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Tetramethylpyrazine protects
against high glucose-induced
vascular smooth muscle cell
injury through inhibiting the
phosphorylation of JNK,
p38MAPK, and ERK

Yutao Liu1,*, Xu Li2,*, Shanling Jiang3 and
Quanli Ge1

Abstract

Objectives: High glucose-induced alterations in vascular smooth muscle cell behavior have not

been fully characterized. We explored the protective mechanism of tetramethylpyrazine (TMP)

on rat smooth muscle cell injury induced by high glucose via the mitogen-activated protein kinase

(MAPK) signaling pathway.

Methods: Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were divided

into control, high glucose (HG), and pre-hatching TMP groups. The effect of different glucose

concentrations on cell viability and on the migration activity of VSMC cells was examined using

MTTanalysis and the wound scratch assay, respectively. Superoxide dismutase (SOD) and malon-

dialdehyde (MDA) levels were measured using enzyme-linked immunoassays. The levels of extra-

cellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38MAPK, and MAPK

phosphorylation were assessed by western blotting.

Results: Cell proliferation was remarkably increased by increased glucose concentrations.

Compared with the HG group, the migratory ability of VSMC cells was reduced in the presence

of TMP. TMP also decreased the MDA content in the supernatant, but significantly increased the

SOD activity. Western blotting showed that TMP inhibited the phosphorylation of JNK,

p38MAPK, and ERK.
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Conclusions: TMP appears to protect against HG-induced VSMC injury through inhibiting reac-

tive oxygen species overproduction, and p38MAPK/JNK/ERK phosphorylation.
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Introduction

The incidence of type 2 diabetes mellitus

(T2DM) is increasing gradually worldwide,
and its related complications place a large

economic burden on public health.1 T2DM
is closely associated with a range of cardio-

vascular diseases, including peripheral
vascular disease, cerebrovascular disease,

coronary artery disease,2 and sclerosing
mesenteritis.3 High glucose (HG) levels

have been shown to damage vascular endo-
thelial cells and vascular smooth muscle

cells (VSMCs), and this injury to VSMCs
correlates with disease acceleration in

T2DM patients.4 Moreover, emerging clin-
ical evidence suggests that VSMCs may be

functionally impaired in diabetes, and that
this contributes to increased peripheral

vascular disease.5,6

High blood glucose levels facilitate the

formation of reactive oxygen species
(ROS), resulting in the uncoupling of mito-

chondrial oxidative phosphorylation and
generating further ROS. Furthermore, ROS

causes vascular damage, which triggers an
inflammatory reaction and the subsequent

release of chemoattractants, thus increasing
the risk of vascular disease in patients with

T2DM.7 Therefore, an understanding of
the mechanism underlying HG-induced
VSMC injury and the identification of an

effective drug to regulate the subsequent oxi-
dative stress response is a key challenge.

The Chinese herb Rhizoma Chuanxiong
has long been used in traditional Chinese
herbal medicine for the prevention and
treatment of ischemic neural disorders
and cardiovascular diseases including
ischemic stroke and pulmonary hyperten-
sion. Tetramethylpyrazine (TMP) is one
of the pharmacologically active compo-
nents isolated from the rhizomes of
Rhizoma Chuanxiong.8 Its cardioprotective
effects are believed to be related to its vaso-
dilating, anti-inflammatory, anticoagulant,
free radical-scavenging, and microcirculato-
ry properties.9–12 However, despite the
extensive use of TMP in the prevention
and treatment of cardiovascular diseases,
its mechanisms and protective effects on
VSMCs in diabetes are not complete-
ly understood.

Therefore, in the present study, we aimed
to explore whether TMP can attenuate
HG-induced oxidative stress and prolifera-
tion in VSMCs, and we investigated the
underlying molecular mechanisms.

Materials and methods

Drugs

TMP was purchased from Sigma-Aldrich
(St Louis, MO, USA) and used to make a
stock solution by dissolving in dimethyl
sulfoxide at a concentration of 1.0mM
and storing at –20�C.
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Vascular smooth muscle cell culture

