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Deep learning-based predictive identification of
neural stem cell differentiation
Yanjing Zhu1,2,3, Ruiqi Huang1,2,3, Zhourui Wu1,2, Simin Song1,2, Liming Cheng1,2✉ & Rongrong Zhu 1,2✉

The differentiation of neural stem cells (NSCs) into neurons is proposed to be critical in

devising potential cell-based therapeutic strategies for central nervous system (CNS)

diseases, however, the determination and prediction of differentiation is complex and not yet

clearly established, especially at the early stage. We hypothesize that deep learning could

extract minutiae from large-scale datasets, and present a deep neural network model for

predictable reliable identification of NSCs fate. Remarkably, using only bright field images

without artificial labelling, our model is surprisingly effective at identifying the differentiated

cell types, even as early as 1 day of culture. Moreover, our approach showcases superior

precision and robustness in designed independent test scenarios involving various inducers,

including neurotrophins, hormones, small molecule compounds and even nanoparticles,

suggesting excellent generalizability and applicability. We anticipate that our accurate and

robust deep learning-based platform for NSCs differentiation identification will accelerate the

progress of NSCs applications.
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Stem cells have the capacity for self-renewal and differ-
entiation, expanding the possible range of cell-based ther-
apy in regenerative medicine; for example, potential

applications may include restoring damaged neurons and
recomposing tissue1–3. Neural stem cells (NSCs) have the
potential to yield several cell types in the anatomy of the brain;
therefore, strategies based on NSCs are considered valuable in the
treatment of nervous system diseases, such as Alzheimer’s disease,
stroke and traumatic brain injury4–7. NSCs are considered the
“seed” cells of the central nervous system (CNS), capable of self-
renewing and generating neurons and glia during CNS develop-
ment. NSCs are tripotent cells that generate transit-amplifying
progenitors and are later restricted to three lineages: neurons,
astrocytes and oligodendrocytes8–10. Neurons are the essential
units for information transmission in the nervous system, sending
electrical and chemical signals to other cells through axons and
receiving such signals via dendrites; neurons cannot reproduce or
regenerate once they die11. Transplantation of exogenous NSCs
or mobilization of endogenous NSCs, followed by their differ-
entiation into neurons to reconstruct neural circuits damaged by
neurological disorders, is a widely explored method for treating
neurodegenerative diseases12–16. Astrocytes, the most abundant
cell type in the CNS, communicate with and structurally support
the growth of neurons, oligodendrocytes and endothelial cells,
integrating into tripartite synapses and the neurovascular unit to
perform their function. The signalling pathways of astro-
cytogenesis have attracted great interest as a means of suppressing
the generation of astrocytes in many neurological disorders and
generating a NSC model as a drug-screening platform17,18. In
addition to participating in cellular communication, astrocytes
also play an important role in neuroprotection by releasing
neurotrophins, such as glial cell line-derived neurotrophic factor
(GDNF), and reducing excitotoxicity in neurons19. Properly
regulated astrocytes may provide neuroprotection, axonal gui-
dance and vascular integrity after CNS injury20. Oligodendrocytes
are myelinating glial cells that are important for neuronal elec-
trical insulation, facilitating saltatory signal conduction21. Oli-
godendrocytes also provide the axons of neurons with metabolic
and trophic support, including lactate, pyruvate and neurotrophic
factors such as brain-derived neurotrophic factor (BDNF), via the
myelin membrane22. Neurodegeneration can result in immune-
mediated myelin sheath damage and subsequent axonal
demyelination23. Researchers have made efforts to differentiate
NSCs into oligodendrocytes that can contribute to postinjury
remyelination, electrically insulating neuronal axons for impulse
propagation and providing trophic and metabolic support for
neurons24–26.

Therefore, the key mission in therapeutic applications is to
efficiently induce NSCs into specific cell types, especially neurons.
In this regard, several neurotrophins, small molecule drugs and
hormones have proven to be effective, but researchers remain
devoted to developing advanced approaches to directionally
induce NSC differentiation27–30. Research progress in this area is
limited by the fact that common laboratory methods to observe
the effectiveness of inducing differentiation can be cumbersome,
time consuming and uneconomical; examples include immuno-
fluorescent staining, polymerase chain reaction (PCR) and wes-
tern blots31,32. Determining the effect of potential inducers on
NSC differentiation usually takes several days, and it can be
affected by many factors, such as molecular marking techniques,
immature laboratory technology, and the operational skill levels
of experimental personnel. Sometimes, even limitations on the
current understanding of essential biological characteristics of
NSCs could become barriers to finding potential regulatory fac-
tors, since some mechanisms linked to NSC fate change, such as
remodelling or dynamic changes in organelles, are poorly

understood33. Current approaches might not be able to correctly
identify the factors that act on these unclear mechanisms to
affected NSC differentiation. Moreover, the current methods
mentioned above are based on specific markers of each cell type,
such as NeuN for neurons, GFAP for astrocytes and Olig2 for
oligodendrocytes34–38. These markers are applicable only to
specific cells, often those that are already at a certain stage of
differentiation39. Thus, early identification of NSC differentiation
is of great difficulty, limiting the development of related technical
means. There is an urgent need for a more efficient, accurate,
convenient and less wasting method; furthermore, it is better to
have less influence on subjective judgement and less limit to the
present understanding of neural development and differentiation.

Major advancements in biomedical applications of deep
learning technology have occurred in recent years, including cell
biology40,41. Studies have used deep learning to identify cell types,
cell states and cell dynamic progress from flow cytometry or
microscopy images42–44. Several recent reports have highlighted
some noteworthy findings regarding the use of deep learning to
observe and predict physiological processes in stem cells. One
study showed that differentiation alters the morphology of hae-
matopoietic stem cells. Deep learning is in a position to recognize
these changes from microscopy data and predict the development
of haematopoietic stem cells in advance by isolating cells earlier
than the beginning of the known development progress45.
Another study showed that machine learning could distinguish
pluripotent stem cells from early differentiating cells46. These
studies highlight the possible further application of deep learning
in the field of stem cell therapy, and we speculate that machine
learning could be used not only to identify the physiological
variation among cells but also to judge the biological character-
istics and changes caused by differentiation inducers. We hypo-
thesize that NSCs could show similar features in a very early stage
of differentiation under inducer treatment, and binding to specific
receptors could lead to an initial effect of inducers on the cellular
state, which might be extracted from high-throughput data by
deep learning. Implementing the idea can help solve the existing
experimental restricts of early identification of NSC differentia-
tion and adjust NSCs-based treatment strategies, providing more
practical applications of deep learning.

