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Abstract 1 

Haematopoietic stem cells maintain blood production throughout life. While extensively 2 

characterised using the laboratory mouse, little is known about how the population is sustained and 3 

evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 4 

221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used 5 

phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse 6 

stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater 7 

than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic 8 

patterns reveal that stem and multipotent progenitor cell pools are both established during 9 

embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool 10 

grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every 11 

six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic 12 

of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones 13 

in the context of murine ageing, which were larger and more numerous following haematological 14 

perturbations and exhibited a selection landscape similar to humans. Our data illustrate both 15 

conserved features of population dynamics of blood and distinct patterns of age-associated somatic 16 

evolution in the short-lived mouse.   17 
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Introduction 18 

The haematopoietic system sustains mammalian life through the continuous generation of 19 

oxygenating red blood cells, an array of immune cells, and platelets that course through all tissues. 20 

In a large animal such as the human, blood production accounts for 86% of daily cellular turnover, 21 

generating ~280 billion cells per day1. This process relies on a hierarchy of progenitors that 22 

successively amplify cellular output towards fully differentiated blood cells. All are believed to 23 

ultimately derive from rare haematopoietic stem cells (HSCs), a heterogeneous pool2–4 maintained 24 

in a relatively protected state to support blood production throughout life. 25 

HSCs are the best-studied and utilised of somatic stem cells. They are the basis for life-saving 26 

bone marrow transplantation and have been purified from humans and mice for studies on their 27 

molecular regulation. HSCs are capable of being activated by various stimuli, such as infection and 28 

bleeding5–8, in order to rapidly replenish differentiated blood cells as needed, and concomitantly 29 

undergo controlled self-renewal to sustain the stem cell pool over time.  30 

Like all somatic cells, HSCs accumulate somatic mutations with age9–13. In humans, some 31 

mutations promote cellular fitness, driving clonal outgrowth during normal ageing9. Such ‘clonal 32 

haematopoiesis’ (CH), while remaining at very low levels in younger individuals, is ubiquitous in the 33 

elderly where it results in a dramatic loss of clonal diversity9. CH is a known risk factor for blood 34 

cancers and age-associated non-cancerous disease, and may encode other ageing 35 

phenotypes9,14–17. Extensive clonal expansions have also been described across human tissues 36 

where they are associated with ageing, cancer and other diseases, reflecting the consequences of 37 

lifelong somatic evolution18–22. Whether these patterns of somatic evolution are also features of 38 

ageing in other species is unknown.  39 

Within Mammalia, the rate of somatic mutation accrual in colonic epithelium inversely scales with 40 

lifespan; that is, species acquire a similar magnitude of mutations by the end-of-life independent of 41 

lifespan23. However, it is unclear if this pattern extends to other tissues beyond the colon and 42 

whether the consequences of somatic evolution over human life also scale to shorter-lived species.  43 

The inbred laboratory mouse is used ubiquitously across biomedical research. It has been used 44 

extensively to study haematopoiesis, leading to fundamental tenets of somatic stem cell biology. 45 

The most commonly used strain, C57Bl/6J, has a median lifespan of 28 months24, 1/35th that of 46 

humans, and broadly recapitulates many phenotypic features of human ageing, with some 47 
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preliminary data suggesting a lower rate of CH25. Here, we study the ontogeny, clonal dynamics, 48 

and selection landscapes of murine HSC populations in vivo to understand the evolutionary 49 

processes shaping the maintenance and ageing of blood production. 50 

RESULTS 51 

Whole genome sequencing of hematopoietic stem and progenitor cells 52 

To study somatic mutagenesis and clonal dynamics in the haematopoietic compartment within the 53 

laboratory mouse, we purified HSCs from three young (3-months) and three aged (30-months) 54 

healthy C57BL/6J female mice (Fig.1A, Extended Data Fig.1A), ages estimated to be human 55 

lifespan equivalents of ~20 and 85-90 years respectively (Supplementary Note 1). A longstanding 56 

consensus is that haematopoiesis is supported by long-term stem cells (LT-HSCs, henceforth, 57 

referred to as HSCs) which give rise to multipotent progenitors (MPPs, sometimes called short-58 

term HSCs). Extensive functional analysis established that both HSCs and MPPs, distinguished on 59 

the basis of their cell-surface markers, can support haematopoiesis and produce all differentiated 60 

blood cell types, but HSCs can engraft hosts following multiple rounds of serial transplantation, 61 

whereas MPPs cannot 26–31. Therefore, we examined both these populations in vivo. Single HSCs 62 

and MPPs were expanded in vitro to produce colonies (Fig.1A, Extended Data Fig.1B) for whole-63 

genome DNA sequencing at an average depth of 14X. From individual 3-month and 30-month 64 

animals (n=6), we sequenced 61-235 HSC-derived colonies and 70-191 MPP-derived colonies 65 

(Fig.1B). We also purified fewer HSCs from 17 additional mice aged 1 day to 30 months (total 242, 66 

ranging from 9-24 cells per animal). Following exclusion of 139 colonies due to low sequencing 67 

coverage or lack of clonality (Extended Data Fig.1C and Methods), 1547 whole genomes (908 68 

HSCs, 639 MPPs) were taken forward for somatic mutation identification and phylogenetic 69 

reconstruction. 70 

Somatic mutation accumulation in murine haematopoietic stem cells 71 

Comparison of HSCs from young and old mice revealed a constant rate of somatic mutation 72 

accumulation with age (Fig.1C). Mice aged 3 months had an estimated 59.5 single base 73 

substitutions (SBS) (95% confidence interval, CI, 57.3-61.7), and by 30 months had acquired 161.4 74 

SBS per HSC (CI 155.1-167.8), corresponding to 45.3 SBS per year (CI 42.2-48.4) or a somatic 75 

mutation being acquired every 8-9 days within HSCs. Across the diploid mouse genome, this 76 

reflects a mutation rate of 8.3⋅10-9 bp per year (CI 7.7-8.9⋅10-9 bp/year). Few insertions-deletions 77 

were captured per colony (median 1, range 0-4) with no chromosomal changes observed. Previous 78 
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studies suggest that MPPs are a more rapidly cycling population5,32,33 thought to amplify cell 79 

production from HSCs, which could result in a greater mutation burden. However, there was no 80 

difference in mutation burden between HSCs and MPPs (Fig.1D), consistent with observations 81 

from human blood wherein no appreciable differences in somatic mutation burdens between HSCs 82 

and more differentiated blood cells are apparent11,12. 83 

The murine HSC SBS rate is about twice that of humans (14-17 SBS per year)9–11,34, given their 84 

similar genome sizes. This is consistent with the concept that somatic mutation rates are negatively 85 

correlated with lifespan23 such that short-lived species have higher rates of somatic mutation 86 

accumulation than longer-lived animals. However, the ~10-fold difference in ultimate mutation 87 

burden (~150 in HSCs from 30-month-old mice vs >1,500 in human HSCs of an equivalent age of 88 

85-90 years) is much greater than expected given that total end-of-life somatic mutation numbers 89 

in mammalian intestinal crypts show low variation regardless of life-span23. Thus, we wished to 90 

validate the lower-than-expected somatic mutation burden observed in aged murine stem cells. 91 

