8.1 

TYR453 (2.26 Å), SER496 (2.93, 2.98, 
3.01 Å), TYR501 (2.87 Å), HIS505 (3.15 

Å) 
 

−8.1
TYR453 (2.26 Å),

SER496 (2.93, 2.98, 3.01 Å),
TYR501 (2.87 Å), HIS505 (3.15 Å)

Remdesivir

Molecules 2022, 27, x FOR PEER REVIEW 5 of 15 
 

 

Remdesivir 

 

−8.0 TYR453 (2.91 Å), SER494 (2.27, 2.89 
Å), TYR501 (3.01 Å) 

12 

 

−7.9 ARG403 (3.04 Å), TYR495 (2.57 Å) 

The docking features in Table 1 reveal that remdesivir demonstrated four hydrogen 
bonds with TYR453, SER494, and TYR501 with bond lengths ranging from 2.27 to 3.01 Å. 
The six top-ranked compounds exhibited similar binding modes and abundant hydrogen 
bonds with three main residues: SER496, TYR501, and HIS505. For instance, compound 
15 achieved the highest value of docking score towards Omicron equal to −8.8 kcal/mol, 
forming multiple hydrogen bonds with SER496 (2.99, 3.01 Å), in addition to TYR501 (2.92 
Å) and HIS505 (3.17 Å). Compound 14, the second-highest-ranked compound, had a dock-
ing score equal to −8.7 kcal/mol, forming triple hydrogen bonds with SER496 (2.13, 2.93, 
3.01 Å), as well a single bond with TYR501 (2.89 Å) and HIS505 (3.18 Å). 

To recognize the other types of interactions, two-dimensional representations of the 
interactions of these six potent compounds with the main active site residues are dis-
played in Figure 1. It is worth mentioning that compound 15 exhibited a pi–alkyl interac-
tion with LEU455 (4.96 Å) and ARG493 (4.17 Å). Moreover, it also formed a pi–cation 
interaction with ARG403 (4.92 Å), as well pi–pi stacked and pi–pi T-shaped with TYR501 
(4.24 Å) and HIS505 (4.92, 4.99 Å), respectively. In the case of compound 14, it formed two 
extra types of interactions, pi–pi T-shaped with HIS505 (4.92, 5.05 Å) and a pi–cation in-
teraction with ARG403 (4.90 Å). Similar to compound 15, compound 16 formed pi–alkyl, 
pi–pi stacked, and pi–cation interactions with the same residues but different bond 
lengths. Excluding pi–alkyl interaction, compound 17 showed the same types of interac-
tions that existed in compound 16. Notably, compound 13 was the only one that exhibited 
no pi–cation interaction. Compound 12, the lowest-ranking of the six compounds in terms 
of docking score, showed only two additional interactions other than hydrogen bonding. 
It is worth highlighting that residues ARG403, TYR501, and HIS505 favored the formation 
of pi–cation, pi–pi stacked, and pi–pi T-shaped interactions, respectively, with RBD resi-
dues. 

O

OH

OH

HO

O

OH

−8.0
TYR453 (2.91 Å),

SER494 (2.27, 2.89 Å),
TYR501 (3.01 Å)

12

Molecules 2022, 27, x FOR PEER REVIEW 5 of 15 
 

 

Remdesivir 

 

−8.0 TYR453 (2.91 Å), SER494 (2.27, 2.89 
Å), TYR501 (3.01 Å) 

12 

 

−7.9 ARG403 (3.04 Å), TYR495 (2.57 Å) 

The docking features in Table 1 reveal that remdesivir demonstrated four hydrogen 
bonds with TYR453, SER494, and TYR501 with bond lengths ranging from 2.27 to 3.01 Å. 
The six top-ranked compounds exhibited similar binding modes and abundant hydrogen 
bonds with three main residues: SER496, TYR501, and HIS505. For instance, compound 
15 achieved the highest value of docking score towards Omicron equal to −8.8 kcal/mol, 
forming multiple hydrogen bonds with SER496 (2.99, 3.01 Å), in addition to TYR501 (2.92 
Å) and HIS505 (3.17 Å). Compound 14, the second-highest-ranked compound, had a dock-
ing score equal to −8.7 kcal/mol, forming triple hydrogen bonds with SER496 (2.13, 2.93, 
3.01 Å), as well a single bond with TYR501 (2.89 Å) and HIS505 (3.18 Å). 