Using flow cytometry to detect cell markers is a common
method with notable advantages, namely, high throughput,
imageability and relatively high speed47,48. A cell-cycle study used
imageable flow cytometry combined with machine learning to
distinguish minor changes49, and a label-free imaging flow
cytometry technique was developed based on coherent optical
implementation of the photonic time stretch concept, achieving
the advantages of high accuracy and fast speed42. The aforesaid
findings emphasize that these two advanced approaches could be
utilized to address the challenge of identifying NSC differentia-
tion; specifically, imageable flow cytometry could provide large
datasets to build deep learning networks.

Thus, we developed experiments to exploit the information in
brightfield single-cell images for prospective identification of NSC
differentiation. Referencing previous studies50–56, through our
exploration and experiments, we produced different conditioned
culture media to generate specific cell lines from NSCs (Fig. 1a).
Several inducers with distinct forms and pathways were selected
to test the idea and confirm the value of practical application of
our model. Then, the cultured NSCs were marked and collected
by imageable flow cytometry; in that way, we obtained 149,428
annotated single-cell images, among which 80% were used as
training data to construct deep learning-based darkfield and
brightfield models, and the other 20% were used for model test-
ing. We used a convolutional neural network (CNN) to extract
local image features, forming a well-architected image
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classification (Fig. 1b). Recent advances have shown that a CNN
can use the convolution operation to establish local connections
and to effectively build end-to-end data processing and recogni-
tion systems, which have been widely used in image
processing43,57,58. CNNs combined with flow cytometry can
achieve real-time separation of label-free individual target cells
with high accuracy59. In order to further evaluate the general
suitability of our system, 59,287 brightfield single-cell images for
independent test data were obtained from independent experi-
ments, which were performed using several common types of
inducers, including neurotrophic factors, hormones and nano-
particles (Fig. 1c). In this way, we aimed to build a system that
allows a CNN to recognize the features of differentiated NSCs via
unlabelled brightfield single-cell images, which would provide a
quick and simple approach to accurately identify NSC fate at an
early phase, screen growth factors/small molecules/nanomedi-
cines with high efficiency, and ultimately promote the medical
application of NSCs.

Results
A deep learning-based model was established using single-cell
images obtained from reliable differentiation experiments. To
collect data for model construction, we developed a system that
contained differentiating NSCs in different phases, generating
neurons, astrocytes and oligodendrocytes and marking them

using NeuN, GFAP and Olig2, respectively. To verify the differ-
entiation efficiency of different groups with common laboratory
methods, immunofluorescent staining, RT-PCR and western blot
were employed. The detection time points were selected accord-
ing to previously reported studies of differentiation into neurons
(1, 3, 5 days), astrocytes (0.5, 1, 2 days), and oligodendrocytes (1,
2, 3 days), separately60–62.

To verify the selected specific markers, we analysed their
expression in NSC differentiation process as shown in Fig. 2a and
Supplementary Figs. 3 and 4. In agreement with previous
studies35,60,63–65, NSCs showed co-expression of GFAP and
Nestin, while when treated with neuron differentiation medium,
GFAP expression gradually decreased, and the proportion of
NeuN+ cells gradually increased. By contrast, with astrocyte
differentiation medium, the proportion of GFAP+ cells remained
high, while that of NeuN+ cells remained low; over time, GFAP+
cells grew in size and exhibited morphological characteristics of
astrocytes. Supplementary Fig. 4e shows that Olig2+ cells
increase when treated with oligodendrocyte differentiation
medium, while the number of GFAP+ cells is reduced. Results
demonstrate that the NeuN, GFAP and Olig2 can clearly label the
training data for deep-based model construction.

As shown in Fig. 2a–c, Supplementary Fig. 4e, f and
Supplementary Table 1, under the influence of neuron differ-
entiation medium with retinoic acid (RA) and sonic hedgehog
(SHH), 82.073% of NSCs had differentiated into NeuN+ cells

Fig. 1 Overview of workflow. a NSCs were induced to differentiate into neurons/astrocytes/oligodendrocytes, and the cells were stained with NeuN (red)/
GFAP (green)/Olig2 (yellow), collected and subjected to image flow cytometry. b Brightfield and darkfield (labelled) single-cell images were used as
training data for the screening system; a schematic of the convolutional neural network (CNN) is presented. c Various inducers in different forms that act
on different pathways were used to guide NSCs to differentiate into neurons, and brightfield (unlabelled) single-cell image patches were obtained by flow
cytometry. These independent test sets were evaluated with the deep network model to show its generalizability.
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after 5 days of induction, 67.427% after 3 days and 55.827% after
1 day. Under the influence of differentiation medium with
neurotrophin-3 (NT3), 75.407% of NSCs had differentiated into
NeuN+ cells after 5 days of induction, 55.293% after 3 days and
20.997% after 1 day. With layered double hydroxide (LDH)
loaded with NT3 nanoparticles (LDH-NT3), 68.823% of NSCs
had differentiated into NeuN+ cells after 5 days of induction,
60.06% after 3 days and 48.73% after 1 day. Under the influence
of astrocyte differentiation medium, 88.78% of NSCs had
differentiated into GFAP+ cells after 2 days of induction,
83.813% after 1 day and 83.357% after 12 h. Under the influence
of oligodendrocyte differentiation medium, 63.622% of NSCs had
differentiated into Olig2+ cells after 3 days of induction, 55.472%
after 2 days and 52.968% after 1 day.

The results of the western blot and RT-qPCR are shown in
Fig. 2d, e. The expression of GFAP was highest in the astrocyte
induction group and trended upward over time, while the
expression of NeuN, Nestin and beta-III-tubulin (Tuj1) decreased
over time. The expression of NeuN and Tuj1 was high in the
neuron induction group containing RA and SHH, trending
upward over time, while the expression of GFAP and Nestin
decreased over time. Under the influence of LDH-NT3 and NT3,
the expression of these markers had a trend similar to that of the
neuron induction group, but weaker.