First, we compared genome-wide mutation burdens in HSCs with that of matched intestinal crypts 92 

from the same three aged mice. Following WGS of individually microdissected clonal crypts (n=16, 93 

range 5-6 per sample, Extended Data Fig.1D, Methods), we confirmed that colonic epithelium 94 

exhibited substantially higher mutation burdens, similar to that reported previously23 (Fig.1E), 95 

confirming that we were not underestimating mutations in HSCs. Secondly, we undertook 96 

independent nano-error rate whole-genome duplex sequencing12 of matched whole blood from the 97 

three aged animals. This method identifies mutations in single DNA molecules and, thus, can 98 

orthogonally estimate mutation burden from peripheral blood. The mutation burden was not 99 

statistically different from that of haematopoietic colonies (Fig.1E). We did note a non-significant 100 

trend towards higher mutation burden estimates from whole blood than HSC colonies – this is likely 101 

due to whole blood including lymphoid cells which have higher mutation burdens35. Despite whole 102 

blood having a mixture of mature cell types and the different sequencing technologies used, these 103 

data confirm that somatic mutation rates in blood do not inversely scale with lifespan to the same 104 

degree as observed in colon.  105 

Aetiology of mutational processes in haematopoietic stem cells in mouse 106 

The pattern of sharing of somatic mutations across individual colonies can be used to reconstruct 107 

a phylogenetic tree that depicts their ancestral lineage relationships (Methods). We use the term 108 

‘lineage’ here to represent the direct line of descent rather than different blood cell types. Figure 2 109 
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shows the phylogenetic trees for a 3-month- and 30-month-old mouse, with additional young and 110 

aged phylogenies in Extended Data Figure 2. At the tips of the trees are individual HSC- (blue) and 111 

MPP-derived colonies (red); the branches that trace upwards from each colony to the root of the 112 

tree reflect the somatic mutations present in that individual colony and how these mutations are 113 

shared across other colonies. Individual branchpoints (“coalescences”) represent ancestral cell 114 

divisions wherein descendants of both daughter cells were captured at sampling. Colonies that 115 

share a common ancestor on the phylogeny are referred to as a clade. 116 

First, we wished to understand the aetiology of the higher rate of mutation accumulation in murine 117 

HSC and MPPs compared to human HSCs. DNA replication during cell division is one source of 118 

mutations reflecting DNA polymerase base incorporation errors. To estimate the rate of DNA 119 

replication-associated somatic mutation accumulation in mice, we studied the distribution of nodes 120 

on the phylogenies with more than two descendant lineages, termed polytomies.  121 

These are evidence of ancestral cell divisions which were not associated with the acquisition of a 122 

somatic mutation and can be used to infer the average number of mutations that are acquired per 123 

cell division10 (Extended Data Fig.3). We focused on the roots of the trees where we capture the 124 

greatest number of coalescences, both due to the small population size and the rapid divisions at 125 

this point in life. We observed 266 lineages by 12 mutations of molecular time in five donors that 126 

had adequate (>10 lineages) diversity. Of the 265 symmetrical self-renewing cell divisions that 127 

would have required, 44 were mutationally silent, leading to a mutation rate estimate of 1.80 (95% 128 

CI: 1.46-2.19) mutations per cell division during early life (Extended Data Fig.3). This estimate is 129 

not significantly different from that previously observed in humans (1.84 mutations/cell division, 130 

p=0.5)13, suggesting that excess mutation accumulation is not occurring due to poorer fidelity during 131 

DNA replication in murine stem cells.  132 

Mutagenic biological processes yield distinguishable patterns of base substitutions at trinucleotide 133 

sequence contexts, termed mutation signatures. We identified three mutational processes 134 

(Extended Data Fig.4A, Methods): i) SBS1 reflecting the spontaneous deamination of methylated 135 

cytosines, ii) SBS5 likely produced by cell-intrinsic damage and repair processes, and iii) SBS18 136 

characterised by C>A transversions potentially linked to oxidative damage. Substitutions attributed 137 

to SBS1 and SBS5 increased with age (8.64 SBS1/month and 32.52 SBS5/month), keeping with 138 

their clock-like nature across species; indeed, these processes account for most mutations in 139 

healthy human HSCs. Mutations attributed to SBS18 (mean 5.3, range 1.5-18 per colony, Extended 140 
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Data Fig.4B), were previously identified in murine colorectal crypts23, but did not appear to 141 

accumulate with age. To explore the timing of SBS18 mutations, we deconvoluted branch-specific 142 

mutations (Extended Data Fig.4C). SBS18 accrued before three months of life, followed by a 143 

plateau (Extended Data Fig.4D), suggesting a specific early-life vulnerability to these mutations, 144 

reminiscent of their presence in human placenta and human foetal HSCs13,36. Taken together, the 145 

higher relative somatic mutation accumulation rate in mice is underlaid by context-specific 146 

mutational processes (SBS18) and a higher rate of endogenous DNA damage and reduced repair 147 

(SBS1 and 5). 148 

Origin and parallel establishment of HSC and MPP populations 149 

We next sought to examine the lineage relationships between the HSCs and MPPs. Classical 150 

models of the haematopoietic differentiation hierarchy propose that MPPs derive from HSCs37,38. 151 

In recent years, a more nuanced and dynamic picture has emerged, with the identification of 152 

additional self-renewing progenitor compartments2,4. Using our phylogenetic approach, stem cell 153 

ontogeny can be retraced in vivo during unperturbed haematopoiesis. Working up from the 154 

phylogenetic “tip” states of HSC (blue) or MPP (red), we infer the identity of ancestral branches 155 

and coalescences based on the identity of their nearest sibling cell (detailed in Supplemental Note 156 

2). Branches where we are unable to infer the established cell type for one or more lines of descent 157 

are coloured black. We observed clear vertical bands of HSC-only (all “blue”) and MPP-only (all 158 

“red”) ancestral lineages across the trees representing independent clades (Fig.2A,B, Extended 159 

Data Fig.2), with a minority of HSCs (“blue” tips) being sampled from MPP (“red” clades) and vice 160 

versa. The clear separation of MPPs and HSCs suggests that most HSCs are derived from HSC 161 

self-renewing divisions, and most MPPs are derived from MPP self-renewing divisions, with each 162 

population independently self-renewing in parallel throughout life. If HSCs and MPPs were closely 163 

related to one another, as might be the case if MPPs were recently generated from HSCs, then 164 

one would expect the two cell types to be intermixed across the phylogenetic tree, with individual 165 

clades (cells derived from a common ancestor) containing cells of both types. However, we 166 

observed that clades were largely uniform in composition, containing more cells of the same type 167 

than would be expected if the population of HSCs and MPPs were intermixed (Fig.2C). This 168 

phylogenetic separation of HSC and MPPs provides strong evidence that these two populations 169 

independently contribute to blood production in the mouse.  170 
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The lack of intermixing between HSCs and MPPs on the phylogenetic trees suggests long-term 171 

inheritance of the HSC or MPP ‘state’, presumably encoded epigenetically. Therefore, we next 172 

explored when such sustained MPP and HSC cell state commitments may have occurred during 173 

life. Coalescences near the top of a phylogeny (near the root) reflect cell divisions that occur soon 174 

after conception. Most branches and coalescences here are ‘black’ (Fig.2A,B, Extended Data 175 

Fig.2), as no established HSC or MPP lineages could be inferred at this time. Stable heritable 176 

identity of either HSC or MPP appears established at similar times – by around 25 mutations of 177 

molecular time suggesting that a substantial proportion of the HSC and MPP populations appear 178 

to diverge early in life. The mixed effects regression model of mutation rate suggests that ~50 179 

somatic mutations may be acquired before birth (intercept of mixed effects model, 48.2, CI 45.61-180 

50.8, Methods). Thus, HSCs and MPPs are likely established in parallel during foetal development.  181 