and treatments

All animals used in this study were provided

and cared for by the Yantai University

Animal Center, and protocols were

approved by the Animal Care and Use

Committee of Yantai University. VSMCs

were isolated from the aorta of male

Sprague–Dawley rats (6–8 weeks old,

200–250 g body weight) by enzymatic diges-

tion as described previously.12 The VSMC

primary culture was validated by assessing

for the expression of a-smooth muscle cell

actin using western blotting. Cells were

cultured in DMEM medium (GIBCOVR

Cell Culture, Carlsbad, CA, USA) supple-

mented with 10% fetal bovine serum

(Biowest, Nuaillé, France) and penicillin–

streptomycin (100 IU/mL-0.1mg/mL) at

37�C in a humidified atmosphere of 95%

air and 5% CO2. Experiments were per-

formed using VSMCs between passage 3

and 5 at 70% confluency.
VSMCs were divided into the following

groups: control group (CN), DMEM

medium with 5.5mM D-glucose; high glu-

cose group (HG), DMEM medium with

25mM D-glucose; and the pre-hatching

TMP group (TMP 15 mM), DMEM

medium with 25mM D-glucose and

15 mM TMP.

MTT assay

VSMCs were seeded and cultured in 96-well

plates at a density of 5� 103 cells per well.

After adhering, the cells were incubated in

medium with different concentrations of

glucose (5.5mM, 11mM, and 25mM) for

24 hours. VSMCs pretreated with HG

were administrated TMP for 24 hours.

Cell proliferation was evaluated by the

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte-

trazolium bromide (MTT) assay as

described previously.13

Cell migration analysis

A wound scratch assay was used to measure
the migration of VSMCs. Cells were plated
into 6-well culture dishes at a density of
2.0� 105 cells/well. After adhering, cells
were grown to about 80% confluency, then
a sterile plastic 10 mL micropipette tip was
used to create a 1 mm scratch as a homoge-
neous wound. Cells were washed twice with
phosphate-buffered saline after wounding,
and were further incubated for 24 hours.
The wound widths were then measured
under microscope and images of the wound
were then taken using the IX51 inverted
microscope (Olympus Optical Co., Tokyo,
Japan) at magnification �100; the wound
width was used to calculate cell migration
as a wound healing percentage as follows:
(0 hours wound width – 24 hours wound
width)/0 hours wound width� 100%.

Determination of oxidative stress
biomarkers

VSMCs seeded in 6-well plates at 3� 105

cells per well were pretreated with or with-
out TMP for 24 hours followed by stimula-
tion with 25mM glucose for 30 minutes.
Cells were then collected and lysed using
cell lysis buffer (pH 7.0) containing 1mM
EDTA, 0.5mg/mL leupeptin, 10mg/mL
aprotinin, 0.7mg/mL pepstatin, and
0.5mM phenylmethylsulfonyl fluoride.
After centrifugation at 10,000 �g for
5 minutes, the supernatant was collected
to determine malonyldialdehyde (MDA)
and superoxide dismutase (SOD) levels
using a competitive enzyme-linked immu-
noassay kit (ELISA; Cell Biolabs Inc., San
Diego, CA, USA).14

Western blotting

Total protein was extracted using an extrac-
tion kit (Beyotime, China) according to the
manufacturer’s protocols, and the protein
concentration was determined by a BCA
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protein assay kit (Roche, Basel,
Switzerland). Protein samples were separat-
ed by 10% sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (40 mg per lane),
then transferred to polyvinylidene fluoride
membranes. After blocking with 5% non-
fat dried milk in Tris-buffered saline with
Tween-20 for 1 hour, the membranes were
incubated with the appropriate primary anti-
body. Antibodies against b-actin (1:1000),
c-Jun N-terminal kinase (JNK; 1:1000),
p38 mitogen-activated protein kinase
(MAPK; 1:1000), extracellular signal-
regulated kinase (ERK; 1:1000), phospho-
JNK (1:500), phospho-p38MAPK (1:500),
and phospho-ERK (1:500) were purchased
from Cell Signaling TechnologyVR (Danvers,
MA, USA). They were then incubated with
horseradish peroxidase-conjugated second-
ary antibody (Bioss, Beijing, China) and
visualized using the ECL plus detection kit
(Pierce Protein Research Products,
Rockford, IL, USA). Protein expression
was quantified by densitometry using a
ChemiDoc XRSp image analyzer (Bio-Rad,
Hercules, CA, USA) with b-actin as an inter-
nal loading control.15

Statistical analysis

All data were described as means� standard
deviation (SD). Statistical analysis was per-
formed with SPSS 19.0 software (IBM
Corp., Armonk, NY, USA). The data were
analyzed by one-way analysis of variance,
and differences between the two groups
were analyzed using the Least Significant
Difference method. Values of P<0.05 were
considered statistically significant.