The above results indicate the reliability of setting differentia-
tion conditions, as well as the clear labelling of the differentiation
direction of NSCs. These differentiation methods were used along
with flow cytometry, and single-cell images were collected to

Fig. 2 Differentiation efficiency of training and testing sets identified by immunofluorescence, western blot and RT-qPCR. a Images of
immunofluorescent staining using NeuN, GFAP, Tuj1 and Nestin as characteristic markers of neuron and astrocyte differentiation induction at 5D (5 days),
3D (3 days), 2D (2 days), 1D (1 day) and 0.5D (0.5 days). Differentiated cells treated with NT3 and LDH-NT3 were stained following the same protocols.
Quantification of immunostaining data. The y-axis shows the number of: b NeuN- and c GFAP-positive cells, n= 3 imaging field repeats. d Western blot
analysis of NeuN, GFAP, Nestin and Tuj1 protein in NSCs in different states of differentiation, n= 3 biological repeats. e Quantitative real-time PCR
detection of NeuN, GFAP, Nestin and Tuj1 gene expression in cells in different states of differentiation, n= 3 biological repeats. Data are shown as mean ±
SEM. Statistical significance was determined by two-sided Welch’s ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar= 100 μm. LDH: layered double
hydroxide.
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build and test darkfield and brightfield models. Immunofluor-
escent staining, RT-qPCR and western blot results demonstrated
that the differentiated single-cell data were suitable for deep
learning-based model training and testing.

For independent testing of the brightfield model, we obtained
images of cells treated with various types of inducers. As shown in
Fig. 3 and Supplementary Table 1, the immunofluorescence
results show that, under the influence of neuron differentiation
medium with neurotrophin-4 (NT4), 71.3333% of NSCs were
differentiated into NeuN+ cells after 5 days of induction,
29.2333% after 3 days and 10.4333% after 1 day. Under the
influence of neuron differentiation medium with nerve growth
factor (NGF), 82.6333% of NSCs were differentiated into NeuN+
cells after 5 days of induction, 33.4667% after 3 days and
33.0333% after 1 day. Under the influence of neuron differentia-
tion medium with melatonin (MT), 79.2667% of NSCs were
differentiated into NeuN+ cells after 5 days of induction,
55.7667% after 3 days and 35.6333% after 1 day. Under the
influence of neuron differentiation medium with ciliary neuro-
trophic factor (CNTF), 78.3333% of NSCs were differentiated into
NeuN+ cells after 5 days of induction, 34.23% after 3 days and
25.3667% after 1 day. Immunofluorescence results demonstrated
the efficiency of the chosen factors as inducers and the suitability
of our dataset design.

Deep learning prospectively identifies the differentiation of
NSCs at a very early stage. We trained our model on the above-
mentioned training set of 119,533 images and tested it on 29,895

images on both darkfield and brightfield channels. To efficiently
leverage the dataset, we standardized all images to a size of 45 ×
30, and our model achieved high performance on both mixed and
independent test sets in terms of accuracy, receiver operating
characteristic (ROC)-AUC and precision-recall (PR)-AUC, sug-
gesting its advanced capacity to predict neural differentiation in
different scenarios.

As shown in Fig. 4a, b and Supplementary Table 2, the results
suggest no significant difference in total accuracy between the
fluorescently marked model (0.998) and the brightfield model
(0.923), and the accuracy was high for each differentiation
direction at each time point. It is especially interesting that not
only the darkfield model but also the brightfield model achieved
high accuracy in both mixed test groups (differentiated into
neurons, astrocytes and oligodendrocytes; NT3-treated group)
and the LDH-NT3-treated group, specifically, illustrating that the
brightfield model has strong basic generalizability, which greatly
streamlines the application process.

Surprisingly, as shown in Supplementary Table 1, when NSCs
were guided to generate neurons, astrocytes and oligodendro-
cytes, the brightfield model precisely identified their final fate at
0.5–1 day with very high accuracy (82.72892% for the RA-treated
set, 73.67773% for the NT3-treated set, 71.89459% for the LDH-
NT3-treated set, 95.86375% for the astrocyte group and
80.59837% for the oligodendrocyte group), consistent with the
5 day experimental observations, whereas common approaches
merely demonstrate the instantaneous differentiation status at
specific time points by immunostaining. The results indicate that
our model can use unlabelled single-cell brightfield images to

Fig. 3 Differentiation efficiency of various neuron inducers, identified by immunofluorescence. a Images of immunofluorescence using NeuN, GFAP, Tuj1
and Nestin as characteristic markers of NGF/CNTF/NT4/MT-treated cells at 5D (5 days), 3D (3 days) and 1D (1 day). Quantification of immunostaining
data. The y-axis shows the number of: b NeuN- and c GFAP-positive cells, n= 3 imaging field repeats. Data are shown as mean ± SEM. Statistical
significance was determined by two-sided Welch’s ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar= 100 μm.
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predict NSC fate within 1 day, which makes it a very valuable
approach for NSC research, not only to increase efficiency and
reduce cost in the area of molecular screening but also to suppress
interference caused by statistical errors, and markers such as
GFAP, which expressed in both early differentiated NSCs and
astrocytes.

In order to further evaluate the generalization of our system to
reliably predict putative NSC differentiation direction in
independent experiments that used NGF, NT4, CNTF, MT and
LDH-NT3 as inducers for producing neurons, we benchmarked
our model on 59,287 datasets with the metrics of accuracy, ROC-
AUC and PR-AUC. On all datasets, as shown in Fig. 4c,
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Supplementary Table 1 and Supplementary Table 2, the
brightfield-based model achieves excellent prediction of neuron
proportions at 1 day (81.09294% on the NGF set, 74.197% on the
NT4 set, 76.92308% on the CNTF set, 76.79027% on the MT set
and 71.89459% on the LDH-NT3 set), which is closely consistent
with the 5 days immunofluorescence counts. However, common
laboratory methods could not identify differentiation at very early
stages at 1 day and 3 days, asserting the superiority of our model
over existing approaches. Furthermore, the system gained records
on both ROC-AUC and PR-AUC, as shown in Fig. 4e, f,
suggesting excellent robustness and capability to minimize the
imbalance and false positives.

