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ABSTRACT

Genomic mosaicism arising from postzygotic muta-
tions has long been associated with cancer and more
recently with non-cancer diseases. It has also been
detected in healthy individuals including healthy par-
ents of children affected with genetic disorders,
highlighting its critical role in the origin of genetic
mutations. However, most existing software for the
genome-wide identification of single-nucleotide mo-
saicisms (SNMs) requires a paired control tissue
obtained from the same individual which is often
unavailable for non-cancer individuals and some-
times missing in cancer studies. Here, we present
MosaicHunter (http://mosaichunter.cbi.pku.edu.cn),
a bioinformatics tool that can identify SNMs in
whole-genome and whole-exome sequencing data of
unpaired samples without matched controls using
Bayesian genotypers. We evaluate the accuracy of
MosaicHunter on both simulated and real data and
demonstrate that it has improved performance com-
pared with other somatic mutation callers. We further
demonstrate that incorporating sequencing data of
the parents can be an effective approach to signifi-
cantly improve the accuracy of detecting SNMs in an
individual when a matched control sample is unavail-
able. Finally, MosaicHunter also has a paired mode
that can take advantage of matched control samples
when available, making it a useful tool for detecting
SNMs in both non-cancer and cancer studies.

INTRODUCTION

Genomic mosaicism describes the presence of cells with var-
ied genomes within one individual (1,2). Mutations may
escape the DNA repair system during postzygotic cell di-
visions in early development and aging and lead to ge-
nomic mosaicism at multiple scales including substitutions
and indels of only a few base pairs, gains and losses of
copy number, and large-scale chromosomal alterations (3–
7). Although the exact occurrence rates of the different
types of postzygotic mutations in the general population
remain largely unknown, previous studies concerning can-
cer somatic mutations (8) and familial de novo mutations
(9) have demonstrated that single-nucleotide substitution is
the most predominant type of DNA alteration. The mo-
saicism of single-nucleotide substitutions (single-nucleotide
mosaicism, or SNM) has long been known to play critical
roles in many types of cancer (10,11). In recent years, an in-
creasing number of non-cancer diseases have been identified
as resulting from SNMs (12–14). In addition, SNMs have
been detected in clinically unremarkable individuals (6) and
shown to accumulate in multiple types of cells under natu-
ral selection (15–17). Certain mutant alleles of the mosaic
sites in healthy parents might be transmitted to offspring
and lead to severe genetic diseases (6,18,19). Thus the im-
portance of genomic mosaicism has been increasingly rec-
ognized in human genetics research in the study of the etiol-
ogy of non-cancer genetic disorders as well as in the origin
and transmission of genetic mutations.

Taking advantage of next-generation sequencing (NGS)
platforms, many algorithms have been developed to iden-
tify SNMs through comparisons of sequencing data be-
tween matched tissue pairs (20–23) and successfully used
in many cancer studies (24,25). However, the application
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of these methods is unfeasible when paired control samples
are unavailable, which is the case in most non-cancer stud-
ies and even in some cancer studies. Several other tools such
as SNVer (26) and LoFreq (27) were developed to identify
the presence of mutant alleles in pooled or individual NGS
data, but they lacked the power to distinguish postzygotic
SNMs from inherited heterozygous sites. Recently, Smith
et al. presented SomVarIUS (28) as another control-free
postzygotic mutation caller for tumor samples, but its per-
formance has not been benchmarked in non-cancer sam-
ples which are expected to have significantly lower muta-
tion rate. We had previously reported the first bioinformat-
ics pipeline to identify SNMs from next-generation whole-
genome sequencing (WGS) data of unpaired control-free
samples from healthy non-cancer individuals, but it has the
limitation of being not applicable to whole-exome sequenc-
ing (WES) data, not capable of incorporating related data
when available, and being slow (6).

Compared with WGS, WES has the benefit of focusing on
coding regions of the genome. However, compared with the
binomial expectations that are generally accepted in anal-
ysis of WGS data, WES data show non-negligible captur-
ing bias and over-dispersion in the distribution of alterna-
tive allele fractions (29), which obstruct the distinction of
SNMs from heterozygous sites, and thus require a different
statistical model. Although a few studies have reported the
identification of clinically relevant SNMs from non-cancer
WES data (30,31), their scope was limited to mutations in
only one or a few candidate genes, and they could not be
extended to an exome-wide search due to low specificity.

The main challenge of identifying SNMs in WGS or WES
data of unpaired control-free non-cancer samples is achiev-
ing high enough precision and specificity to make valida-
tion feasible. Despite the power of NGS, the imperfections
in NGS library preparation, base-calling and alignment in-
troduce a large number of technical artifacts that are diffi-
cult to be distinguished from true mutations. This is known
to cause a large number of false positives in the identifica-
tion of cancer somatic mutations (22,32). Because the oc-
currence rates of postzygotic mutations in non-cancer indi-
viduals were about one to three orders of magnitude lower
than that in cancer samples and that of germline variations
(6,33,34), the large number of false positives poses even
bigger challenges. For instance, attempts to use NGS to
find postzygotic mutations between monozygotic twins of-
ten fail to validate the in silico candidate mutations (35,36).
Reumers et al. managed to identify and validate true ge-
netic differences from the whole-genomes of non-cancer
monozygotic twin by employing 12 different types of er-
ror filters, however, the precision was as low as 0.25% (37).
In order to elucidate the genomic patterns of postzygotic
mutations in healthy individuals, it is necessary to gather a
clean set of true positives. Thus, it is critical to significantly
reduce the number of false positives to make experimental
validations feasible, and hence methods that can identify
postzygotic mutations with high precision and specificity
are needed (32,38).