Results

High glucose promoted VSMC
proliferation

Compared with the normal glucose control
group with a relatively low concentration

of glucose (CN, 5.5mM), the effect of

middle glucose (MG, 11mM) on cell prolif-

eration was not significant. However,

HG (25mM) significantly promoted cell

proliferation compared with the control

group (p<0.05). Cell viability was

increased by 8% and 39% in cells treated

with 11mM and 25mM D-glucose, respec-

tively. These findings indicate that HG

treatment promotes the proliferation of

VSMCs in a dose-dependent manner

(Figure 1).

TMP diminished VSMC proliferation after

HG stimulation

VSMCs were pretreated with 15 mM TMP

followed by incubation with DMEM HG

medium containing 25mM D-glucose

for 24 hours. Compared with the CN

group, proliferation of the HG group

was significantly inhibited (p<0.01).

Moreover, compared with the HG group,

TMP significantly attenuated the glucose-

induced cell proliferation (p<0.05)

(Figure 2).

Figure 1. Effects of HG on viability in VSMCs.
Cells were treated with D-glucose for 24 hours.
Cell viability was detected using the MTT assay.
CN: treated with DMEM and 5.5 mM D-glucose;
MG: middle glucose, 11 mM D-glucose; HG: high
glucose, 25 mM D-glucose.
Values are expressed as means� SD from triplicate
experiments. *p< 0.05 vs. CN group.
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Effect of TMP on the migratory ability
of VSMCs

HG significantly stimulated VSMC migra-
tion compared with the control group
(p<0.05). TMP treatment abolished the
increased migration ability of VSMCs to
some extent, with markedly reduced cell
migration distances observed in the TMP
treatment group compared with the HG
group (Figure 3).

TMP influenced the levels of MDA and
SOD in VSMCs after HG stimulation

The content of MDA in the supernatant of
VSMCs after HG stimulation was signifi-
cantly increased compared with the control
group, while the activity of SOD was signif-
icantly decreased (p<0.05). After treatment
with TMP, the activity of MDA was mark-
edly decreased, and the activity of SOD was
significantly increased (p<0.05) (Table 1).
These results indicated that TMP signifi-
cantly inhibited the oxidative stress induced
by HG in VSMCs.

TMP inhibited the phosphorylation of
ERK, JNK, and p38MAPK in VSMCs after
HG stimulation

The levels of p-ERK, p-JNK, and
p-p38MAPK in VSMCs were significantly
increased after HG treatment (p<0.05 vs
control group). However, TMP significant-
ly suppressed the phosphorylation of
p-JNK, p-p38MAPK, and p-ERK com-
pared with the HG group (p<0.05)
(Figure 4). These results suggested that the
protective effect mechanism of TMP on
VSMC injury might be associated with
MAPK signaling pathway inhibition.

Discussion

In this study, we showed that TMP could
attenuate cell proliferation, inhibit cell
migration, and weaken oxidative stress in
VSMCs triggered by a HG stimulus. The
major findings of this study were that
TMP significantly decreased MDA levels,
and increased SOD activity in VSMCs
after HG stimulation. Additionally, the
levels of p-ERK, p-JNK, and p-
p38MAPK were increased in VSMCs after
HG treatment (p<0.05 vs control group),
but this was inhibited by TMP.

Approximately 422 million people
worldwide have diabetes mellitus, with the
majority diagnosed with T2DM.16 Deaths
caused by diabetes-associated complica-
tions account for approximately 6% of
worldwide mortality.17 The vascular dis-
eases coronary artery disease, and cerebro-
vascular and peripheral vascular diseases
are the pivotal causes of mortality and mor-
bidity in T2DM patients. Because the pro-
liferation and migration of VSMCs are
some of the most critical events to occur
during progressive intima thickening and
arterial wall sclerosis development, VSMC
injuries play an important role in the path-
ogenesis of vascular lesions.18 The disorga-
nized production of advanced glycation end

Figure 2. Effects of TMP on viability in VSMCs
stimulated with HG were detected by the MTT
assay. VSMCs cells were pretreated with 15 mM
TMP, then incubated with DMEM containing 25 mM
D-glucose for 24 hours.
CN: control group, HG: high glucose group, TMP:
pre-hatching tetramethylpyrazine high glucose
group.
Values are expressed as means �SD of triplicate
experiments. *p< 0.05 vs. CN group; **p< 0.01 vs.
CN group; #p< 0.05 vs. HG group.
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products, elevated production of ROS, and
the abnormal stimulation of hemodynamic
regulatory systems can cause the aberrant
activation of multiple signaling cascades
affecting VSMCs.19 Therefore, the preven-
tion of VSMC injuries is an effective thera-
py to improve diabetes-associated vascular
dysfunction. However, no suitable drugs
are currently available. The quality of life
may be improved for patients with diabetes,
and macrovascular and microvascular dis-
eases by prescribing individualized exercise

Table 1. Effects of TMP on the
antioxidant activity of VSMCs

Group MDA (nmol/L) SOD (U/mL)

CN 0.701�0.096 27.4�0.222

HG 1.215�0.138* 22.6�0.501*

TMP 0.837�0.112# 26.0�0.427#

Values are expressed as means� S.D. of

triplicate experiments. *p< 0.05 vs. CN.