Class activation maps offer insight into the functional
mechanisms of medications. To understand how our model
interprets the input cell images, we introduced class activation
mapping techniques66. The input cell images shown in Fig. 4d are
randomly selected from each treated group. Given these images,
the activation maps of each layer block were extracted. Of these
maps, Supplementary Fig. 5 presents six examples per block due
to space limitations, although each layer block has hundreds of
activation maps. The layer block-wise activation maps depict the
appearance of the input images or the activation maps from the
previous layer block processed in units of the current layer block.
Moreover, we established the final class activation maps (Fig. 4d).
These class activation maps are used to describe the model’s
receptive field in the case of given classes, where blue represents
low attention while red represents high attention. Results show
the attention of the model is concentrated on the cell, including
its edges and internal parts, when the given class matches the
predicted class, and distracted otherwise, indicating that the
model tends to perform its classification based on the details of
both edges and internal parts of the cells.

Performance comparison with other neural network archi-
tectures. We compared the performance of our Xception-based
model67 with models established using other deep learning tech-
niques, including multi-layer perceptron, ResNet68, VGGNet69

and Inception-v370 architectures. These trained models utilize the
same training and testing dataset (containing 119,533 images and
29,895 images, respectively) as the Xception-based model above.
Figure 5a compares the accuracy of each model on the testing
dataset, showing that the Xception-based model is the only one
that exceeds 0.9. Additionally, the loss curves of the compared
models are depicted in Fig. 5c, showing that the curve of the
Xception-based model lowers quickly in the early steps and sta-
bilizes at nearly the smallest loss value among all the network
architectures, representing good robustness. These comparisons
indicate that the chosen Xception method performs the best
among the five deep learning techniques.

Moreover, we built and evaluated three additional Xception-
based models, including an undersized version, an oversized
version and a resolution-reduced version, with the same training
and testing datasets, where the undersized version was 30%

smaller than the standard version while the oversized version was
30% larger. For the resolution-reduced version, the size of the
input images was reduced to 15 × 10, in contrast to the standard
version, whose input images were 45 × 30. Figure 5b depicts a
comparison of accuracy among the four models, showing that the
standard version remained the highest. Regarding training
robustness, the standard version gave the best performance once
again, as shown by the comparison of loss curves in Fig. 5d. The
comparison in this part indicates that the undersized version and
oversized version, respectively, underfit and overfit the data, in
contrast to the standard version of the model; additionally,
shrinkage of the input images caused a shortage of effective
information, making the corresponding model perform poorly.

Discussion
Transplantation of NSCs offers exciting possibilities for CNS
regeneration, but it is challenging to guide the differentiation of
NSCs into specific cell types. Biomarkers are commonly used to
examine differentiation towards distinct cell fates, relying on the
characteristics of cells during the neurogenesis process71. Despite
a variety of studies on the factors regulating the fate of NSCs, the
neurogenesis process remains to be fully elucidated, especially the
cellular changes at the very early stage of differentiation into
neurons72,73; thus, it is difficult to identify the direction of dif-
ferentiation early in the process. An identification process must
be generalizable to support the advanced development of efficient
agents for neurodegenerative diseases and neurological injuries: it
needs to apply to any effective substance, independent of what its
pathways may happen to be. Advanced instrumentation facilitates
data collection, but one of the most challenging obstacles is that
the data are often uninterpretable within the limitations of cur-
rent devices. Existing approaches are based primarily on human
cognition, but differentiating subtle cellular morphologic changes
or predicting drug interactions is challenging for human
beings74–76. Deep learning enables automatic feature extraction
utilizing vast datasets to offer solutions to perplexing problems,
including those encountered in the biomedical field77,78. Thus, we
decided to take full advantage of abundant single-cell images by
using deep learning to prospectively identify the differentiation
of NSCs.

First, we innovatively devised and framed a very accurately
marked NSC differentiation dataset, ensuring the effectiveness of
model training. The NSC fate identification system was built
based on the confirmed experimental data, and it is critical to
successfully extract the characteristic information of each cell
type. An elegant CNN structure produced a highly efficient and
strongly generalizable model. We then tested the performance of
our system, and the results suggested that our model could esti-
mate the proportion of the final differentiated cell type in the
early stages of differentiation, before common laboratory tech-
niques could detect the corresponding alterations.

When gathering the cell images, the repeatability of experi-
ments matters to the further application for the model, thus the
cell status for training data is important. The proliferation and
differentiation abilities of prolonged cultured NSCs of late

Fig. 4 Deep learning prospectively identifies the differentiation of NSCs at 5D (5 days), 3D (3 days), 2D (2 days), 1D (1 day) and 0.5D (0.5 days). a
Confusion matrices for the darkfield (left) and brightfield (right) models for the classification of each differentiated cell type. b Accuracy of each training set
and the independent LDH-NT3 test set in both darkfield and brightfield models, the size of each testing dataset is available in Source Data file. c The
proportion of neurons calculated by immunofluorescence and brightfield-based model benchmark, the size of each testing dataset is available in Source
Data file. Data are shown as mean ± SEM, statistical significance was determined by two-sided single population t-test. ns: not significant. d The CAM
highlights the class-specific discriminative regions of cells, blue represents low attention while red represents high attention. Benchmarking differentiated
cell type predictions on independent testing data with: e ROC (receiver operating characteristic) and f PR (precision-recall) curves. LDH: layered double
hydroxide.
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passages have differences with early passages, and p0–p2 cells
from primary culture may not be able to form enough amount of
neurospheres with stable status for collecting high-throughput
data, thus researches usually take NSCs from p3 to p979–84. We
conducted experiments to evaluate the state of p3–p5 NSCs,
results show strong expression of specific markers Nestin and
PAX6 in all groups (Supplementary Fig. 2a), indicating certain
proliferation capacity. Immunostaining results of measuring dif-
ferentiation ratio of p3–p5 NSCs demonstrated the consistent
differentiation ability (Supplementary Fig. 2b, c), indicating that
NSCs at p3–p5 are suitable for model building data collection.
Regarding our training data, RA induces NSCs to differentiate
into neurons by binding to RA receptors (RARs)85, whereas the
combination of thyroid hormone (T3) and platelet-derived
growth factor (PDGF) promotes the differentiation of oligoden-
drocytes through the Wnt/β-catenin signalling pathway86, CNTF,
with high concentrations acting via the JAK-STAT signalling
pathway to differentiate cells into astrocytes87. Furthermore, we
compiled independent testing data on NSC differentiation using a
variety of neuronal inducers targeting different receptors (Fig. 1c).
First, we used several neurotrophins, including NGF, BDNF,
NT4 and NT3, to regulate NSC differentiation into neurons.