Here, we describe MosaicHunter, a Java-based compu-
tational tool for accurate identification of SNMs in both
WGS and WES data without requiring matched control tis-
sues, using Bayesian genotypers supplemented with a se-

ries of stringent error filters to remove systematic errors in
NGS data to significantly reduce false positive rates. As it
was shown in previous studies that incorporating sequenc-
ing data from parents may improve genotyping accuracy
(39,40), we developed a new joint Bayesian model to incor-
porate parental data in SNM identification. We also devel-
oped a paired mode that can take advantage of matched
control samples when available. The performance of Mo-
saicHunter was benchmarked by both simulated and real se-
quencing datasets and compared with other existing meth-
ods, demonstrating the unique advantages of this method
for accurately identifying SNMs in both cancer and non-
cancer applications.

MATERIALS AND METHODS

Overview of MosaicHunter

The flowchart of MosaicHunter is shown in Figure 1A.
In summary, MosaicHunter incorporated a Bayesian-based
mosaic genotyper and a series of empirical error filters. The
Bayesian genotyper was able to calculate the posterior prob-
abilities of mosaic genotype and three germline genotypes
(reference homozygous, heterozygous and alternative ho-
mozygous), by integrating base-calling errors, random sam-
pling variations and population allele frequencies anno-
tated in dbSNP. The error filters could further remove false
positives caused by systematic errors in base-calling and
read alignment as well as other types of genomic variants
such as indels and structural variations. In addition to the
binomial model for analyzing WGS data (6), the Bayesian
genotyper provided a new beta-binomial model designed
for WES data. MosaicHunter can run in ‘single’, ‘trio’ or
‘paired’ modes to handle sequencing data from unpaired,
familial trio, or paired samples. The Bayesian genotyper for
the ‘single’ mode of WGS data analysis was described pre-
viously. The other Bayesian models are described in detail
below.

Beta-binomial model for WES data
To model the notable capturing bias and over-dispersion of
alternative allele fractions in WES data, we changed the
prior distribution of theoretical allele fraction θ for het-
erozygous sites, from the spike at θ = 0.5, to a fitted beta
distribution, i.e.

θ |G = heterozygous ∼ Beta (α, β) ⇔ P (θ |G = heterozygous) = θα−1(1 − θ)β−1

beta (α, β)

Correspondingly, the inference part of heterozygous sites
was subsequently changed to

P(r |G = heterozygous, d) =
∫ 1

0
θr (1 − θ)(d−r )P(θ |G = heterozygous) dθ

= 1
beta(α, β)

∫ 1

0
θr+α−1(1 − θ)d−r+β−1dθ

= beta(α + r, β + d − r )
beta(α, β)

The prior beta distribution θ ∼ Beta(�, �) has properties

E [θ ] = α
α+β

Var [θ ] = αβ

(α+β)2(α+β+1)

For the mutant allele count r ∼ Binomial(d; θ ), assuming
that the beta prior of the theoretical mutant allele fraction
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Figure 1. Overview of MosaicHunter. (A) Framework for the detection of single-nucleotide mosaicisms (SNMs) from a single unpaired sample. The
candidate SNMs were first identified using a Bayesian genotyper and subsequently filtered using a series of stringent filters. ref-hom: homozygous for
reference allele; alt-hom: homozygous for alternative allele; het: heterozygous. (B) The capturing bias and over-dispersion in WES data correction by
the beta-binomial model. The blue and green lines represent the 95% confidence intervals of the original binomial and fitted beta-binomial models for
heterozygous sites. The red line denotes the mean alternative allele fractions of heterozygous sites with varied depths which clearly deviated from 0.5. (C
and D) The extended Bayesian models of MosaicHunter for incorporating familial trio data (C) and paired data from the same individual (D). In the
Bayesian genotyper, G denotes the genotype state, � denotes the prior probabilities of each genotype, and d, q, o denote the depth, base qualities, and
bases for calculating likelihood from observed sequencing data. (E-G) Depth-dependent sensitivity of the single (E), trio (F) and paired modes (G) of the
Bayesian genotyper in MosaicHunter on simulated data.
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θ does not change with the sequencing depth d, the expec-
tation and variance of the mutant allele fraction r/d can be
deduced as

E [r/d] = E [θ ]

Var [r/d] = (d − 1) Var [θ ] + E [θ ] − (E [θ ])2

d
≈ Var [θ ] + E [θ ] (1 − E [θ ])

d
(when d � 1)

To estimate the parameters � and �, MosaicHunter first
fitted the linear regression Var[r/d] ∼ 1/d among the called
heterozygous sites. For those sequencing depths which had
<50 heterozygous sites, we grouped sites with similar se-
quencing depths. E[θ ] was estimated from the average ob-
served allele fraction E[r/d], and Var[θ ] was subsequently
calculated as the intercept of the line which had slope E[θ ](1
– E[θ ]) and intersected the fitted line at depth 80. The fitted
� and � were directly calculated from E[θ ] and Var[θ ] ac-
cording to the properties of beta distribution.

Because the capturing bias and over-dispersion varied
among different runs of WES data, the estimation of � and
� of the beta prior was performed for each exome.

To further reduce false positive SNMs in WES data, in
addition to the series of empirical error filters which were
described previously (6), we implemented and applied two
more new filters: one is a multifactorial filter to distinguish
systematic errors from true mutations based on their se-
quence context, strand bias and base quality (41), and the
other is a mapping quality filter that rejects sites for which
the mapping quality distributions between the major and
minor alleles were significantly different (Wilcoxon rank-
sum test’s P-value < 0.05).