To recognize the other types of interactions, two-dimensional representations of the 
interactions of these six potent compounds with the main active site residues are dis-
played in Figure 1. It is worth mentioning that compound 15 exhibited a pi–alkyl interac-
tion with LEU455 (4.96 Å) and ARG493 (4.17 Å). Moreover, it also formed a pi–cation 
interaction with ARG403 (4.92 Å), as well pi–pi stacked and pi–pi T-shaped with TYR501 
(4.24 Å) and HIS505 (4.92, 4.99 Å), respectively. In the case of compound 14, it formed two 
extra types of interactions, pi–pi T-shaped with HIS505 (4.92, 5.05 Å) and a pi–cation in-
teraction with ARG403 (4.90 Å). Similar to compound 15, compound 16 formed pi–alkyl, 
pi–pi stacked, and pi–cation interactions with the same residues but different bond 
lengths. Excluding pi–alkyl interaction, compound 17 showed the same types of interac-
tions that existed in compound 16. Notably, compound 13 was the only one that exhibited 
no pi–cation interaction. Compound 12, the lowest-ranking of the six compounds in terms 
of docking score, showed only two additional interactions other than hydrogen bonding. 
It is worth highlighting that residues ARG403, TYR501, and HIS505 favored the formation 
of pi–cation, pi–pi stacked, and pi–pi T-shaped interactions, respectively, with RBD resi-
dues. 

O

OH

OH

HO

O

OH

−7.9 ARG403 (3.04 Å), TYR495 (2.57 Å)



Molecules 2022, 27, 2929 5 of 13

Molecules 2022, 27, x FOR PEER REVIEW 5 of 14 
 

 

played in Figure 1. It is worth mentioning that compound 15 exhibited a pi–alkyl interac-

tion with LEU455 (4.96 Å) and ARG493 (4.17 Å). Moreover, it also formed a pi–cation 

interaction with ARG403 (4.92 Å), as well pi–pi stacked and pi–pi T-shaped with TYR501 

(4.24 Å) and HIS505 (4.92, 4.99 Å), respectively. In the case of compound 14, it formed two 

extra types of interactions, pi–pi T-shaped with HIS505 (4.92, 5.05 Å) and a pi–cation in-

teraction with ARG403 (4.90 Å). Similar to compound 15, compound 16 formed pi–alkyl, 

pi–pi stacked, and pi–cation interactions with the same residues but different bond 

lengths. Excluding pi–alkyl interaction, compound 17 showed the same types of interac-

tions that existed in compound 16. Notably, compound 13 was the only one that exhibited 

no pi–cation interaction. Compound 12, the lowest-ranking of the six compounds in terms 

of docking score, showed only two additional interactions other than hydrogen bonding. 

It is worth highlighting that residues ARG403, TYR501, and HIS505 favored the formation 

of pi–cation, pi–pi stacked, and pi–pi T-shaped interactions, respectively, with RBD resi-

dues. 

 

Figure 1. Two-dimensional representations of the anticipated binding poses of the best-investigated
drugs inside the active site of Omicron.

To further check the stability of the six compounds inside the Omicron active site,
MD simulation was performed up to 100 ns. Remarkably, compounds 15 and 12 exhibited
higher binding energies than in the 50 ns MD simulations, with ∆Gbinding of −22.9 and
−21.8 kcal/mol, respectively. Compounds 14 and 13, those that were the highest-ranked
compounds in the 50 ns MD simulations, were also the highest-ranked in the 100 ns MD
simulations, with a slight decrease in binding energies, with values equal to −42.4 and
−38.4 kcal/mol.

Through analyzing the binding energies for the six compounds over the whole 200 ns
MD simulations, compound 13 showed a continuous decrease in binding energy with
increasing simulation time. Conversely, compound 15 exhibited increasing binding energy
over the 200 ns MD simulations. Interestingly, compound 17 showed very similar results of
binding energy over the 50 ns, 100 ns, 150 ns, and 200 ns MD simulations.
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2.4. Post-MD Analyses

The structural stability and conformational variations of protein–ligand docked com-
plexes over the MD simulation process can be evaluated by root-mean-square deviation
(RMSD) measurement. Lower values of RMSD give an indication of tight binding. The
following equation describes how RMSD was estimated.