To explore when in utero this was occurring, we evaluated somatic mutations present in both HSCs 182 

and colonic crypts from the same animals – by definition, mutations shared between these tissues 183 

arose in a common ancestor whose progeny contributed to both blood and colonic epithelium. As 184 

blood is derived from mesoderm and colonic epithelium is derived from endoderm, any shared 185 

mutations must have occurred in embryonic cells prior to gastrulation. Mutations on the 186 

haematopoietic phylogeny were observed in sampled colonic crypts (n=4-6 crypts per 30-month-187 

old mouse) down to 9-11 mutations of molecular time (Extended Data Fig.3), with decreasing 188 

representation of mutations further from the phylogeny root, timing these shared mutations to have 189 

occurred during gastrulation. Indeed, branches with an inferred HSC or MPP identity did not share 190 

mutations with the colon, consistent with these lineages being established after germ layer 191 

specification.  192 

Given the likely embryonic establishment of distinct HSC and MPP pools, we next considered the 193 

simplest series of cell state changes (eg HSC to MPP, or HSC to MPP, etc) that might be required 194 

to capture the observed cell identities. We first considered the prevailing view, that MPPs are 195 

generated from HSCs, such that HSC fate occurs prior to specification of MPP. We counted the 196 

number of cell identity changes required to reach the sampled cell identity. Surprisingly, the HSC-197 

to-MPP model was equivalently parsimonious (requiring a number of cell state changes that was 198 

not statistically different) to a model where all cells start as MPP (with HSCs able to arise from 199 

MPPs), an ontogeny not generally considered likely (Fig.2D, also see Supplementary Note 2). 200 

Overall, our data suggest that many long-term HSC and MPP lineages are established 201 
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independently and in parallel during early development, and that MPPs do not always arise from 202 

HSCs, contrary to classical haematopoiesis models. 203 

Modelling HSC and MPP establishment and transitions  204 

To formalise the above ideas and develop an ontogeny model for HSCs and MPPs that fits with 205 

our observed data, we developed a hidden Markov tree model. The Markov approach allows 206 

estimation of the rates at which a cell state makes transitions as it evolves through time. We defined 207 

three unobservable ancestral states: embryonic precursor cell (EMB), HSC, and MPP. We then 208 

used the observed outcomes of HSC versus MPP tip states to infer both the sequence and the 209 

transition rates between these states during life (Methods, Supplementary Note 2). We considered 210 

all cells prior to gastrulation (<10 mutations) as EMB, and then assumed that in each unit of 211 

molecular time, there is a fixed probability of transitioning out of this state to either an HSC or MPP 212 

state (with subsequent fixed probabilities of further transitions such as HSC-to-MPP). In addition to 213 

characterising the most feasible model parameters that fit the observed data using a maximum 214 

likelihood approach (Methods), we also estimated the rate of HSC to MPP (and vice-versa) 215 

transitions during life, to account for any HSC/MPP mixed clades (Supplementary Note 2). 216 

We fitted the above model to i) each donor, ii) each age group, and iii) the whole cohort. Based on 217 

a nested likelihood ratio test analysis, we found that the model fitted to each age group (young and 218 

old mice separately) was most consistent with our data (Supplementary Note 2). Across the whole 219 

cohort, we found that a model in which EMB can transition to either HSC or MPP was a significantly 220 

better fit than an “HSC-first” model, where all EMB must transition to HSC prior to any MPP 221 

specification. However, when testing young and old mice separately, we were only able to reject 222 

an “HSC-first” ontogeny model in older mice. We could not reject an “HSC-first” model in younger 223 

mice as our data suggested more frequent HSC to MPP transitions earlier in life (Fig.2E). This 224 

apparent inconsistency in the results between young and old mice could perhaps be explained if 225 

the HSCs that produce the MPPs early in life are extinguished by old age, and thus could not be 226 

sampled for inclusion in the phylogeny. Alternatively, the rate of HSCs that transition to MPPs may 227 

be greater earlier in life. Further work is required to explore this. Interestingly, our model indicates 228 

that 50% of all HSC and MPP lineages in young and aged mice had committed to their cell state 229 

before 50 mutations of molecular time, likely before birth. As might be expected, HSC to MPP 230 

transitions were more frequent than MPP to HSC transitions, which were extremely rare (1 in 1000 231 

transitions) and within the plausible limitations of cell-sorting accuracies. (Supplemental Note 2).  232 
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Haematopoietic population dynamics over life 233 

The pattern of coalescences (branch points) in a phylogenetic tree reflects the ratio (N/𝛌) of the 234 

overall population size (N) and the HSC self-renewing cell division rate (𝛌) over time – both smaller 235 

populations and more frequent cell divisions decrease the interval between coalescences. Mice 236 

haematopoietic phylogenies show a different pattern of coalescences (Fig.2A-B, Extended Data 237 

Fig.2) to equivalently-aged humans9. Human haematopoietic phylogenies have a profusion of early 238 

coalescences, reflecting the period of rapid cell division during embryonic growth. Coalescences 239 

are then infrequently observed due to the presence of both a large and stable HSC population by 240 

early adulthood, reappearing only in elderly human phylogenies within clonal expansions when 241 

clonal diversity dramatically collapses.  242 

By comparison, murine haematopoietic phylogenies display coalescences continuing down the tree 243 

(see Extended Data Fig.5 for side-by-side human-mouse comparisons). These time intervals 244 

between coalescences can be used to infer the HSC population trajectory (N/𝛌) using a 245 

phylodynamic Bayesian framework (Methods). We observed an early period of exponential HSC 246 

growth followed by progressively increasing N/𝛌 over the murine lifespan (Fig.3A), consistent with 247 

the observed increase in total HSC number with age by flow cytometry (Fig.3B), and other 248 

studies39,40. Our findings contrast with hematopoietic progenitor population trajectories in humans9,10 249 

which exhibit a population growth plateau during adulthood followed by stable population size for 250 

the remainder of life. Interestingly, we infer entirely overlapping N/𝛌 trajectories for HSCs and 251 

MPPs. Together with their similar mutation burdens and lineage independence, these data suggest 252 

that murine HSC and MPP clonal dynamics during steady state in vivo haematopoiesis are 253 

indistinguishable.  254 

We next developed a joint HSC/MPP population dynamics model (given our data suggests both 255 

populations contribute equivalently to haematopoiesis), in which the population of stem cells grows 256 

towards the target population size, taking into account loss of HSC and MPP cells via cell death or 257 

differentiation (Methods). We then applied approximate Bayesian computation41, which generates 258 

simulations of phylogenetic trees to estimate the most likely posterior distributions of population 259 

size and symmetrical self-renewing division rates. Using this approach, we estimate that the murine 260 

HSC-MPP population grows to around 70,000 cells (median 72,414, CI 25,510-98,540). Symmetric 261 

cell divisions occur approximately every 6 weeks (median 6.4 weeks, CI 1.8-13.2 weeks). Stem 262 
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cells exit the population, by either death or differentiation, about once every 18 weeks (CI 2.3-357 263 

weeks). Posterior density estimates for each mouse are shown in Fig.3 and Extended Data Fig.6. 264 

Stem cell contribution to progenitors and mature blood cells 265 

Given the observed lineage independence of HSC and MPP, and their overlapping growth 266 

trajectories, we wondered what difference in vivo might exist between the two populations. 267 

Therefore, we studied if HSCs and MPPs might differentially contribute to downstream lineage-268 

biased progenitors and mature blood cells.  269 

We isolated single cells from a mixed progenitor compartment (LSK cells) that includes 270 

granulocyte/macrophage-biased MPPs (MPPGM) and lymphoid-biased MPPs (MPPLy) from the 271 

three aged animals. We performed whole genome sequencing on colonies from 298 LSK cells and 272 

performed phylogenetic analysis. Within the extended phylogenetic trees, we observed no 273 

discernable bias in MPPGM or MPPLy emerging preferentially from HSC versus MPP (Extended Data 274 