The Bayesian model for trio data

When the sequencing datasets of both parents and their
child were available, the genotype relationship between
these datasets could be modeled as a conditional probabil-
ity factor P(Gc|Gf, Gm) and incorporated into the Bayesian
model (Figure 1C), where Gc, Gf and Gm are the genotypes
of the child, father and mother, respectively. Subsequently,
the genotypes of the trio could be jointly inferred, as shown
in the formula below:

P (Gc, Gf , Gm|datac, dataf , datam)
∝ P (Gf ) P (Gm) P(Gc|Gf , Gm)P (datac|Gc) P (dataf |Gf ) P (datam|Gm)

where the parental priors P(Gf) and P(Gm) and the likeli-
hoods P(datac|Gc), P(dataf|Gf) and P(datam|Gm) were cal-
culated as previously described (6). The added trio factor
P(Gc|Gf, Gm) was specified according to Mendelian inheri-
tance rules and the occurrence of de novo and mosaic muta-
tions. Here, we denote Rd as the de novo mutation rate and
Rm as the mosaicism occurrence rate, set by default as 10−8

and 10−7, respectively. The transmission of the genotypes
from parents to their child could be formulated into two
steps: (i) generating gamete alleles from the genotype of the
parents; and (ii) combining two gamete alleles to form the
genotype of the child.

The probability to generate gamete alleles from the geno-
type of each parent was specified as follows: (i) if the par-
ent’s genotype is homozygous, then the probability of the
corresponding gamete allele is set to 1 – Rd, and the prob-
abilities for the other three alleles are set to Rd/3; (ii) if the

parent’s genotype is heterozygous, the probabilities of the
two constitutional gamete alleles are set to 1/2 – Rd/3, and
the probabilities of the other two alleles are set to Rd/3; and
(iii) if the parent’s genotype is mosaic, then the probabilities
of the major and minor gamete alleles are set to AFmaj × (1
– 2Rd/3) and AFmin × (1 – 2Rd/3), where AFmaj and AFmin
denote the major and minor allele fractions of the mosaic
site, and the probabilities of the other two alleles are still set
to Rd/3.

The probability of the genotype of the child was specified
as follows: (i) if the child’s genotype is not mosaic and is
exactly the combination of the gamete alleles from the two
parents, then the probability is set to 1 – Rm; (ii) if the child’s
genotype is not mosaic but not exactly the combination of
the gamete alleles from the two parents, then the probability
is set to zero; and (iii) if the child’s genotype is mosaic, then
the probability is set to Rm.

The joint posterior distribution of trio genotypes was cal-
culated based on the Bayesian rule and marginalized to ob-
tain the marginal posterior probabilities of genotypes for
each individual. All sites with novel mutations (i.e. sites
where the mutant allele was present in the child but absent
in both parents) could be further genotyped as mosaic or de
novo heterozygous based on the likelihood obtained from
the sequencing data for the child. Because of the postzy-
gotic origin of mosaicism, we only considered candidate
sites where both parents were genotyped as homozygous for
the major allele of the child’s mosaicism.

The Bayesian model for paired data

When a paired control sample from the same individual was
sequenced, we introduced a latent variable, the genotype of
the ancestor, into the original Bayesian model and intro-
duced the genotype change rate (Figure 1D). The inference
formula can be formulated as

P (Gcase, Gcontrol|datacase, datacontrol) ∝
∑

Gancestor

P (Gancestor)

×P(Gcase|Gancestor)P(Gcontrol|Gancestor)P (datacase|Gcase) P (datacontrol|Gcontrol)

where the prior P(Gancestor) and the likelihood
P(datacase|Gcase), P(datacontrol|Gcontrol) were calculated
as previously described (6). The change rate factor
P(Gcase|Gancestor) and P(Gcontrol|Gancestor) for the remaining
two genotypes were specified as

P (Gto|Gfrom) =

from \ to
ref − hom
heterozygous
alt − hom
mosaic

ref − hom heterozygous alt − hom mosaic⎛
⎜⎜⎜⎝

1 − Rd − Rm Rd 0 Rm
Rd 1 − 2 · Rd − Rm Rd Rm
0 Rd 1 − Rd − Rm Rm

Rm Rm Rm 1 − 3 · Rm

⎞
⎟⎟⎟⎠

After the joint posterior distribution P(Gcase,
Gcontrol|datacase, datacontrol) was calculated, the proba-
bility that the case and control samples have different
genotypes was considered as the probability of a postzy-
gotic mutation occurring between the case and control
samples, summing up all posterior probabilities P(Gcase �=
Gcontrol).

Theoretical generation of sequencing bases

To compare the performance of the ‘single’, ‘trio’ and
‘paired’ Bayesian models in MosaicHunter, we theoretically
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generated sequencing bases of sites from a binomial dis-
tribution with varied sequencing depths (20–200) and ex-
pected alternative allele fractions (0–0.5), and then changed
reference allele to alternative allele and alternative allele to
reference allele by a Bernoulli process with the sequencing
error rate 10−3 (fixed baseQ to 30). The sites with expected
alternative allele fraction 0 or 0.5 were considered as ref-
erence homozygous or heterozygous genotype, respectively,
whereas the sites with other allele fractions were considered
as true SNMs. For the ‘trio’ or ‘paired’ mode, we also gener-
ated sequencing bases in parental or control samples where
the expected alternative allele fraction was set to 0. Each
simulation was done 107 times. The posterior probability
threshold to determine a positive mosaic site was set to the
default 0.05 in each mode of MosaicHunter.