RMSD =

√
∑n

i=1 Ri ∗ Ri

n

where Ri is the vector connecting the positions of atom i [of N atoms] in the reference
snapshot and the current snapshot after optimal superposition.

Obtained results of RMSD analysis over 200 ns MD simulation are plotted in Figure 3.
It is worth mentioning that compound 14 exhibited overall stability compared to the other
five compounds, with an average RMSD value of 2.84 Å. Comparatively, the RMSD values
of the other compounds were relatively high. These results showed that compound 14 was
tightly bound and had no effect on the overall topology of Omicron.
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Root-mean-square fluctuation (RMSF) analysis was conducted to investigate the flexi-
bility of the Omicron residues over the 200 ns MD simulations. Briefly, higher RMSF values
indicate greater flexibility of protein residues, whereas low RMSF values imply limitations
of residues’ movement, and accordingly less flexibility. RMSF can be estimated using the
following equation:

RMSF =

√√√√ 3

∑
j=1

(
1
N

N

∑
k=1

P2
ijk − P2

ij)

The RMSF of the atom i with j from 1 to 3 for the x, y, and z coordinate of the position
vector P of the atom and k over the set of N evaluated snapshots was calculated.

The RMSF data are shown in Figure 4. Compound 14 complexed with Omicron had
fewer fluctuations over 200 ns, with RMSF of 1.47 Å, which is consistent with the RMSD
findings. Other compounds had values of RMSF ranging between 1.48 and 1.68 Å.
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Omicron-13, Omicron-14, Omicron-15, Omicron-16, Omicron-17).

In order to assess whether the protein–ligand complexes were stably folded or not,
radius of gyration (Rg) analysis was performed over the 200 ns MD simulations. Values of
Rg give an indication of the compactness of the protein structure within the system [35] A
more compact protein structure can be observed in the case of lower values of Rg. During
the 200 ns simulation course, all compounds exhibited acceptable behavior of Rg, which
can be observed in Figure 5. The range of Rg values for the six compounds was from
18.68 to 19.14 Å. What also can be noticed from Figure 5 is that compounds 14 and 15
showed constant Rg behavior during the simulation, which indicates high compactness of
the protein structure.

Solvent-accessible surface area analysis (SASA) was performed to represent the area
of protein exposed to solvent. The averaged SASA values of the six structures were
10,501, 10,428, 106,30, 11,007, 10,553, and 10,886 for compounds 12 to 17, respectively.
Despite the compact folding of 7QNW, the increase in SASA in compound 15 compared
to the other compounds indicated obvious conformational changes due to ligand binding.
Consequently, SASA may provide details about the protein’s ability to interact. As shown
in the data in Figure 6, all six compounds exhibited relative stability and compactness over
the course of the 200 ns MD simulation.

2.5. In Silico Drug Likeness

Based on Lipinski’s rules, physicochemical properties were investigated to
understand the studied compounds’ molecular features better. The Molinspiration tool
https://www.molinspiration.com (30 April 2022) was utilized to compute the in silico

https://www.molinspiration.com
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molecular features of compounds. The investigated Lipinski’s parameters, topological po-
lar surface area (TPSA), as well percentage of absorption (% ABS) of Lipinski’s parameters
were anticipated and are presented in Table 2.
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Table 2. Predicted physiochemical parameters of the best identified compounds and their
structural descriptors.

Molecule miLogP TPSA MWt nON nOHNH Nrotb Nviolations %ABS

14 −0.5 227.6 478.4 13 8 4 2 30.5%
15 0.1 216.6 492.4 13 7 5 2 34.3%

As revealed from the data in Table 2, the investigated two compounds showed
lower values of miLogP, indicating that these compounds possess adequate permeabil-
ity via the cell membrane. The molecular weights of the inspected compounds did not
exceed 500 (calc. 478.4 and 492.4). Hydrogen bond donors (nON) were found to total 13.
Furthermore, the number of hydrogen bond acceptors (nOHNH) was found to range
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between 7 and 8. Although the values of nON and nOHNH were higher than the ideal
values, it was reported that this defect did not exert a remarkable effect on the compound’s
diffusion and transportation, as many FDA-approved drugs transcend the optimum Lip-
inski values of nON and nOHNH [36]. The estimated %ABS values were in the range
of 30.0–35.0%. The TPSA values were also detected in the range of 215.0–230.0, which
indicates the high bioavailability of these discovered compounds.