Neurotrophins are peptide growth factors implicated in neuronal
differentiation; they bind to their related receptor tyrosine kinases
(Trks), which are located in the plasma membrane of responsive
cells. NGF preferentially binds to TrkA, BDNF and NT4 pre-
ferentially bind TrkB, and NT3 acts on TrkC88,89. Next, low-
concentration CNTF was used as another neuronal inducer. This
inducer, which belongs to the haematopoietic cytokine super-
family, acts by binding to CNTF receptor α (CNTFRα) and
gp130, ultimately recruiting leukaemia inhibitory factor receptor
β (LIFRβ) and activating the mitogen-activated protein kinase
pathways87,90. Subsequently, MT was utilized to facilitate neuron
differentiation mediated via activation of MT receptors 1 and 2
(MT1 and MT2)91. Moreover, recent studies on the impact of
nanoparticles on NSC fate were taken into consideration92,93.
LDH has been shown to assist NT3 in regulating stem cell
fate94,95; to determine the general validity of our system, we tested
it with LDH-NT3 as an unconventional type of inducer with an
unclarified mechanism.

Additionally, we performed a study to minimize the duration
of inducer treatment in order to improve the efficiency of model
training and application; in that study, different time points were
carefully selected for cell harvesting. Research indicates that when

Fig. 5 Performance comparison of models established with different structures. Accuracy comparison of models with: a different architectures and b
Xception models with different size and input resolutions. Loss curves comparison of models with: c different architectures and d Xception models with
different size and input resolutions. The size of each testing dataset is available in Source Data file. MLP, multi-layer perceptron.
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machine learning determines very early whether embryonic stem
cells differentiate or not, its judgements may be based on cell-level
variations in biological processes46, suggesting that the physio-
logical process of NSC differentiation is the critical factor that
needs to be considered when set the time points. Previously,
studies show that it takes different differentiation time when
NSCs covert into each lineage, around 7 days for neurons60,
3 days for astrocytes61 and 5 days for oligodendrocytes62,
respectively. At these time points, cells start to appear their spe-
cific markers expression and functional properties. Our greatest
concern is to identify NSC fate in the early stage of differentiation
and determine the actions of the inducers, thus shorter time
points are set to establish the predictable model. We tested the
gene expression levels to observe the changes in NSCs under the
action of different inducers to design further data collection
procedures for model construction. As the results show in Sup-
plementary Fig. 4, for cells undergoing neuronal differentiation,
the expression level of NeuN firstly showed a significant increase
at 1 day, between 3 days and 1 day there is an observable dif-
ference and at 5 days also there appears a significant increase,
while there are no significant changes at earlier time points of 0,
2, 4, 8 and 12 h; thus, 1 day was set as the earliest time point for
detection. For astroglial and oligodendroglial differentiation,
obvious changes in GFAP and Olig2 appeared at 2 days and
3 days, and significant changes first appeared at 12 h and 1 day,
respectively. Therefore, the earliest expected time points for
effective prediction by our prediction system were set to 12 h for
astrocytes and 1 day for neurons and oligodendrocytes. The
results showed that, after these minimum durations, our model
could predict the differentiation direction and ratio of cells several
days in advance, which may be due to its sensitivity to subtle
changes in cell state or organelle morphosis.

In our previous work, we built an Inception 3-based neural
network that could analyse the distinction of apoptotic cells;
however, we noticed that the complicated structures and
numerous manually defined branches increased the difficulty of
training, which might affect the efficiency of the optimal model,
and the results showed that its performance in brightfield
detection had room for improvement96. In the current study, we
used a better-constructed neural network based on Xception,
which reduced the complexity of the model and made it more
concise and clear, and this approach proved to be very effective.
The present network builds the optimization model from simple
training with the hyperparameters of basic training parameters
and default learning rate; in particular, unlabelled brightfield
images can fully meet the modelling requirements with excellent
accuracy of 0.923. The results of both mixed testing data and
multiple independent experiments demonstrated that the
mechanism does not influence the effect of the model’s verdict,
nor does the form of inducer (Fig. 4a and Supplementary Tables 1
and 2). Our system is able to prospectively identify the direction
of NSC differentiation in 1 day using non-fluorescently labelled
cell images, and the ROC-AUC/PR-AUC verified its high
robustness and precision (Fig. 4e, f and Supplementary Tables 1
and 2). Class activation mapping, shown in Fig. 4d, suggested that
our model can identify very small morphological variations in
cellular structures; thus, it was able to classify cell fate by dis-
criminating differences between each type, which is the main
strength of machine learning. Furthermore, we explored the
predictive performance achieved by CNN architectures with
various layer structures, branching strategies, network capacities
and resolutions of input cell images. The results of the perfor-
mance comparison on the test set demonstrated the superiority of
the architectures that our model adopts.

In addition to the above advantages, our model has the
potential for functional expansion to cover a variety of