Simulated non-cancer datasets for benchmarking

The simulated non-cancer WGS and WES datasets were
generated in silico by mixing the sequencing data from
NA12878 and that from an unrelated individual (ACC1-II-
1 for the WGS dataset and NA12889 for the WES dataset)
(6), with average depth of 72X and 258X for the WGS and
WES datasets, respectively. The genotyping files were com-
pared between the two individuals, and the genomic posi-
tions where NA12878 was homozygous for the reference
allele and the unrelated individual was heterozygous were
identified. To exclude potential genotyping errors, only the
sites located in non-repetitive regions were considered. Be-
cause the genders of the two individuals were different, the
sites located on the sex chromosomes were excluded. To
mimic the postzygotic origination of the SNMs, only the
sites genotyped as homozygous for the reference allele in
both parents of NA12878 were considered in subsequent
analyses. For each of the five alternative allele fractions
tested (0.05, 0.1, 0.2, 0.3 and 0.4), we sampled ∼7000 sites
genome-wide for the WGS datasets and ∼250 sites within
the capture regions for the WES datasets. For each site
with adequate sequencing depths, the paired-end reads of
NA12878 overlapping with the site were randomly replaced
with reads from the unrelated individual at the same site,
following binomial sampling with the alternative allele frac-
tion and sequencing depth. As shown in Supplementary
Figures S1 and S2, the distribution of the simulated poly-
morphic sites followed the expected distribution of stochas-
tic sampling of real reads in the WGS and WES datasets.
The sensitivity of identifying SNMs at each allele fraction
was subsequently calculated as the proportion of polymor-
phic sites identified from the simulated dataset. The data
of NA12878 were utilized as the control for the ‘paired’
mode of MosaicHunter, Varscan 2 and MuTect. The data
of NA12891 and NA12892 were treated as the father and
mother for the ‘trio’ mode of MosaicHunter.

According to a previously described strategy (6), the
specificity was estimated by using the WGS and WES read
libraries of NA12878. After excluding de novo mutations
identified from the genotyping files of the NA12878 trio,
all the identified postzygotic mutations were considered as
false positives, and the depth-dependent specificities were
calculated for homozygous and heterozygous sites sepa-
rately. For the ‘single’ and ‘trio’ mode of MosaicHunter

as well as SomVarIUS, Solexa-18483 and library 1 listed
in Supplementary Table S2 were used for WGS and WES
benchmarking, respectively. For the ‘paired’ mode of Mo-
saicHunter, Varscan 2, and MuTect, another read libraries
constructed from the same individual NA12878 (Solexa-
18484 for WGS benchmarking and library 2 for WES
benchmarking) were treated as the control datasets (Sup-
plementary Table S2).

Precision was subsequently calculated based on the sen-
sitivity and specificity estimated above, and the occurrence
rates of germline heterozygous sites (1.2 × 10−3 per bp) and
postzygotic mutations (4.4 × 10−7 per bp) were set based on
estimates from previous studies (6,42).

TCGA and ICGC cancer datasets for benchmarking

The performance of MosaicHunter in cancer stud-
ies was evaluated using two different synthetic cancer
datasets from TCGA and ICGC. For the TCGA dataset,
the 58–71X WGS data obtained from the breast can-
cer cell lines HCC1954 and the paired normal con-
trol cell line HCC1954BL provided through TCGA
Mutation/Variation Calling Benchmark 4. The BAM files
of the two cell lines were sub-sampled and mixed with each
other to construct two tumor datasets with different tumor
purities, 30% tumor vs 70% normal (T30N70) and 50%
tumor versus 50% normal (T50N50), with an average depth
of ∼83×. For the ICGC dataset, we downloaded the ∼40×
synthetic sequencing data of paired tumor and normal
samples from ICGC-TCGA DREAM Somatic Mutation
Calling Challenge. The synthetic data were generated
using BAMSurgeon by introducing synthetic mutations
with varied allele fractions (50%, 33% and 20%) into the
WGS data of HCC1143BL (43). The ‘ground truth’ list of
mutations as well as the candidate lists called by MuTect
(22) and Varscan 2 (20) were also downloaded. To achieve a
higher sequencing depth for benchmarking the control-free
methods, we also generated a merged BAM file with ∼80×
depth by combing the tumor and normal sequencing data,
where the mutant allele fractions were dropped to 25%,
17.5% and 10%, respectively.

The genotypes of each sample were separately called and
filtered using GATK (version 1.6) (44), and CNVnator (ver-
sion 0.2.7) (45) and BIC-seq (version 2.1.1) (46) were ap-
plied for calling copy number variations. The sites that were
heterozygous in the tumor sample and homozygous for the
reference allele in the normal sample were subsequently
considered as postzygotic mutations. To remove potential
technical artifacts resulting from base-calling or alignment
errors, the sites located in or near repetitive regions, ho-
mopolymers, indels and copy number variations were ex-
cluded.

Because some parameters of MosaicHunter, including
the prior probability of the mosaic genotype in the Bayesian
genotyper and the maximum distance in the filter of clus-
tered sites, were originally designed for non-cancer sequenc-
ing data and might not be suitable for cancer samples, we
estimated the precision and sensitivity with varied values of
the two parameters in the TCGA cancer dataset. A max-
imum distance of 2000 bp (5000 bp as default), showing
the highest sensitivity and acceptable specificity, was set for
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cancer studies (Supplementary Figure S3), consistent with
prior knowledge that cancer samples have a higher density
of postzygotic mutations (47).

Whole-genome and whole-exome sequencing

Genomic DNA was extracted from the peripheral blood
samples of ACC1-II-1, DS1-II-2, DS1-III-1, AU1-II-1 and
their parents. ACC1-II-1 was sequenced at ∼90× average
sequencing depth and his parents were sequenced at 30–
54× average sequencing depth (Table 1). The exomes of
the trios of DS1-II-2 and DS1-III-1 were captured using
the Agilent SureSelect Human All Exon 71M kit and se-
quenced at ∼400× average depth each. The exomes of trio
of AU1-II-1 were processed using the Agilent SureSelect
Human All Exon 50M kit and sequenced at ∼150× depth
each (Table 1). All sequencing was performed on an Illu-
mina HiSeq2000 platform using 100 bp paired-end reads.
The clinical histories of all four trios showed no symptoms
of cancer or other overgrowth disorders.