3. Materials and Methods
3.1. Plant Material

The aerial parts of E. dendroides were collected in April 2017 in Mersa Matruh on the
northwestern coast of Egypt. The plant material was authenticated by Dr. Omran Ghaly,
with a PhD in Plant Taxonomy, at the Desert Research Center. A voucher sample (CAIH-30-
12-2017-R) was deposited in the herbarium of the Desert Research Center, Cairo, Egypt.

3.2. Phytochemical Constituents of E. dendroides

The phytochemical study of the aerial plant parts of E. dendroides revealed approxi-
mately seventeen secondary metabolites, as indicated by previous studies [13,20]. These
natural components have been divided into six flavonoids (12–17), four phenolic com-
pounds (8–11), and seven triterpenes (1–7). In particular, the triterpenes were extracted
from the methanol plant extract by extensive chromatographic methods, and their structure
was elucidated by 1D and 2D NMR spectroscopic methods. Four phenolics and three
flavonoids were also isolated and identified from the poly-phenolic-rich fraction of the
plant using chromatographic and spectroscopic tools, while the remaining three flavonoids
were determined from the polyphenol-rich fraction of the plant using LC-ESI-MS/MS. All
the phytochemical components of E. dendroides (1–17) were tested in silico for their ability
to inhibit Omicron.

3.3. Protein Preparation

The three-dimensional crystal structure of the receptor-binding domain (RBD) of the
SARS-CoV-2 Omicron variant (PDB ID: 7QNW, resolution: 2.40 Å) was retrieved and used
for all in silico analyses. The downloaded viral target was prepared by removing ions, water
molecules, and hetero-atoms. To identify the protonation states of the protein residues,
the H++ web server [37,38] was used. Accordingly, all missing hydrogen atoms were
successfully added. For the H++ calculations, physiological parameters such as pH, salinity,
internal dielectricity, and external dielectricity were set to 6.5, 0.15, 10, and 80, respectively.

3.4. Inhibitor Preparation

Chem3D Pro 12.0 software (version 12.0.2) was utilized to sketch and analyze the sev-
enteen extracted compounds’ chemical structures. All studied compounds were subjected
to energy minimization using the MM2 force field. Before a molecular docking study, such
an energy minimization step is required to reduce the influence of any potential unfavor-
able torsion angles, bond angles, bond lengths, or undesirable non-bonded interactions [39].
The names of the investigated compounds and their 2D chemical structures are illustrated
in Table S1.