applications; for instance, predicting neuronal subtypes such as
motor neurons or dopaminergic neurons would be a very
meaningful development. Dopamine neuron transplantation can
innervate the striatum and improve motor asymmetry and is a
promising therapy for Parkinson’s disease97. Transplantation of
motor neurons derived from stem cells can significantly promote
motor function recovery in amyotrophic lateral sclerosis98. The
development of a more efficient identification system for specific
neuron populations will undoubtedly promote cell-based therapy
for specific neurodegenerative diseases. At present, however, there
are a few hurdles to overcome before this further application.
First, the differentiation ratio of NSCs or induced pluripotent
stem cells into a specific population is not sufficient to gather a
suitable dataset to train the model. According to a previously
reported study, under 40% of stem cells treated with several
cytokines can differentiate into dopamine neurons or motor
neurons64,99–102. In order to build a training set for machine
learning, correct classification and labelling are necessary. In
addition to isolating the specific subpopulations, flow cytometry/
cell sorting should be used to enrich the target cells, but the cells
have been secondarily treated before analysis, which introduces
uncontrolled variables and reduces training efficiency. Mean-
while, specific markers for neuron subpopulation profiling and
selection remain under investigation60, making it difficult to
clearly tag data. Another valuable possible extension of the model
is to explore the region heterogeneity of NSC differentiation.
Heterogeneity describes the regionalization of NSC niches, pro-
genitor cells in different regions express different genes to become
different subtypes of cells, appears to be a key feature of NSC
development in the CNS, but how it affects NSC fate and function
is not fully understood35,103. It is worth considering isolating
regional NSC subpopulations, taking advantage of the model to
effectively identify subtle cellular variation during the differ-
entiation progress and even explore the impact of different
inducers on NSC subtypes development. Some limitations need to
be addressed before further exploration, first, to resolve additional
layers of heterogeneity, optimized protocols are needed to be
established for precise isolation and effective enrichment of
regional subtypes.104 Additionally, research shows that existing
exploration of regional heterogeneous NSC subtypes is to observe
the changes of gene expression using single-cell RNA-sequencing,
however, there is still lack of recognized specific markers to
identify cells from different regions including ventricular-
subventricular zone (V-SVZ) or subgranular zone (SGZ).
Besides, lineage-tracing studies indicate that regional specification
is established very early in embryonic development, but the
progress of its development still needs to be more clearly eluci-
dated in order to set up suitable time points for collecting the
regional NSC subtypes105. Though there are difficulties, we
believe the extension to the deep-based model application is well
worth the efforts due to its strong applied value, suggesting that
our system can be used not only in predicting NSC fate and
screening neural induction factors but also in research on NSC
reactivation and development.

In summary, we provide an advanced tool for the identification
of NSC fate; this model has the key features of high precision, a
low false positive rate, speed, wide applicability, simple operation
and cost-effectiveness. After NSCs are co-cultured for 1 day with
the inducer to be studied, our system can offer a predictive dif-
ferentiation result with a single-cell image. This could be a con-
venient and well-suited method to investigate the unknown
effects of substances on NSCs and rapidly predict potential
therapeutic molecules and drugs to promote neural regeneration
in CNS diseases. We are also working with further extensions and
applications of our system, attempting to develop a multi-
functional approach for NSC research.
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Methods
Experiments and data collection
Primary NSC processing and culture. Primary NSCs were processed as follows:
Embryonic SD rats (E13.5) were chosen for cell extraction. The brain of each
embryo was isolated under a stereoscopic microscope, washed with 1× phosphate
buffer saline (PBS, Gibco, catalogue no. 10010023) and then incubated with 0.125%
trypsin solution (Gibco, catalogue no. 25200056) at 37 °C for 3 min. Next, DMEM
containing 10% foetal bovine serum (FBS, Gibco, catalogue no. 040011 A) was
applied to neutralize the trypsin activity. The suspension was filtered with 70 μm
mesh cell strainers (BD Biosciences, catalogue no. 087712). The filtered cell sus-
pension was centrifuged and resuspended in DMEM/F12 (Gibco, catalogue no.
11320033) containing 2% B27 (Gibco, catalogue no. 17504044), 1% N2 (Gibco,
catalogue no. 17502001), 20 ng/ml basic fibroblast growth factor (bFGF, Peprotech,
catalogue no. 45033) and 20 ng/ml epidermal growth factor (EGF, Peprotech,
catalogue no. 31509). Primary NSCs were cultured in proliferation medium for
2 days until neurosphere formation. The neurospheres were centrifuged and
incubated with Accutase (Stem Cell, catalogue no. 7920) for 5 min in a 37 °C
incubator to obtain single NSCs for continuous passage culture. NSCs were pas-
saged every 4 days with Accutase after neurospheres formed, and half of the culture
solution was refreshed every 2 days. Animals were obtained from Shanghai Slac
Laboratory Animal Co., Ltd., and raised in the SPF animal laboratory at Tongji
University. All protocols were approved by the Institute of Laboratory Animal
Resources of Tongji University and complied with the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health. Ethical and legal
approval for this study was obtained from the Institute of Laboratory Animal
Resources Animal Care and Use Committee. All efforts were made to minimize
animal suffering and sacrifice.

NSC identification and differentiation. NSCs at p3, p4, p5 were identified by
immunostaining, using specific markers Nestin and PAX6. For inducing differ-
entiation experiments, cells were seeded onto poly-L-ornithine-coated 6-well
plates, and after 12 h of incubation at 37 °C, the proliferation medium was replaced
by differentiation medium. The composition of the astrocyte differentiation
medium was as follows: DMEM (Gibco, catalogue no. 11965092), 10% FBS, 20 ng/
ml CNTF (Peprotech, catalogue no. 45013), 10 ng/ml EGF and 10 ng/ml bFGF. The
composition of the oligodendrocyte differentiation medium was as follows:
DMEM/F12, 10 ng/ml EGF, 20 ng/ml PDGF (Peprotech, catalogue no. 10014B)
and 50 nM T3 (ProSpec-Tany, catalogue no. hor001). The composition of the
neuron differentiation medium with RA (Sigma, catalogue no. R2625) and SHH
(Peprotech, catalogue no. 31522) was as follows: Neurobasal (Gibco, catalogue no.
10888022), 2% B27, 1% N2, 10 ng/ml BDNF (Peprotech, catalogue no. 45002), 50
ng/ml insulin-like growth factor (IGF, Peprotech, catalogue no. 10011), 0.1 μM c-
AMP (Sigma, catalogue no. A9501), 1 μM ascorbic acid (AA, catalogue no. A4403),
1 μM RA and 1 μM SHH. The composition of the neuron differentiation medium
with NT4 (Peprotech, catalogue no. 45004) was as follows: Neurobasal, 2% B27, 1%
N2, 10 ng/ml BDNF, 50 ng/ml IGF, 0.1 μM c-AMP, 1 μM AA and 20 ng/ml NT4.
The composition of the neuron differentiation medium with NGF was as follows:
Neurobasal, 2% B27, 1% N2, 10 ng/ml BDNF, 50 ng/ml IGF, 0.1 μM c-AMP, 1 μM
AA and 10 ng/ml β-NGF (Peprotech, catalogue no. 45001). The composition of the
neuron differentiation medium with CNTF was as follows: Neurobasal, 2% B27, 1%
N2, 10 ng/ml BDNF, 50 ng/ml IGF, 0.1 μM c-AMP, 1 μM AA and 100 ng/ml
CNTF. The composition of the neuron differentiation medium with MT (Sigma,
catalogue no. M5250) was as follows: Neurobasal, 2% B27, 1% N2, 10 ng/ml BDNF,
50 ng/ml IGF, 0.1 μM c-AMP, 1 μM AA and 25mM MT. The composition of the
differentiation medium with NT3 (Peprotech, catalogue no. 45003) was as follows:
Neurobasal, 2% B27, 1% N2, 10 ng/ml BDNF, 50 ng/ml IGF, 0.1 μM c-AMP, 1 μM
AA and 20 ng/ml NT3. The composition of the differentiation medium with LDH-
NT3 was as follows: Neurobasal, 2% B27, 1% N2, 10 ng/ml BDNF, 50 ng/ml IGF,
0.1 μM c-AMP, 1 μM AA, LDH-NT3 with 0.08 ng/ml NT3, and 2 μg/ml LDH.