Identification of SNMs and performance comparison

Sequencing reads in FASTQ format were aligned to the
GRCh37 reference genome using BWA (48) (version 0.6.1).
The aligned BAM files were pre-processed as previously de-
scribed (6), including the removal of duplicated and error-
prone reads, indel realignments, and base-quality recali-
brations. The ‘single’, ‘trio’ and ‘paired’ modes of Mo-
saicHunter (version 1.0) were used to call postzygotic
SNMs from the processed BAM files. For comparison,
postzygotic mutations were also called using SomVarIUS
(28) (version 1.1), Varscan 2 (20) (version 2.2.11) and Mu-
Tect (22) (version 1.1.4), with default settings and ‘best-
practice’ pipeline suggested in their websites. The pipeline
of each software includes the steps of both raw genotyping
and subsequent filtering.

Experimental validation of SNMs

The candidate SNMs identified from the WGS and WES
datasets of the samples were validated by direct Sanger se-
quencing and PASM (49), a more sensitive amplicon-based
resequencing method.

Direct Sanger sequencing was first applied to heterozy-
gous sites in which the mutant allele was inherited from
either parent. Subsequently, all the remaining candidates
were verified using the standard workflow of PASM. Ex-
cept for sites for which primers were not able to be de-
signed, the genomic regions flanking the candidate loci were
captured after 35 cycles of PCR with an annealing tem-
perature of 59.5◦C (Supplementary Table S4), followed by
agarose gel electrophoresis and extraction using the Qiagen
QIAquick gel extraction kit (Qiagen). Subsequently, the ex-
tracted amplicons were barcoded and sequenced using Ion
Torrent (Thermo Fisher), according to the manufacturer’s
instructions. The reads were aligned against the hg19 refer-
ence genome using Torrent Suite (version 4.4.2) and subse-
quently pileuped using Samtools (version 1.2) (50). The hi-
erarchical Bayesian model was applied to estimate the mo-
saic allele fraction, considering sequencing errors and ran-

dom variations of binomial sampling. An SNM site is con-
sidered true when the estimated mosaic allele fraction is be-
tween 3% and 40% in the offspring (mosaic genotype) and
less than 3% in both parents (homozygous genotype).

Data access

For benchmarking the performance of MosaicHunter in
non-cancer individuals, the WGS and WES datasets of
CEU trios and an unrelated individual for generating sim-
ulated sequencing data are available at the URLs listed
in Supplementary Table S2. The TCGA cancer dataset
were downloaded from TCGA Mutation/Variation Call-
ing Benchmark 4 following the instructions at https://
gdc.cancer.gov/resources-tcga-users/. For the ICGC cancer
dataset, the sequencing and genotyping files of Synthetic
Dataset 3 were downloaded from ICGC-TCGA DREAM
Somatic Mutation Calling Challenge (43). The WGS and
WES datasets of trios of non-cancer samples have been de-
posited to the Sequencing Read Archives under accession
number SRP028833.

RESULTS

Description of MosaicHunter’s Bayesian genotyper and error
filters

MosaicHunter is summarized in Figure 1A, described be-
low, and detailed in Materials and Methods. We had pre-
viously reported the single-sample unpaired WGS mode of
MosaicHunter. It calculated the posterior probabilities of
the mosaic genotype and three inherited genotypes under
a Bayesian model (6). The prior probability incorporated
the population allele frequency information from dbSNP.
The likelihood of each genotype was calculated by binomial
sampling of reads for each allele and modeling sequencing
substitution error based on base quality (Figure 1A). We
also developed a series of stringent filters to remove system-
atic sequencing errors at the levels of genomic region, read
alignment, and nucleotide site (Figure 1A), which we had
demonstrated as effective (6).

Compared to the previous version which can only an-
alyze WGS data of unpaired samples, the new version of
MosaicHunter has the significantly enhanced flexibility of
being able to analyze WGS as well as WES data in ‘single’,
‘trio’, and ‘paired’ modes. First, to extend MosaicHunter to
handle capture-based WES data, we began with investigat-
ing the extent of capturing bias and over-dispersion in five
WES datasets. As shown in Supplementary Figure S4, devi-
ation from the binomial expectation was observed in all the
five WES datasets (but not in the WGS dataset), confirming
the existence of notable capturing bias and over-dispersion
in WES data and the necessity of a new model. Hence, we
replaced the binomial model in our previous genotyper with
a new beta-binomial model in order to better fit the WES
data (Materials and Methods). After using the new beta-
binomial model, the proportion of heterozygous sites lo-
cated outside the 95% confidence intervals decreased from
17% to 4.4% in WES data (Figure 1B), closer to the theoreti-
cal expectation of 5%, demonstrating that the new model in-
deed had better performance for distinguishing SNMs from
heterozygous sites in WES data.

https://gdc.cancer.gov/resources-tcga-users/
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Table 1. Validation rates of MosaicHunter on whole-genome sequencing (WGS) and whole-exome sequencing (WES) data of control-free unpaired samples
(‘single’ mode) and familial trio samples (‘trio’ mode)

Sequencing type Sample ID Sequencing depth
‘Single’ mode
validation rate

Sequencing depth
of father

Sequencing depth
of mother

‘Trio’ mode
validation rate

WGS ACC1-II-1 87× 31.8% (7/22) 54× 30× 100% (8/8)
WESa DS1-II-2 403× 33.3% (1/3) 375× 419× 100% (1/1)
WESa DS1-III-1 398× 33.3% (1/3) 375× 403× 100% (1/1)
WESb AU1-II-1 169× 25% (1/4) 119× 130× 40% (2/5)

aCaptured using the Agilent SureSelect Human All Exon 71M kit.
bCaptured using the Agilent SureSelect Human All Exon 50M kit.