**p< 0.01 vs. CN. #p< 0.05 vs. HG.

CN: control group, HG: high glucose

group, TMP: pre-hatching tetramethylpyr-

azine high glucose group.

Figure 3. Effects of TMP on VSMC migration induced by HG were analyzed by the wound healing assay.
Wound widths were measured under a microscope using an ocular grid (magnification, �100). Bars indicate
means �SD (n¼ 3).
CN: control group, HG: high glucose group, TMP: pre-hatching tetramethylpyrazine high glucose group.
**p< 0.01 vs. CN group. ##p< 0.01 vs. HG group.
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programs, while exercise training may also
benefit diabetes patients by decreasing
hyperglycemia, improving insulin resis-
tance, and adjusting dyslipidemia and
hypertension. These could all lower the vas-
cular disease risk profile.20

Many reports have shown that TMP acts
a protective mechanism on multiple organs
through inhibiting platelet aggregation and
blood vessel dilation, improving microcir-
culation, increasing coronary and cerebral
blood flow, and vascular recanalization,
and scavenging ROS.21 The antioxidant
activity of TMP receives continued public
interest, and TMP has shown potential in
treating stroke both in vivo and in vitro;
however, there is still a need for further pre-
clinical resarch.22 In the present study, HG
increased MDA levels while significantly
decreasing SOD activity, suggesting that
the level of oxidative stress in rats receiving
HG is much higher than under control con-
ditions. The antioxidant activity of TMP
was verified by its ability to decrease the
enhanced MDA levels and increase reduced
SOD activity after HG stimulation. These
results are in agreement with previous
reports in other disease models.23,24

However, the exact mechanisms associated

with TMP antioxidant activity have not

been fully elucidated.
VSMC growth and migration are corre-

lated with the activation of ERK1/2,

p38MAPK, and JNK, as well as the focal

adhesion kinase family, proline-rich tyro-

sine kinase 2, protein tyrosine kinase,

and c-Src.25–27 HG stimulation caused the

up-regulation of p-ERK, p-JNK, and

p-p38MAPK levels in VSMCs in the pre-

sent study, which likely reflects increased

intracellular ROS and the subsequent acti-

vation of downstream kinases.28–30 Other

reports found that TMP could accelerate

the proliferation and migration of cerebral

endothelial cells, and that its actions

were strengthened when combined with sol-

uble Fas ligand. TMP was also shown to

reverse oxygen–glucose deprivation-

induced Cx32 expression and apoptosis in

cultured hippocampal neurons by regulat-

ing the ERK1/2 and p38MAPK path-

ways.31 Taken together, our findings

showed that inhibition of the p38MAPK

pathway by TMP was involved in blocking

HG-induced VSMC injury through

Figure 4. Detection of MAPK-related proteins in VSMCs after TMP treatment. (a–c). Expression of p-p38/
p38, p-JNK/JNK, and p-ERK/ERK detected by western blotting; (d, e, f). Semi-quantitative analysis of protein
expression by densitometric analyses of p-p38/p38, p-JNK/JNK, and p-ERK/ERK bands. Bars indicate means
� SD. of triplicate experiments.
CN: control group, HG: high glucose group, TMP: pre-hatching tetramethylpyrazine high glucose group.
*p< 0.05 vs. CN group; ***p< 0.001 vs. CN group; #p< 0.05 vs. HG.
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attenuating cell proliferation, inhibiting cell

migration, and reducing oxidative damage.

Conclusions

In summary, our present study indicated

that TMP inhibits HG-induced oxidative

injury and VSMC proliferation by inhibiting

ROS overproduction and p38MAPK/JNK/

ERK phosphorylation. Our findings there-

fore provide new insights into the protective

properties of TMP on VSMCs, which may

constitute a novel mechanism for the clinical

application of TMP in the treatment of dia-

betic vascular complications.
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