LDH-NT3 preparation and characterization. LDH was prepared as follows: 0.544 g
NaOH was dissolved in 80 ml deionized water (ddH2O) under N2 atmosphere,
then a mixture of 1.538 g Mg(NO3)2·6H2O and 0.75 g Al(NO3)3·9H2O was dis-
solved in 20 ml ddH2O, and added dropwise in the NaOH solution. After 30 min
stirring at 500 rpm, the product was washed thrice with ddH2O, and dispersed in
ddH2O. After keeping for 16 h hydrothermally at 100 °C, LDH was obtained by
centrifugation. NT3 was loaded into LDH using ion exchange intercalation. The
morphological features were observed by transmission electron microscopy (TEM).
LDH and LDH-NT3 have a size of approximately 100 nm, with a hexagonal
lamellar structure (Supplementary Fig. 1).

Flow cytometry. NSCs treated with differentiation medium were collected with
Accutase at different stages and washed thrice with PBS before being fixed. The
cells were fixed in cold 80% methanol for 5 min and then disrupted using 0.1%
Triton X-100 on ice for 20 min. Later, the cells were incubated with anti-GFAP
(Bioss, catalogue no. bs-0199R-AF488, 1:200), anti-NeuN (Bioss, catalogue no. bs-
10394R-APC, 1:200) and anti-Olig2 (Bioss, catalogue no. bs-11194R-PE, 1:200)
antibodies for 2 h on ice. The cells were washed three times with PBS before flow
cytometry. Eventually, approximately 20,000 stained cells were collected and
photographed. Experiments of the training sets (astrocyte, neuron, oligodendrocyte

and NT3-treated groups) were carried out in the Key Laboratory of Spine and
Spinal Cord Injury Repair and Regeneration of the Ministry of Education;
Experiments of independent test for the darkfield model (LDH-NT3-treated group)
were carried out in the laboratory of the School of Life Science and Technology of
Tongji University. Images of the training and the darkfield model independent test
groups were gathered using a FlowSight apparatus (Merck Millipore) at Tongji
University. The brightfield model independent test data (NT4-, NGF-, CNTF-,
MT-treated groups) were collected in the laboratory of Tongji Hospital and pho-
tographed by ImageStream Mark II apparatus (Merck Millipore) at the Chinese
Academy of Sciences Shanghai Institute of Materia Medica. Single-cell images were
gained from IDES v6.1. Each laboratory has its own experimenters to conduct the
experiments.

Immunofluorescence. Immunofluorescence assays were performed as follows: the
cells were washed three times with PBS and fixed with 4% paraformaldehyde for 15
min. Next, the cells were washed and blocked with PBS containing 5% donkey
serum and 0.3% Triton X-100 at 37 °C for 1 h, then incubated with primary
antibodies at a suitable dilution ratio in blocking solution at 4 °C overnight.
Afterward, the cells were washed to remove residual antibody. The secondary
antibody was applied at a suitable dilution ratio at 37 °C for 1 h. 4′,6-Diamidino-2-
phenylindole (DAPI) was used to stain the nuclei. The antibodies used were as
follows: anti-NeuN (Abcam, catalogue no. ab190195, conjugated with Alexa Fluor
488, 1:200), NeuN (Abcam, catalogue no. ab104225, 1:500), anti-NeuN (Millipore,
catalogue no. MAB 377, 1:100), anti-GFAP (Abcam, catalogue no. ab53554,
1:1000), anti-Tuj1 (Abcam, catalogue no. ab78078, 1:1000), anti-Nestin (Abcam,
catalogue no. ab6320, 1:500), anti-PAX6 (Abcam, catalogue no. ab195045, 1:350),
anti-Olig2 (Abcam, catalogue no. ab109186, 1:100), rabbit anti-mouse IgG
(YEASEN, catalogue no. 33912ES60, 1:200), donkey anti-mouse IgG (Abcam,
catalogue no. ab150105, 1:1000), donkey anti-goat IgG (Abcam, catalogue no.
ab175704, 1:1000) and donkey anti-rabbit IgG (Abcam, catalogue no. ab150075,
1:1000). DAPI (Sigma, catalogue no. D9542) was used to stain the nuclei. A Zeiss
confocal microscope (LSM 700, Carl Zeiss, Jena, Germany) was applied to observe
the fluorescence signal. Image acquisition was done with ZEN 2.3 (blue edition,
Carl Zeiss) and micrographs were assembled using Adobe Illustrator CC 2018.