Although the main purpose of developing MosaicHunter
was to detect SNMs without needing control samples, we
also extended its Bayesian model to allow for the incorpo-
ration of sequencing data from additional available samples
to improve accuracy, including blood samples from parents
or paired tissue samples from the same individual. As illus-
trated in Figure 1C, in the ‘trio’ mode of MosaicHunter,
sequencing data of parents were modeled in the Bayesian
genotyper by linking the genotype likelihoods of the par-
ents and their offspring with a factor of transmission con-
ditional probability, formulated according to Mendelian in-
heritance rules and estimated mutation rates (Materials and
Methods). To incorporate data from paired tissue sample of
the same individual, in the ‘paired’ mode of MosaicHunter
we introduced a latent state of ancestral genotype and ex-
tended the Bayesian model (Figure 1D and Materials and
Methods). Using simulated sequencing bases with varied
sequencing depths and mutant allele fractions, we showed
that the ‘trio’ and ‘paired’ modes achieved higher sensitivity
to detect true mosaicisms, especially for SNMs with allele
fractions greater than 0.3 (Figure 1E-G), and higher speci-
ficity to remove false positives arisen from homozygous and
heterozygous sites (Supplementary Table S1). Our results
confirmed that the extended ‘trio’ and ‘paired’ Bayesian
models incorporating data from additional samples per-
formed better than the ‘single’ model, and that all three
models could benefit from increased sequencing depth (Fig-
ure 1E-G and Supplementary Table S1).

MosaicHunter takes the aligned reads in BAM format
(50) files as input. It is implemented in JAVA. A typical anal-
ysis of a 90× WGS datasets takes ∼20 h using one core of
a 2.66 GHz Intel Xeon processor, compared to over 500
h taken by our previous version implemented in Perl (6).
MosaicHunter is freely available for non-commercial use at
http://mosaichunter.cbi.pku.edu.cn.

Evaluation and comparison on simulated benchmarking non-
cancer datasets

We first evaluated MosaicHunter on in silico simulated
non-cancer WGS and WES datasets. Using the WGS and
WES datasets of sample NA12878 from the 1000 Genomes
Project, we generated SNMs with varied mutant allele frac-
tions (0.05, 0.1, 0.2, 0.3 and 0.4, respectively) by randomly
replacing the sequencing reads of sample NA12878 with
those of an unrelated healthy individual (ACC1-II-1 for
WGS and NA12889 for WES) following a binomial sam-
pling process at autosomal sites where NA12878 was ho-
mozygous for the reference allele and the second individual

was heterozygous (Supplementary Table S2 and Materials
and Methods). False positive rates were estimated by count-
ing mis-identified postzygotic SNMs from homozygous or
heterozygous sites of NA12878 (Materials and Methods).

Results on simulated WGS datasets are shown in Figure
2A–C. As shown in Figure 2A, the ‘single’ mode of Mo-
saicHunter achieved a precision of over 50% in identifying
SNMs with minor allele fractions between 0.05 and 0.3, al-
though the precision was lower for minor allele fractions of
0.4. In comparison, SomVarIUS achieved a precision <1%.
One unique feature of MosaicHunter is that it can utilize
WGS or WES data from parents to improve the accuracy of
SNM identification. Utilizing sequencing data from the par-
ents of sample NA12878, the ‘trio’ mode of MosaicHunter
achieved a significantly improved precision of over 75% for
SNMs with allele fractions between 0.05 and 0.4. Using the
original NA12878 dataset as control, the ‘paired’ mode of
MosaicHunter achieved a precision of 95% for mutations
with allele fractions >0.05. In comparison, Varscan 2 (20)
and MuTect (22) achieved precisions of 30% and 5%, re-
spectively. Furthermore, as shown in Figure 2B and C, all
three modes of MosaicHunter achieved lower false posi-
tive rates at both homozygous sites (Figure 2B) and het-
erozygous sites (Figure 2C) and outperformed SomVarIUS,
Varscan 2 and MuTect.

Results on simulated WES datasets are shown in Fig-
ure 2D–F. We first demonstrated that the beta-binomial
model of MosaicHunter reduced false positive rates more
efficiently than the original binomial model, particularly for
false positives arising from heterozygous sites (Supplemen-
tary Figure S5). Even without using paired control sam-
ples, the ‘single’ mode of MosaicHunter achieved a pre-
cision ranging from 79% to 94% in the identification of
SNMs with allele fractions of 0.05–0.3 (Figure 2D), out-
performing SomVarIUS and achieving comparable perfor-
mance to Varscan 2 and MuTect which used the paired con-
trol dataset (average precision = 76% and 93%, respectively)
(Figure 2D). When utilizing parental data, the average pre-
cision of the ‘trio’ mode of MosaicHunter increased to 95%
for SNMs with minor allele fraction between 0.05 and 0.4
(Figure 2D). When utilizing paired control data, the aver-
age precision of the ‘paired’ mode of MosaicHunter further
increased to 99% for SNMs with minor allele fraction be-
tween 0.05 and 0.4 (Figure 2D), surpassing the precision
of Varscan 2 and MuTect. Furthermore, all three modes of
MosaicHunter achieved comparable or lower false positive
rate than SomVarIUS, Varscan 2, and MuTect (Figure 2E
and F).

http://mosaichunter.cbi.pku.edu.cn
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Figure 2. Comparison of the precision and false positive rate of the identification of SNMs with varied allele fractions using MosaicHunter, SomVarIUS,
Varscan 2 and MuTect demonstrated that MosaicHunter had better performance on both WGS and WES data. (A) Proportion of true SNMs among all
sites identified in WGS data; (B) false positive rate among simulated reference homozygous (ref-hom) sites in WGS data; (C) false positive rate among
simulated heterozygous sites in WGS data; (D) proportion of true SNMs among all sites identified in WES data; (E) false positive rate among simulated
reference homozygous (ref-hom) sites in WES data; (F) false positive rate among simulated reference heterozygous sites in WES data.
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Evaluation of identifying somatic mutations in simulated un-
paired and paired cancer genomes