3.5. Molecular Docking

Molecular docking is considered the best tool in computational drug discovery to
determine the efficacy of the compounds under study [40]. AutoDock Vina was used to
study the binding affinities for these compounds [41]. All parameters were left in their
default modes in this study, except for the exhaustiveness parameter, which was set to
200. Residues of the O-RBD were enclosed by a docking grid box with XYZ dimensions of
25 × 25 × 25 (Å). In addition, the grid spacing was set to 1.0 Å. The generated nine poses
of the docked inhibitors were evaluated and the best one was selected. BIOVIA Discovery
Studio was used to visualize the protein–ligand interactions [42].
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3.6. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were conducted using the YASARA Structure
(version 21.12.19) protocol [43] to obtain a better understanding of the stability of the
protein–ligand complexes. Within the MD simulations, the AMBER14 force field was the
utilized force field. Execution of the initial energy minimization was performed using
the steepest descent algorithm. The MD simulations were conducted for amino acid
residues at the default physiological value of pH (7.4). Water molecules were successfully
introduced into the system at constant temperature and pressure conditions. Counter ions
(Na+ or Cl−) with a concentration equal to 0.9% were included to maintain the neutral
state of the systems. To maintain the pressure value at 1 atm, the Berendsen barostat
technique [44] was used. The long-range coulomb forces were computed employing the
particle-mesh Ewald (PME) method [45,46]. The cut-off radius was set to 8 Å for the
non-bonded interactions. The Langevin thermostat method was employed to hold the
value of temperature at 300 K [47]. The periodic boundary conditions were also taken
into account. The cubic simulation cell was chosen to be larger than the studied protein–
ligand complexes by 20 Å in every instance. With a multiple time step of 1.25 fs, a regular
simulation speed was preserved for intramolecular processes. At an integration step of 2 fs,
all intermolecular bonds, including hydrogen bonds, were constrained using the SHAKE
algorithm [48]. As a final step, production stages were accomplished over simulation times
of 50 ns, 100 ns, 150 ns, and 200 ns. Snapshots of the simulation trajectory were held
every 100 ps after an equilibration time of 1–2 ns, determined by the root-mean-square
deviations (RMSDs) of the solutes from the initial structure. Simulation steps were executed
using a pre-installed macro (md_run.mcr) within the YASARA package. The YASARA
program (version 21.11.16) uses the Poisson–Boltzmann approach [49] (called “PBS”). The
surfcost parameter, used to calculate the entropic cost of exposing an Å2 to the solvent,
was set to 0.35. The Amber14 force field was used to calculate the binding energy of
the inhibitor. To ensure consistency with the empirically determined values, the binding
energies derived from PBS were divided by a factor of 20 [50]. The root-mean-square
deviation (RMSD), radius of gyration (Rg), root-mean-square fluctuation (RMSF), and
solvent-accessible-surface-area (SASA) were all used to analyze the best compounds at the
end of the 200 ns MD simulations.

3.7. Binding Energy Calculations

Binding free energies of the investigated drugs against Omicron were computed using
the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) approach [51].
The below-illustrated equations were used in the process of MM/PBSA binding free
energy calculations.

∆Gbinding = ∆GC − ∆GP − ∆GL

∆Gbinding = ∆H − T∆S = ∆EMM + ∆GSol − T∆S

Values of the binding energy of the complex, protein, and ligand are described by
∆GC, ∆GP, and ∆GL, respectively. In addition, ∆GSol, ∆EMM, and −T∆S stand for the solva-
tion Gibbs energy, gas-phase molecular mechanics change, and conformational entropy,
respectively. The term ∆EMM can be determined through summation of the van der Waals
and electrostatic interactions. The term ∆GSol can readily be defined as adding the polar
and non-polar solvation values. The entropic contribution is denoted by the term −T∆S.

3.8. Drug Likeness Properties

In order to assess the physicochemical parameters of the specified compounds, the
online Molinspiration cheminformatics software (http://www.molinspiration.com 30 April
2022) was employed. For each discovered compound, various descriptors were checked,
including the octanol/water partition coefficient (milogP), topological polar surface area
(TPSA), molecular weight (MWt), number of hydrogen bond donors (nOHNH), number of

http://www.molinspiration.com
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hydrogen bond acceptors (nON), number of rotatable bonds (Nrotb), and percentage of ab-
sorption (%ABS). The equation that was used in computing %ABS is displayed below [52]:

%ABS = 109 − [0.345 × TPSA]

4. Conclusions

In the current pandemic, with the emergence of Omicron, in silico strategies may be
useful in discovering potent inhibitors for this disease. In the present study, molecular
docking calculations were performed for seventeen isolated compounds from Euphorbia
dendroides. The results showed that six flavonoid compounds are the best anti-Omicron
drug candidates, further supporting their efficacy. Combined molecular dynamics sim-
ulations (MD) and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
binding energy evaluations over 200 ns were performed for these six compounds. Two com-
pounds, namely quercetin-3-O-β-D-glucuronopyranoside and quercetin-3-O-glucuronide
6”-O-methyl ester, showed promising binding affinities, with ∆Gbinding of −41.0 and
−32.4 kcal/mol, respectively. As for drug-like properties, both compounds also proved
their potential, with a good percentage of absorption (%ABS).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092929/s1, NMR spectra; Figures S1–S52: spectrum
of compounds 1–14; Table S1: Compound name, 2D-chemical structure, and IUPAC name of the
seventeen studied compounds; Table S2: Calculated docking scores (in kcal/mol) for the SARS-CoV-2
Omicron drug candidates.
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