Fig.7A-C). To evaluate this more formally, we separately examined clades that contained MPPGM 275 

or MPPLy and evaluated if they were more phylogenetically linked to HSCs or MPPs than expected 276 

by chance. Neither MPPGM nor MPPLy preferentially derived from either HSC or MPP beyond 277 

random chance (Extended Data Fig.7D-E), confirming that both HSCs and MPPs produce these 278 

downstream progenitors at seemingly similar proportions. However, these data are limited by a 279 

relatively low number of sampled MPPGM and MPPLy.  280 

We next evaluated if peripheral blood cells were preferentially derived from HSCs or MPPs. We 281 

performed deep targeted sequencing on peripheral blood DNA from the three aged mice for a 282 

subset of mutations displayed on the corresponding phylogenetic trees (Methods). The fraction of 283 

cells in peripheral blood harbouring a mutation present on the phylogenetic tree can be used to 284 

estimate how much that lineage contributes to blood production. For example, if a single cell or 285 

lineage contributed avidly to differentiated progeny, then its mutations would be seen at high 286 

proportion (variant allele frequency, VAF) in peripheral blood. We recaptured mutations in the 287 

peripheral blood that were acquired in both ancestral HSCs and ancestral MPPs, suggesting that 288 

both these cell types actively contribute to mature blood production. Mutations private to single 289 

cells on the phylogeny were subclonal, occurring below 0.1% VAF in peripheral blood (Extended 290 

Data Fig.8A) in line with each HSC/MPP contributing only a small amount of overall blood 291 

production. While both HSC and MPP ancestral lineages gave rise to peripheral blood, we 292 

observed a slight bias toward increased representation of ancestral MPP lineages compared to 293 
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HSCs, though this difference was subtle (Extended Data Fig.8B). This subtle difference may be 294 

due to increased proliferation of MPP descendants, or differences in compartment population size 295 

earlier in life; we cannot distinguish between these possibilities.  296 

Absence of large clonal expansions in aged mice 297 

A striking feature of the phylogenetic trees in aged mice is the uniform distribution of long branches 298 

with no expanded clades (Fig.3C, Extended Data Fig.5). This indicates mouse haematopoiesis 299 

maintains clonal diversity instead of collapsing into an oligoclonal state as observed in elderly 300 

humans9. Indeed, our population dynamics simulations confidently recapitulated observed 301 

phylogenies under a model of neutral growth in the absence of selection. Concordantly, no colonies 302 

(n=1305) displayed mutations in murine orthologues of genes associated with human clonal 303 

haematopoiesis (CH), which could act as potential driver events, aligning with a topology devoid of 304 

observable late-life clonal exponential growth. Among 49,849 SNVs observed across young and 305 

aged samples, the relative rate of nonsynonymous mutation acquisition also did not significantly 306 

depart from neutrality (Fig.3D), with no novel genes identified as being under selection. This 307 

indicates that positive selection does not explain the catalogue of somatic mutations observed.  308 

Given that mutation entry, which furnishes a population with phenotypic variation and substrate for 309 

selection, is occurring at a higher rate in mice relative to humans, and in genomes of comparable 310 

size, we considered reasons for the lack of observable clonal expansions (on the phylogenies) and 311 

absence of selection on non-synonymous mutations (using dN/dS), both of which manifest 312 

ubiquitously over time in human haematopoiesis9. One possibility here is that there are insufficient 313 

HSC and MPP divisions within the short lifespan of mice to facilitate detectable clonal expansions 314 

of cells with fitness-inferring mutations. Secondly, as both population size and the frequency of self-315 

renewing cell divisions (captured in N/𝛌) determine the rate of random drift, and hence the drift 316 

threshold that selection must overcome42, the fitness (s) of newly arising mutations may also be 317 

insufficient for their carrier subclones to exceed the genetic drift threshold within a mouse lifespan 318 

(s=𝛌/N representing the drift threshold42). 319 

In the first scenario, clones under selection (i.e., with necessary driver mutations) will still be 320 

present, but would just be too small to detect using a phylogenetic approach that only readily 321 

identifies larger clones (>5% clonal fraction). In the second scenario, the fitness landscape of any 322 

detectable clones would reflect the specific murine haematopoietic drift threshold. Therefore, we 323 
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sought to address both questions to better understand the evolutionary processes shaping somatic 324 

evolution in blood. 325 

Positive selection during homeostatic and perturbed murine haematopoiesis 326 

To examine murine blood for very small expanded haematopoietic clones and the presence of 327 

clonal haematopoiesis (CH), we employed targeted duplex consensus sequencing (Methods). We 328 

reasoned that clonal expansions in mice could be driven by mutations in orthologues of at least 329 

some of the same genes that drive human CH due to their evolutionary conserved biological 330 

functions. We designed a target panel covering murine orthologues of 24 genes associated with 331 

human CH (61.8 kb panel, Methods) and tested whole blood from mice aged 3 to 37 months for 332 

mutations. Median duplex consensus coverage per sample ranged from 28,000–41,000X, allowing 333 

detection of variants present at the magnitude of 1 in 10,000 cells (Methods, Supplementary Note 334 

3). 335 

We observed expanded CH clones that increased in prevalence with age (Fig.4A,B). Samples from 336 

young mice (3 months) displayed infrequent or absent (range 0-1) clones, while those from the 337 

oldest mice (37 months) displayed on average 3.5 clones (range 1-6) per animal across these 338 

targeted genes. Average clone size was very small at 0.017% of nucleated blood cells (range 339 

0.0036-0.27%) – representing clonal fractions between 1 in 500 to 1 in 30,000 cells. Clonal 340 

expansions were recurrently driven by mutations in Dnmt3a and Tet2, genes frequently mutated in 341 

human CH43, but also Bcor and Bcorl1, observed in humans following bone marrow immune 342 

insult44. These data are consistent with a previous report identifying rare expanded clones in mice 343 

following transplant25. 344 

Increased clonal prevalence with age was observed across different laboratory strains, including 345 

the genetically heterogeneous HET3 strain, and at similar clonal fractions (Fig.4C,D), confirming 346 

that small clones driven by known CH drivers are not specific to the C57BL/6J strain. Clones were 347 

present in biological replicates and persistent in mice sampled longitudinally over four months, 348 

though individual clonal dynamics varied (Fig.4E). Variants displayed enrichment for 349 

nonsynonymous mutations across these genes (dN/dS 2.00, CI 1.01-4.02), with per-gene positive 350 

selection evident for Dnmt3a, Bcor, and Bcorl1 (dN/dS>1, q<0.1) (Fig.4F). These data confirm that 351 

these small clonal expansions in murine blood are being shaped by positive selection and are not 352 

the result of genetic drift.  353 
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Laboratory mice are maintained in exceptionally clean conditions with a controlled diet and 354 

environment, in contrast to the regular microbial exposures and systemic insults experienced by 355 

humans. We considered whether similar exposures, which may accelerate CH in humans45,46, could 356 

enhance selection and clonal expansion in mice. In humans, mutant TP53 and PPM1D clones are 357 

positively selected for in the context of chemotherapy47–49, while BCOR mutated clones have a 358 

fitness advantage in the bone marrow environment of aplastic anaemia44. To examine whether the 359 

murine haematopoietic selective landscape can be similarly altered, we applied a series of 360 

infectious or myeloablative exposures.  361 

We first subjected mice to a normalised microbial experience (NME), in which laboratory mice are 362 

infected with common mouse microbes via exposure to fomite (pet store) bedding, resulting in the 363 

transfer of bacterial, viral, and parasitic pathogens50,51. Such exposure has been shown to drive 364 

functional maturation of the murine immune system50. Aged NME-exposed mice displayed an 365 

increased burden of somatic clones, especially driven by Trp53 (Fig.5A). As NME exposure 366 

transmits multiple types of pathogens, making it challenging to disentangle specific pathogen 367 

effects, we next performed targeted exposure to Mycobacterium avium, which has been shown to 368 

activate HSCs and lead to chronic inflammation52. Aged mice chronically infected with M. avium 369 

showed an increased frequency of Dnmt3a, Bcor, Tet2, and Asxl1 mutant clones (Fig.5B), 370 

suggesting that clones harbouring these mutations experience a competitive advantage in the 371 

context of infectious exposure. Differences in driver mutation prevalence between NME and M. 372 

avium-infected mice may reflect infection severity or immune response differences.  373 