To assess the performance of MosaicHunter in cancer stud-
ies, we firstly applied MosaicHunter to WGS datasets from
a breast cancer cell line and its paired normal control that
are part of the TCGA Mutation/Variation Calling Bench-
mark (Materials and Methods), a widely-used benchmark-
ing dataset for cancer-related bioinformatics tools (23,51).
Considering that tumor samples are typically a mixture of
tumor cells and normal cells, two simulated tumor datasets
were generated with tumor purities of 30% and 50% (la-
beled as T30N70 and T50N50), respectively. In cancer stud-
ies where the paired normal control tissue samples are un-
available or inappropriate, MosaicHunter can be an im-
portant tool for control-free identification of somatic mu-
tations in tumor samples. As illustrated in Figure 3A, the
‘single’ mode of MosaicHunter identified 1457 true so-
matic mutation sites with only 26 false positives from the
T30N70 dataset in a control-free manner. In comparison
SomVarIUS identified 840 true positives with 888 false pos-
itives. When utilizing the paired normal control dataset, the
‘paired’ mode of MosaicHunter further reduced the num-
ber of false positives to four and achieved comparable sen-
sitivity and higher specificity than Varscan 2 and MuTect
(Figure 3A). Evaluation on the T50N50 dataset confirmed
MosaicHunter’s performances (Figure 3A).

Because the multi-clonal origin of tumor samples was
common in many cancer types (16,52), we next employed
MosaicHunter to a simulated cancer WGS dataset from
ICGC-TCGA DREAM Somatic Mutation Calling Chal-
lenge in which the allele fraction of synthetic mutations
varied from 20%, 33% to 50% (43). As expected, without
the help of matched control samples, the somatic mutations
with 50% allele fractions were not able to be distinguished
from germline sites (Figure 3B and C, solid lines). However,
such somatic mutations could be identified if the roughly
equal amount of sequencing data from both the tumor and
normal samples were pooled altogether as the input for
the ‘single’ mode of MosaicHunter (Figure 3B and C, dot-
ted lines). Our results suggested, in both cases, the ‘single’
mode of MosaicHunter had better sensitivity and precision
than SomVarIUS, especially for the mutations with rela-
tively higher allele fractions (Figure 3B and C). When the se-
quencing data from the paired control sample was incorpo-
rated, MosaicHunter achieved comparable precision but a
little lower sensitivity against Varscan2 and MuTect (Figure
3B and C). In summary, our two benchmarking assessments
demonstrated that MosaicHunter can identify somatic mu-
tations in cancer samples with varied mutant allele fractions
with or without matched control tissues.

Experimental validation of SNMs identified in control-free
unpaired non-cancer samples

We further evaluated and experimentally validated the re-
sults of MosaicHunter on new WGS and WES data of real
samples. We first confirmed that this newly implemented
version of MosaicHunter achieved similar accuracy to our
previously reported version when analyzing unpaired WGS
data. We used our previously sequenced WGS data from the

peripheral blood sample of a clinically unremarkable indi-
vidual without clinical history of cancer (ACC1-II-1, Ta-
ble 1) (6). Out of 22 candidate SNMs identified by Mo-
saicHunter, seven (31.8%) were validated as true by PGM
Amplicon Sequencing of Mosaicism (PASM), an amplicon-
based ultra-high sequencing method (49) (Supplementary
Table S3 and Materials and Methods), an accuracy simi-
lar to that of the previous version (6). The low number of
SNMs is consistent with the fact that the sequenced indi-
vidual has no clinical history of cancer.

To evaluate MosaicHunter’s accuracy of identifying
postzygotic SNMs in WES data without using paired con-
trol samples, we used Illumina HiSeq platform to sequence
the whole exomes from peripheral blood samples from three
unrelated individuals who did not have any clinical history
of cancer (samples DS1-II-2, DS1-III-1, and AU1-II-1, Ta-
ble 1). The sequencing depth ranged from 169× to 403×.
We applied the ‘single’ mode of MosaicHunter to the WES
datasets. Out of a total of 10 candidate SNMs, three (30%,
Table 1) were validated by PASM (49) (Supplementary Ta-
ble S3 and Materials and Methods). The allelic fractions of
the validated SNMs were 17.6%, 18.0% and 12.5%.

For benchmarking, we compared with SomVarIUS (28),
the only other available software for control-free SNM de-
tection, by applying it to the same WGS and WES datasets.
SomVarIUS reported 25 848 candidate SNMs from the
WGS data and an average of 69 candidate SNMs from the
WES datasets, with mosaic mutant allele fraction >0.05.
These were orders of magnitude larger than previous esti-
mation (6), suggesting a high false positive rate. Further-
more, despite the huge number of reported SNM candi-
dates, only two of the seven validated SNMs in WGS dataset
and none of the three validated SNMs in WES dataset (Sup-
plementary Table S2) were identified by SomVarIUS.

Experimental validation of SNMs identified in non-cancer fa-
milial trio samples

We sequenced the whole genomes and exomes of peripheral
blood DNA from the parents of ACC1-II-1, DS1-II-2, DS1-
III-1 and AU1-II-1 by Illumina HiSeq platform (Table 1).
When the parental data was incorporated, MosaicHunter
achieved increased sensitivity as well as precision for both
the WGS dataset, with eight SNMs validated among eight
identified (100% precision), and the WES datasets, with four
SNMs validated among seven identified (57.1% precision)
(Table 1). The precisions on the DS1-II-2 and DS1-III-1
WES datasets were significantly higher than that on the
AU1-II-1 WES dataset likely because they were sequenced
at higher depths and using a newer version of the capture
kit which resulted in less over-dispersion (Supplementary
Figure S4). Our results demonstrated the power of using
parental data to significantly improve SNM detection ac-
curacy when no paired control tissues are available. To our
knowledge, no other existing methods can incorporate fa-
milial information in control-free SNM detection.