Western blot assay. The total protein content was extracted from cells using
nucleoprotein and cytoplasmic protein extraction kit (KeyGen, catalogue no.
KGP250) according to the manufacturer’s instructions. Then, a western blot assay
was performed as follows: protein was mixed with 5× protein-loading buffer
(KeyGen Biotech., Nanjing, China) and boiled at 95 °C for 5 min before being
separated on a 12% SDS-PAGE gel. After electrophoresis, proteins were transferred
to PVDF membranes (EMD Millipore, Billerica, MA, USA) by applying a current
of 300 mA for 100 min in an ice bath. Then, the membranes were blocked with 5%
BSA solution containing 0.1% Tween-20 (TBST) for 30–60 min at room tem-
perature. The blocked PVDF membranes were incubated with primary antibodies
at 4 °C overnight and washed three times with TBST. The antibodies used were as
follows: anti-NeuN (Abcam, catalogue no. ab104225, 1:5000), anti-Nestin (Abcam,
catalogue no. ab6320, 1:1000), anti-GFAP (Abcam, catalogue no. ab53554,
1:10,000), anti-Tuj1 (Abcam, catalogue no. ab78078, 1:1000), anti-β-actin
(ABWAYS, catalogue no. AB0035, 1:5000), goat anti-mouse HRP (Abcam, cata-
logue no. ab205719, 1:5000) and goat anti-rabbit HRP (Abcam, catalogue no.
ab205718, 1:5000). Blots were visualized with an ImageQuant LAS 4000 mini (GE
Healthcare Life Science). Densitometry of protein bands was measured with ImageJ
1.47v and normalized to the respective internal control (β-actin) band. Graphs and
statistical analysis were done in GraphPad Prism 8 version 8.4.2.

Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR).
The total RNA of cells was isolated with RNAiso plus (Takara, catalogue no. 9108).
The concentration and purity of RNA samples were measured with a Nanodrop
ND-2000 (Thermo Science, MA, USA). cDNA was synthesized with a Primer
Script Reverse Transcriptase Kit (Takara, catalogue no. RR037A). Quantitative
real-time PCR was performed using a TB GreenTM Premix Ex Taq Kit (Takara,
catalogue no. RR820A) on a LightCycler Real-Time PCR System (Roche, 480II).
The primer sequences (Sangon Biotech) are listed in Supplementary Table 3. The
relative amounts of mRNA were calculated using the ΔΔCt relative quantification
method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as the
control gene, and the mRNA levels of specific genes were normalized to GAPDH.
Calculations and statistics were done in Microsoft Excel version 16.36; graphs were
plotted in GraphPad Prism 8 version 8.4.3.

Image data preprocessing. The cell images were preprocessed before feed into the
neural network. The processing details are listed below: first, resize each image to
45 × 30 with OpenCV package; second, divide each resized image pixel value by
255 to squash the value domain down to 0–1.

Deep learning techniques
Convolutional neural network for classification. We implemented a set of CNNs to
perform the classification task for each cell image.
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These CNNs were constructed with the “Xception” module, which is an
upgraded version of the “Google Inception” module. The difference between the
“Google Inception” module and a common linearly connected convolutional layer
aggregate is that the former adopts a “network-in-network” structure containing
branches to extract further useful information from the data flow. The number of
branches between two specific layers is usually 2 or 3. Compared with the “Google
Inception” module, the “Xception” module uses an extreme policy to perform one
spatial convolution for every output channel of the 1 × 1 convoluted input data.
With this policy, the “Xception” network surpasses the “Google Inception” network
in various benchmarks. In addition, the “Xception” module is much simpler and
more compact than the “Google Inception” module, making the whole network
simple, clear and highly extendable.

Model training methodology. We used the Adam optimizer combining the
momentum and exponentially weighted moving average gradients methods to
update the weights of the networks.

The networks were trained with the PyTorch framework on four NVIDIA GTX
1080Ti GPUs. The parameters of the Adam optimizer are as follows: learning rate
of 0.001, beta1 of 0.9, beta2 of 0.999 and epsilon of 10−8.

Activation mapping for each layer block. First, we randomly selected a total of 9 cell
images, with each treated group providing one image. Given these cell images, the
activation maps of each layer block of the model were collected. Due to space
limitations, only six activation maps per layer block per image are presented in
Supplementary Fig. 5.

Class activation mapping for feature identification. We adopted the class activation
mapping technique to generate a comprehensive view with which to understand
the recognition paradigm of the networks. For this method, the last three layers
were as follows: a feature convolution layer, a global average pooling layer and a
1 × 1 convolution layer without an activation function. In order to produce the
class activation map, the weights of the final 1 × 1 feature convolution layer were
extracted. Then, the selected input images, which were the same as the input
images used by the layer block-wise activation mapping process, were used to
perform the forward pass, collecting the feature maps of the feature convolution
layer. Finally, the class activation maps were calculated by the weights on the linear
combinations of these feature maps, and images were generated through the
Python visualization package “Matplotlib” (3.2.2 version).

Other related neural network architectures. We implemented various other types of
neural networks to compare with our Xception-based network, including multi-
layer perceptron, ResNet, VGGNet and Inception-v3 networks.

The multi-layer perceptron had three layers, namely, the input layer, the hidden
layer and the output layer. The input layer took a 45 × 30 image as input and
transformed it into a vector of length 512, which was fed into the 512 × 512 hidden
layer. Finally, the output layer used the output of the hidden layer to perform the
three-way classification.

For the ResNet, VGGNet and Inception-v3 networks, we used the classic layer
configuration of each network with customized starting layers to fit the size of the
cell images.

Statistics and reproducibility. All values are presented as mean ± SEM calculated
by GraphPad Prism 8 version 8.4.3. Two-sided Welch’s ANOVA was used to
identify significant differences between different groups in immunofluorescence,
RT-qPCR and western blot experiments in Figs. 2 and 3. Two-sided single
population t-test was applied to identify significant differences between the pro-
portion of neurons calculated by immunofluorescence and brightfield-based model
benchmark in Fig. 4c. p < 0.05 was taken to indicate a statistically significant dif-
ference. Statistical significance levels are denoted as follows: *p < 0.05; **p < 0.01;
***p < 0.001. Results of Shapiro-Wilk normality test are shown in Supplementary
Fig. 6. p > 0.05 was taken as for passing the normality test. In general, n values refer
to the number of biological repeats or imaging fields for a given experiment; details
are provided for each experiment in the corresponding figure legend. All data from
representative experiments were repeated three times independently with similar
results.

We tested the performance of our model on independent datasets using metrics
of accuracy, ROC-AUC and PR-AUC, as well as generated the CAM figures given
the exemplary cell image without retraining the networks. All attempts at
replication were successful with similar results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The main data supporting the findings of this study are available within the article and in
the Supplementary Information. The single-cell image data for model building are
available through the figshare website with the download link of https://doi.org/10.6084/
m9.figshare.13070666.v1. Source data are provided with this paper.

Code availability
The code for model building is available through the link https://doi.org/10.5281/
zenodo.4606918
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