To observe the impact of myeloablation, aged mice were treated with commonly used 374 

chemotherapeutic agents 5-fluorouracil and cisplatin. When treated with monthly doses of cisplatin, 375 

we observed globally increased somatic clonal burden (Fig.5C, p= 0.027). Clones driven by Trp53, 376 

Tet2, and Asxl1 were enriched relative to controls, and gene-level dN/dS analysis indicated that 377 

Trp53 was under positive selection for nonsynonymous mutations (Fig.5C), analogous to human 378 

observations47–49. Similarly, aged mice treated recurrently with the chemotherapeutic agent 5-379 

fluorouracil displayed clones at magnitudes-greater proportions than age-matched controls 380 

(Fig.5D). Broadly, these data illustrate that haematopoietic mutation accrual and selection are 381 

sufficient to drive native CH in mice, with modulable selection landscapes. 382 

Fitness landscape of clonal haematopoiesis in murine haematopoiesis 383 
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Having observed an evolutionarily conserved clonal selection landscapes in murine blood, we 384 

wished to understand why observed clone sizes were much smaller (median 0.017%) compared 385 

to human CH at equivalent times during lifespan. Therefore, we estimated the fitness landscape of 386 

these driver mutations in mouse. We evaluated the distribution of observed variant allele fractions 387 

(VAF) from the targeted duplex sequencing, using an established continuous time branching 388 

evolutionary framework for HSC dynamics53 (Methods). How the observed distribution of VAFs, 389 

predicted by the evolutionary framework, changes with age is then used to infer the underlying 390 

effective population size (N /𝛌), mutation rates (μ), and fitness effects (i.e., clonal growth 391 

percentage per year) of non-synonymous mutations. Due to increasing N /𝛌 with mouse age 392 

(Fig.3A), only clones from mice of a similar age (here chosen to be 24-25 months) during steady-393 

state haematopoiesis were included in the analyses.  394 

By analysing the distribution of neutral mutation VAFs (clones at low VAF bearing synonymous or 395 

intronic mutations), we first yielded an independent orthogonal estimate of N/𝛌 (Methods) of 396 

approximately 16,500 HSC-years (CI, 11,122-21,836, Fig.6A). This inference generated from 397 

targeted sequencing is consistent with that generated from whole genome sequencing and 398 

approximate Bayesian computation (ABC) (N/𝛌 7,918 HSC-years, CI 2,277-20,309). Differences in 399 

the estimates for N/𝛌 from ABC versus the branching evolutionary framework53 are likely influenced 400 

by (i) the ABC method takes into account population growth inferred from the phylogenetic trees, 401 

whereas the branching evolutionary framework assumes a stable population size, and (ii) the 402 

branching evolutionary framework model relies on using the intronic/synonymous mutation rate as 403 

the background for identifying clonal expansions, which may not reflect the genome-wide mutation 404 

levels. Across the 61.8 kb panel the synonymous/intronic mutation rate was estimated at 1.8⋅10-4 405 

base pairs per year (CI 1.2−2.7⋅10-4). We estimate a nonsynonymous mutation rate of 3.4⋅10-4 base 406 

pairs per year (CI: 2.9−3.9⋅10-4), again only considering VAFs below the maximum observed 407 

synonymous/intronic VAF (Methods), as clones larger than this could be under the influence of 408 

positive selection. The total mutation rate within our targeted panel was thus 5.2⋅10-4 per year, 409 

which when scaled to total genome size, corresponds to a global mutation rate of 11.77⋅10-9 per 410 

base pair per year (CI 9.28-14.94⋅10-9). Encouragingly, this is similar to the mutation rate directly 411 

observed from whole genome sequencing of single cell-derived colonies of 8.29⋅10-9 per base pair 412 

per year (CI 7.73-8.85⋅10-9). This agreement suggests that even these low-VAF clones detected 413 

from duplex consensus sequencing represent bona fide clonal expansions. 414 
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Having inferred N/𝛌 and the non-synonymous mutation rate, we could estimate the distribution of 415 

fitness effects driven by non-synonymous mutations (Methods). Our analysis suggests that ~7% 416 

(CI 5-21%) have strong fitness effects (50-200% growth per year) (Fig.6B). Considering that we 417 

infer mouse stem cells to be self-renewing roughly every 6 weeks (CI 2.3-12.5 weeks), an annual 418 

growth rate of 200% translates to a per symmetrical self-renewing division selective advantage of 419 

~15% (5-30%), in line with reported selection coefficients of mutated genes associated with CH in 420 

humans9,34,53. Indeed, in the short-lived mouse, variants with weaker fitness (<50%) might have 421 

insufficient time to enter exponential, deterministic growth within the population, given that clones 422 

are not established until 𝑡𝑦𝑒𝑎𝑟𝑠 >
1

𝑠
 (ref. 54), although any background growth in population size 423 

could circumvent this, allowing for weaker variants to fix in the population. This may also explain 424 

why some of the low-VAF clones identified by duplex consensus sequencing did not increase in 425 

clone size over time (Fig.4E). 426 

DISCUSSION 427 

Here, we study the ontogeny, population dynamics and somatic evolution of haematopoietic stem 428 

cells in the most widely used mammalian model organism, the laboratory mouse. Classical models 429 

of blood production depict HSCs at the very top of the haematopoietic differentiation hierarchy, 430 

beneath which all blood cell types emanate. Recent studies suggest additional heterogeneity at the 431 

top of this haematopoietic hierarchy and nuanced self-renewing dynamics2–4. Our phylogenetic 432 

data suggest that MPPs (distinguished by their lack of expression of the CD150 marker55) do not 433 

always arise from HSCs, and that both populations are established during embryogenesis, 434 

following which they independently self-renew throughout murine life. That MPPs are noticeably 435 

generated from HSCs in a transplant setting may underscore the difference between their potential 436 

in an experimental setting and their steady-state in vivo function. Moreover, lymphoid and myeloid 437 

progenitors appear to equally derive from HSC and MPP lineages. Recapture of shared variants 438 

indicate both MPPs and HSCs contribute to differentiated peripheral blood production, with a slight 439 

bias toward production from ancestral MPP lineages. These data are aligned with lineage tracing 440 

that showed both populations are capable of making all cell types during normal life2,32,56, and with 441 

recent reports of MPPs derived from the embryo (eMPPs) that contribute to lifelong 442 

haematopoiesis2,57.  443 

We show that HSCs and MPPs grow in lockstep over life, with indistinguishable clonal dynamics 444 

and proliferation rates, to reach a combined population of 25,000-100,000 cells, remarkably close 445 
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to estimates of the human HSC pool size (20,000-200,000 stem cells)9,10 and reminiscent of 446 

suggestions of conservation of stem cell numbers across mammalian species58. Considering the 447 

log-fold difference in body mass and consequent demands on blood production, this similarity may 448 

be surprising. In both organisms, but especially the mouse, the number of stem cells far exceeds 449 

the apparent lifetime need; the stem cell compartment of a single mouse can be used to fully 450 

reconstitute the blood of ~50 transplant recipients59. Perhaps a large stem cell pool confers an 451 

evolutionary advantage in the face of naturally occurring exposures to environmental pathogens60 452 

and tissue injury, through both increased tolerance of stem cell losses and improved adaptation 453 

afforded by somatically acquired genomic and epigenetic diversity. 454 

Somatic mutation rates have recently been shown to scale inversely with mammalian lifespan. In 455 