DISCUSSION

Emerging evidence has demonstrated the previously ne-
glected contribution of postzygotic mutations in the etiol-
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Figure 3. Performance of MosaicHunter in the TCGA and ICGC cancer datasets. (A) Number of true and false positive SNMs identified from the TCGA
cancer dataset using MosaicHunter, SomVarIUS, Varscan 2 and MuTect. T30N70 and T50N50 denote sequencing data simulating 30% and 50% tumor
cell purity, respectively. (B and C) Comparison of the sensitivity (B) and precision (C) of MosaicHunter, SomVarIUS, Varscan 2 and MuTect from the
ICGC cancer dataset, with three different sub-clonal allele fractions of synthetic mutations. For the ‘single’ mode of MosaicHunter and SomVarIUS, solid
lines denote using the original ∼40× tumor sequencing data as input, whereas dotted lines denote using the combined ∼80× sequencing data of both the
tumor and normal samples as input.

ogy of non-cancer diseases (53–56). Within a healthy indi-
vidual, postzygotic mutations identified in different samples
of the same individual have broadened the concept of ‘a per-
sonal genome’ to ‘the personal genomes’ (2,4,6). The origins
of more and more ‘de novo’ mutations identified in offspring
have been traced back to postzygotic mutations in their par-
ents (57). In all these cases, the identification of postzygotic
mutations faces the challenge of not having paired con-
trol tissues. Here, we demonstrated that MosaicHunter can
identify SNMs from whole-genome and whole-exome data
in the absence of paired control samples from the same indi-

vidual, making it a useful tool for these non-cancer studies
as well as some cancer studies when matched normal con-
trol samples are unavailable or difficult to obtain.

The increasing throughput and decreasing cost of next-
generation sequencing technologies over the past decade
have made the genome-wide identification of postzygotic
mutations possible. Compared to WGS, WES is more cost-
effective because it is enriched for functional mutations and
usually has higher sequencing depth (58). However, the no-
table capturing bias and over dispersion in WES data posed
serious challenges for identifying SNMs. We demonstrated
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that the integration of a new beta-binomial model into
the Bayesian genotyper can effectively handle the captur-
ing bias and over-dispersion in WES data and accurately
identify SNMs in the data. Since the parameters of the beta-
binomial model vary across different capturing kits and se-
quencing platforms, MosaicHunter enables users to pre-
estimate these parameters from the heterozygous sites in
customized WES or other capturing-based target panel re-
sequencing data.

Our simulation results demonstrated that increasing se-
quencing depth and base quality can significantly increase
the accuracy of SNM identification (Figure 1E–G and Sup-
plementary Table S1). For control-free non-cancer samples,
the sensitivities to detect SNMs with various allele fractions
approximately doubled when the depth increased from 40×
to 60× (Figure 1E). As shown in our cancer benchmark-
ing data, MosaicHunter performed generally better in the
∼65× TCGA dataset than the ∼40× ICGC dataset (Fig-
ure 3). Thus, we suggest a minimal average depth of 60× for
identifying SNMs from control-free sequencing data. For
cancer studies, the tumor purity is another key factor crit-
ical for MosaicHunter’s performance. In the ‘single’ mode,
MosaicHunter achieved the highest sensitivity when detect-
ing SNMs with allele fractions ranging from 0.15 to 0.2
(Figures 1E and 3). Assuming that the majority of cancer
mutations are heterozygous in tumor cells, this range of al-
lele fraction denotes tumor purity between 30% and 40%.

If a postzygotic mutation affects germ cells, there is a
chance that the mutant allele may be transmitted to the off-
spring and lead to a heterozygous genotype. As shown in
Huang et al. (6), the heterozygous missense mutations in the
SCN1A gene of two children with Dravet syndrome were in-
herited from postzygotic SNMs in their respective parents.
MosaicHunter may be used to identify such parental SNMs
and contribute to more sensitive genetic counseling. At the
same time, as we have shown in this study, when paired con-
trol samples from the same individual are not available, in-
corporating parental sequencing data can significantly im-
prove the performance of SNM identification in the off-
spring. Collecting and sequencing parental samples is al-
ready a routine practice in the studies of de novo mutations
and inherited mutations in genetic disorders (59). Our re-
sults advocate the routine collection of parental samples in
broader areas of medical genetics, human genetics and ge-
nomics studies.

To achieve higher precision that could allow the iden-
tification and validation of postzygotic mutations in non-
cancer samples, MosaicHunter incorporated a series of
stringent error filters to remove numerous sequencing er-
rors, which inevitably limited the sensitivity to detect SNMs.
In the human genome, about half of the DNA sequence
is comprised of various types of repetitive elements, and
the highly homologous DNA sequences post challenges
on genome assembly and read alignment, which hinders
not only the identification but also the validation of mu-
tations in these regions (60). The repetitive regions are
filtered out in the default pipeline of MosaicHunter. In
the non-repetitive regions up to ∼50% of the true SNMs
would be missed due to the stringent error filters in our de-
fault pipeline (Supplementary Table S5). To allow users to
achieve their own desired balance between sensitivity and

specificity, the MosaicHunter software allows users to eas-
ily customize the on/off and parameters of each filter.

In this study, we identified and validated 8 SNMs in
the WGS dataset and 1–2 SNMs in each WES dataset of
non-cancer individuals. Based on the sensitivity of Mo-
saicHunter, the occurrence rate of postzygotic SNMs with
allele fractions greater than 0.05 was about 1×10−8 to
1×10−7 per nucleotide in healthy individuals, which was
comparable to the rate of de novo mutations (61) but greatly
lower than the rate of somatic mutations in tumors (62).
A systematic profiling of multiple non-cancer tissues from
more individuals would be required for a more accurate es-
timation of the baseline postzygotic mutation rate. As NGS
technologies become cheaper, more powerful, and more ac-
curate, they will enable us to identify more SNMs in non-
cancer individuals and elucidate their genomic patterns,
which may shed light on exploring the etiology of genetic
diseases, understanding the origin of de novo mutations, and
providing baseline mutation profiles for future cancer stud-
ies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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