colonic epithelium, mice accumulate mutations 20 times faster than humans, aligned with the 456 

difference between their lifespans23. This observation raises the intriguing possibility that somatic 457 

mutation rates are visible to selection through their effects on ageing and lifespan. Our data show 458 

this pattern does not extend to blood - the murine HSC mutation rate is only two-fold higher than 459 

human9–11 despite a 35-fold shorter lifespan, suggesting that mutation accrual patterns across 460 

species are under tissue-specific evolutionary constraints. Indeed, somatic mutation rates in 461 

germline cells are lower in mouse than in human61 and under the influence of distinct factors such 462 

as effective population size and age of reproductive maturity62. In blood, it is plausible that a low 463 

somatic mutation rate is required to minimise the entry of detrimental disease-causing mutations, 464 

which when combined with a large stem cell pool, may also reduce the fixation probability of any 465 

such mutations. Alternatively, it is also possible that the mutation rate may not reflect 466 

haematopoietic adaptation in the mouse but rather a historical evolutionary constraint or a feature 467 

of phylogenetic legacy63.  468 

Patterns of somatic evolution in humans provide one plausible mechanism by which ageing 469 

phenotypes occur. The presence of clonal expansions in elderly human blood driven by somatic 470 

mutations is associated with diseases of ageing. However, in the laboratory mouse, which also 471 

displays phenotypes of ageing including increased cancer incidence64, we only observe small 472 

mutation-driven clonal expansions in blood by the end of life, suggesting that any role age-473 

associated haematopoietic oligoclonality plays in human ageing is unlikely to be shared by the 474 

laboratory mouse. The dramatically different population structures of haematopoiesis in the old 475 

mouse versus old human, together with the small clones (necessitating sensitive detection 476 
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methods) are crucial factors to be considered when using murine models for future studies of 477 

natural CH or haematopoietic ageing. Alternative model organisms, such as non-human primates, 478 

display similar stem cell cycling behaviour65,66 to humans and larger age-related clonal 479 

expansions67,68, and thus may be suited to evaluate aspects of native hematopoietic dynamics 480 

across the lifespan. 481 

Native murine clones do expand upon systemic exposures and recapitulate patterns previously 482 

observed in correlative humans studies47,48 and in exposures administered following murine 483 

transplant69–72 (reviewed in depth in refs. 17,45,46). We postulate that the size of clonal expansions is 484 

constrained in mouse due to infrequent HSC self-renewing divisions during homeostatic conditions. 485 

Our data fit with mouse stem cells self-renewing every six weeks (1.8-13.2 weeks), within the broad 486 

range of previous estimates from once in 4 to 24 weeks73–75. Whilst this is more frequent than 487 

human HSCs (estimated to divide at 1-2 times a year), for patterns of oligoclonality in humans to 488 

be recapitulated in the much shorter-lived mouse via genes conferring similar fitness advantages, 489 

stem cells would need to self-renew much more frequently. It is possible that mouse strains thought 490 

to have higher HSC turnover76, or maintained for longer periods in more “wild”-like microbial 491 

environments, would exhibit higher levels of native CH. Additional studies to characterise such 492 

strains and environments would be of interest.  493 

Nevertheless, our data highlight conserved selection landscapes in mouse with detectable CH in 494 

both homeostatic haematopoiesis and under stress when using highly sensitive sequencing. With 495 

our observation of evolutionarily conserved constraints on population dynamics of blood, together 496 

these drive a distinct pattern of somatic evolution over the murine lifespan. These data provide a 497 

framework for the interpretation of future studies of haematopoietic stem cell biology and ageing 498 

using the laboratory mouse.  499 
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Figure Legends 500 

Figure 1. Somatic mutations in murine stem cell-derived haematopoietic colonies  501 

A) Study approach. Single-cell derived colony whole genome sequencing (WGS) of long-term 502 

haematopoietic stem cells (HSC) and multipotent progenitors (MPP) to study somatic mutations, 503 

lineage relationships and population dynamics, top; targeted duplex-sequencing of peripheral 504 

blood to identify small clonal expansions and fitness landscapes, bottom. B) Number of whole 505 

genomes (n=1305) of HSC- and MPP-derived colonies that underwent phylogenetic construction 506 

for each female mouse (n=6). Plots are coloured according to HSC- or MPP-derived colonies, 507 

darker and lighter shades, respectively. C) Burden of individual single base substitutions (SBS) 508 

observed in HSCs (n=908) from each donor. Points are coloured as in panel B. Line shows linear 509 

mixed-effect regression of mutation burden observed in colonies. Shaded areas indicate the 95% 510 

confidence interval. D) Comparison of SBS burden between HSC- and MPP-derived colonies from 511 

the same mice. SBS burden from HSCs are shown as circles and burden from MPPs are shown 512 

as squares. H, HSC; M, MPP, shown above animal ID. E) SBS burden across HSCs (data as in 513 

panel C), whole blood, and individual colonic crypts in the three aged mice. Error bars denote 95% 514 

confidence interval. Peripheral blood and colonic crypt somatic mutation burdens were measured 515 

with nanorate sequencing and WGS, respectively.  516 

Figure 2. Phylogenetic trees of HSCs and MPPs from a young and old mouse 517 

A-B) Phylogenies were constructed from young (3-months, A) and aged (30-months, B) female 518 

mice using the pattern of sharing of somatic mutations among HSC (blue) and MPP (red) colonies. 519 

Each tip represents a single colony. Branch lengths represent mutation number, corrected for 520 

varying sequencing depth of descendant colonies. Branches and coalescence colours reflect the 521 

identity of descendent colonies with HSCs in blue and MPPs in red, respectively. Branches where 522 

we are unable to infer the established cell type for one or more lines of descent are coloured black. 523 

C) To determine the degree of phylogenetic relatedness between HSC and MPP, we measured 524 

the amount of HSC-MPP mixing within clades. If an MPP had a recent HSC ancestor, clades should 525 

contain both cell types. We thus compared the “observed” versus “expected-by-chance” clade 526 

mixing behaviour. The mixing metric for a clade is the absolute difference between the proportion 527 

of HSCs in a clade and the expected value under equal sampling, 0.5; this metric is then averaged 528 

for all clades in a phylogeny. The vertical bar reflects the observed average clade mixing metric 529 

within the constructed phylogenies. The filled distributions reflect average clade mixing metrics that 530 
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would be expected by random chance or more frequent intermixing of HSCs and MPPs, and were 531 

generated by reshuffling the tip cell identities within the tree. HSC or MPP colonies are designated 532 

as being in the same clade if they share a most recent common ancestor after 25 mutations, 533 

corresponding to early foetal development. Only clades with more than 3 colonies are considered. 534 

D) Distributions of the number of cell identity changes required per colony to capture the observed 535 

tip states. The number of cell identity changes assuming an ‘HSC-first’ model (HSCs first give rise 536 

to MPPs) is shown in blue. The required cell identity changes for the opposite ‘MPP-first’ model, in 537 

which MPPs first give rise to HSCs, is shown in red. The null distribution, in which tip states are 538 

randomly reshuffled is shown in grey. E) Cell-type probability trajectories displaying specification 539 

to HSC or MPP states under a simple 3-state ontogeny model (Methods). In 30-month donors 540 

(right), we observe equal generation of HSC and MPP from embryonic progenitors (EMB) and can 541 

reject an “HSC-first” model. In 3-month donors (left), we observe relatively increased generation of 542 

HSCs from EMB and can not reject an “HSC”-first model. The displayed trajectories are based on 543 

iterating the maximum likelihood based Markov chain starting at the embryonic state. Thickness of 544 

arrows reflect the proportion of overall transitions from the EMB state to HSC and MPP states, and 545 

between HSC and MPP states. The cell identity transition rates are derived in Supplementary Note 546 

2.  547 

Figure 3. Population dynamics and selection in the murine stem cells 548 

A) Population trajectories estimated separately in HSCs and MPPs using Bayesian phylodynamics 549 

for the six samples shown in Fig 2.A-B and Extended Data Fig.2. The dark blue (HSC) and red 550 

lines (MPP) indicate the mean effective population trajectory; shaded areas are 95% confidence 551 

intervals. Vertical dashed lines separate trajectories into early life and adulthood age periods, in 552 

which different population size behaviour are observed. Inset values indicate posterior density 553 

estimates of population size (N), symmetric cell division rate per week (λ), and their ratio in (N/λ) in 554 

HSC-years, as derived from approximate Bayesian computations. B) Haematopoietic stem and 555 

progenitor cell (HSPC) prevalence during murine ageing. The relative abundance of total HSPCs 556 

(left, defined as the LSK compartment) and individual HSPC subpopulations (right) are compared. 557 

MPPLy are lymphoid-biased progenitors, MPPGM are myeloid-biased progenitors, based on current 558 

immunophenotypic definitions55. C) Shannon diversity index for each phylogeny calculated using 559 

the number and size of unique clades present at 50 mutations molecular time. Mouse points are 560 

coloured as in Fig.1B. Grey dots depict results from data published in Mitchell et al9. D) Normalised 561 
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ratio of non-synonymous to synonymous somatic mutations (dN/dS) for somatic mutations 562 

observed across aged and young animals overlaps with 1 suggesting no departure from neutrality.  563 

Figure 4. Clonal haematopoiesis during normal ageing in mouse 564 

A) Dot-plot describing incidence of clonal haematopoiesis in mice at increasing age. Each vertical 565 

column represents a single mouse sample with detected clone size and consequence indicated by 566 

dot size and colour. Strain is C57BL/6J. B) Barplot summarising clone count per sample as 567 

illustrated in A. Differences in clone incidence were quantified by the Kruskal-Wallis test. C-D) 568 

Murine clonal haematopoiesis incidence in the laboratory strains C) B6FVBF1/J (F1 hybrid from 569 

crossing inbred C57BL/6J x FVB/NJ), and D) HET3 (a four-way cross between C57BL/6J, 570 

BALB/cByJ, C3H/HeJ, and DBA/2J). E) Clone size changes in samples collected serially over 4 571 

months. Clones are coloured by mutation. F) dN/dS ratios for targeted genes mutated in murine 572 

clonal haematopoiesis. Variants from all donors in A were used to determine gene level dN/dS 573 

ratios. * represents dN/dS >1 with q-value <0.1.  574 

Figure 5. Haematopoietic perturbation modulates selection landscapes 575 

Clonal haematopoiesis prevalence in aged mice following A) normalised microbial experience 576 

(NME), B) M. avium infection, C) cisplatin treatment, and D) 5-FU myeloablation. At final sampling, 577 

aged mice were 30-months-old for the NME experiments in panel A), and were 25-months-old for 578 

the perturbation experiments in panels B), C), and D). Enrichment of clonal prevalence and dN/dS 579 

ratios departing from parity following treatment are shown for each gene. Survival curves and 580 

experimental endpoint blood counts are displayed for B) and C), using log-rank and two-sided t 581 

tests, respectively. Treatment schedules are as displayed or described in Methods.  582 

Figure 6. The fitness landscape of known drivers of clonal haematopoiesis 583 

A) Reverse cumulative density for all synonymous (including flanking intronic regions in targeted 584 

bait set) and nonsynonymous somatic variants detected using duplex sequencing from mice aged 585 

24-25 months, arranged by increased variant allele fraction (VAF). The relative density of 586 

synonymous (and flanking intronic) variants, which are assumed to have neutral fitness, yields an 587 

estimate for 𝑁/𝜆, the ratio of population size and symmetric cell division rate (per year). The 588 

synonymous and nonsynonymous mutation rates (μ, base pairs per year) can then be estimated 589 

using a maximum likelihood approach. B) Distribution of fitness effects for nonsynonymous 590 

mutations.  591 
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Extended Data Figure 1. Cell isolation strategy and quality control 592 

A) Sorting strategy for single HSCs and MPPs from young and aged mice. Progenitor-enriched 593 

bone marrow was stained as described in the Methods, and then single cells were sorted into 594 

individual wells for in vitro expansion. B) Colony-forming efficiency of sorted HSCs and MPPs for 595 

each sample. Each bar represents the listed cell type and underlying sample ID. C) Variant allele 596 

fraction (VAF) distribution of all variants within a colony that pass filtering, shown for a 597 

representative clonal colony that passed sample QC (left) and a non-clonal colony that passed 598 

sample QC (right). After variant filtration, the VAF distribution of a colony’s variants is centred 599 

around 50% in clonal colonies, but less than 50% in non-clonal colonies. D) Representative image 600 

of two colonic crypts isolated by laser capture microdissection. E) Correlation between total single 601 

base substitution burden and depth, for all colonies from sample M7180, shown before (left) and 602 

after (right) sequencing depth correction. F) Trinucleotide spectra from aggregated somatic 603 

mutations mapped to shared (truncal) or private branches of phylogenetic trees. Signatures are 604 

highly similar, suggesting artefacts are not relatively enriched in either portion of reconstructed 605 

trees.  606 

Extended Data Figure 2. Additional phylogenetic trees from young and aged mice 607 

Phylogenies for A-B) 2 additional young (3-month) mice and C-D) 2 additional aged mice (30-608 

month), presented as described in Figure 2.  609 

Extended Data Figure 3. Early-in-life phylogenetic patterns and cross-tissue mutations 610 

Phylogenies from aged (left) and young (right) HSCs zoomed into the first 12 mutations molecular 611 

time. Polytomies in the branching structure, which represent cell division without mutation 612 

acquisition, are enriched among early-in-life cell divisions at the tops of the phylogenies. Variants 613 

shared with matched colonic crypts are layered onto the trees as pie charts. Pie chart fullness 614 

represents the proportion of colonic crypts in which the mutation present on the haematopoietic 615 

phylogeny was observed. Sample M7183 lacked sufficient early life diversity (<10 unique lineages 616 

within 12 mutations molecular time) and thus was excluded.  617 

Extended Data Figure 4. Mutational processes in murine stem cells 618 

A) Signature extraction overview. Trinucleotide spectra from all single-base substitutions (SBS) 619 

(top), were used for signature extraction as described in the Methods. Three signatures identified 620 

as SBS1, SBS5, and SBS18 best described the catalogue of mutations observed (cosine 621 
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similarity=0.997). B) Linear mixed-effect regression of signature-specific mutation burdens 622 

observed in colonies. Shaded areas indicate the 95% confidence interval. C) Signature attribution 623 

in phylogenies. Individual branches of HSC phylogenies are overlaid with signature contribution 624 

proportions. SBSs assigned to each branch were fit to SBS1, SBS5 or SBS18. D) Signature-625 

specific mutation accumulation in all branches across phylogenies. Early-life branchpoints, located 626 

at the top of a given phylogeny, and shown as an inset.  627 

Extended Data Figure 5. Phylogeny comparison between aged human and mouse 628 

A) Representative ultrametric phylogenies from the three oldest humans described in Mitchell et 629 

al.9 The published trees have been randomly downsampled to 100 colonies (tips). B) Aged mouse 630 

phylogenies, also downsampled to 100 colonies, to allow comparison of topological structure. The 631 

median lifespan for human and mouse species are labelled and were derived as described in 632 

Supplementary Note 1. Full murine phylogenetic trees are shown in Figure 2A-B and Extended 633 

Data Figure 2). 634 

Extended Data Figure 6. Approximate Bayesian inferences 635 

Results from approximate Bayesian computation (ABC) inference of A) population size (𝑁), B) 636 

symmetric division rate per week (𝜆), and C) death rate per week (𝜈) for the three 30-month-old 637 

mice. Blue lines represent the prior density of parameters; red lines represent the posterior 638 

densities. Median posterior density estimates and 95% credibility intervals are displayed for each 639 

parameter per sample. The prior density for the death rate was bounded to ensure the growth rate 640 

(𝜆 − 𝜈) remained positive, as observed in phylodyn trajectories in Figure 3. D) Joint density 641 

distributions indicating optimal parameters of population size and division rates that explain 642 

observed phylogenetic trees. The estimated N/λ, in HSC-years, is shown with 95% credibility 643 

intervals. Data from the three aged mice are shown.  644 

Extended Data Figure 7: Extended phylogenetic trees (HSC, MPP, and early progenitor).  645 

A-C) Extended phylogenies were created for three 30-month mice using the pattern of sharing of 646 

somatic mutations among HSCs (blue), MPPs (red), and the mixed LSK (Lineage-, Sca1+, c-kit+) 647 

hematopoietic progenitor compartment. The LSK compartment contains HSCs and MPP, and 648 

additionally contains the myeloid-biased MPPGM (orange) and lymphoid-biased MPPLy populations 649 

(green). LSK subcompartments were identified at time of single cell sorting using a consensus 650 

definition55. Each tip represents a single colony. Branch lengths represent mutation numbers. D-E) 651 
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Clade mixing metrics for MPPGM and MPPLy colonies used to evaluate interrelatedness with HSC 652 

and MPP. HSC, MPP and MPPGM or MPPLy were designated as being in the same clade if they 653 

share a most recent common ancestor after 25 mutations, corresponding to early foetal 654 

development. Only clades with more than 3 colonies are considered. The vertical bar reflects the 655 

average clade mixing metric observed in the constructed phylogenies, while distributions reflect the 656 

average clade mixing metric expected random chance, estimated by reshuffling the tip states. If 657 

the observed value (vertical bar) significantly deviated from random chance (filled distribution), then 658 

there would be minimal overlap between the observed data and the random reshuffling distribution. 659 

The average clade mixing metric for MPPGM compared to HSCs (blue) and MPPs (red) is shown 660 

in D). The similar measure of interrelatedness of MPPLy to HSCs and MPPs is shown in E).  661 

Extended Data Figure 8: Mutation overlap between phylogenies and peripheral blood.  662 

A) Phylogenies for three aged mice (as described in Extended Data Figure 7A-C) constructed to 663 

only include private branches targeted with the peripheral blood baitset. Branch shading indicates 664 

the maximum VAF among branch-specific variants captured in peripheral blood. The sampled cell 665 

immunophenotype is indicated by dot colour at the bottom of each private branch. B) VAF 666 

trajectories of HSC and MPP variants shared in peripheral blood. The aggregate VAF across 667 

molecular time is calculated using Gibbs sampling (Methods). Earlier molecular time corresponds 668 

to further in the ancestral past. Shaded regions denote 95% confidence intervals of the VAF 669 

estimates.  670 

Extended Data Figure 9: Peripheral blood VAF of variants shared with HSCs and MPPs. 671 

Baitset mutation-specific HSC and MPP phylogenies are shown for each 30-month mouse. Each 672 

branch shows mutations that were detected in peripheral blood in descending VAF order. On each 673 

branch, a row denotes a single variant mapped to that specific branch. Red fill denotes the 674 

peripheral blood VAF for the variant. VAF is denoted on a log scale from 10-5 to 1; internal divisions 675 

are marked from left to right at VAF 0.0001, 0.001, 0.01, and 0.1. HSC trees are shown on the left 676 

with blue dots at terminal branches; MPP trees are shown on the right with red dots. Trees are 677 

downsampled to allow equivalent comparison between HSC and MPP branches. Only variants 678 

seen in peripheral blood with a depth > 100X are shown. 679 
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Extended Data Figure 5
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METHODS 710 

Cohort 711 

Wild-type C57BL/6 mice were bred at Baylor College of Medicine or received from the Aged Rodent 712 

Colony at the National Institute of Aging (Baltimore, MD). C57BL/6J:FVB/NJ F1 hybrid mice were 713 

bred in the Niedernhofer laboratory at the University of Minnesota as previously described77. HET3 714 

mice were bred at the Jackson Laboratories as described78. C57BL/6 were housed at the AALAC-715 

approved Center for Comparative Medicine in BSL-2 suites. Experimental procedures were 716 

approved by the Baylor College of Medicine or University of Minnesota Institutional Animal Care 717 

and Use Committees and performed following the Office of Laboratory Animal Welfare guidelines 718 

and PHS Policy on Use of Laboratory Animals. 719 

Hematopoietic progenitor purification 720 

Whole bone marrow (WBM) cells were isolated from murine hindlimbs and enriched for c-Kit+ 721 

hematopoietic progenitors prior to fluorescence-activated cell sorting (FACS) using a BD Aria II. 722 

WBM was incubated with anti-CD117 microbeads (Miltenyi Biotec) for 30 minutes at 4C following 723 

my magnetic column enrichment (LS Columns, Miltenyi Biotec). Progenitor-enriched cells were 724 

stained with an antibody cocktail to identify specific progenitor populations using a recent 725 

consensus definition55. LSKs, containing a mixture of stem and progenitor cells, were defined as 726 

Lineage–ckit+Sca-1+ (Lineage– refers to being negative for expression of a set of lineage-defining 727 

markers indicated below). HSCs were defined as LSK+FLT-3–CD48–CD150+; MPPs were defined 728 

as LSK+FLT-3–CD48–CD150–. MPPGM was defined as LSK+FLT-3–CD48+CD150– and MPPLy was 729 

defined as LSK+FLT-3+CD150–. The gating strategy is illustrated in Extended Data Fig.1A. This 730 

immunophenotypic HSC population includes long-term stem cells with serial repopulating ability, 731 

while the MPP population is limited to short-term repopulation, as demonstrated in transplantation 732 

assays26–31. For sorting HSCs from newborn pups, the lineage marker Mac1 was excluded because 733 

it is known to be highly expressed on foetal HSCs79. Antibodies were c-kit/APC, Sca1/Pe-Cy7, Flt-734 

3/PE, CD48/FITC, CD150/BV711, Lineage (CD4, CD8, Gr1, Mac1, Ter119)/Pacific Blue and 735 

purchased from BD Biosciences or eBioscience. 736 

Single-cell haematopoietic colony expansion in vitro 737 

Cell sorting was performed on a BD Arial II in two stages. First, HSCs and MPPs were sorted into 738 

separate tubes containing ice-cold FBS using the “yield” sort purity setting to maximise positive 739 

cells. Second, the cell populations from stage one were single-cell index-sorted into individual wells 740 
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of a 96-well flat bottom tissue culture plates containing 100uL of Methocult M3434 medium (Stem 741 

Cell) supplemented with 1% penicillin-streptomycin (ThermoFisher). No cytokine supplements 742 

were added to the base methylcellulose medium. Cells were incubated at 37⁰C and 5% CO2 for 743 

14±2 days, followed by manual assessment of colony growth. Colonies (>200 cells) were 744 

transferred to a fresh 96-well plate, washed once with ice-cold PBS, then centrifuged at 800xg for 745 

10 minutes. Supernatant was removed to 10-15 µL prior to DNA extraction on the fresh pellet. The 746 

Arcturus Picopure DNA Extraction kit (ThermoFisher) was used to purify DNA from individual 747 

colonies according to the manufacturer’s instructions. 62-88% HSCs and MPPs produced colonies, 748 

indicating we are sampling from representative populations within each individual compartment 749 

(Extended Data Fig.1B). Extracted DNA from each colony was topped off with 50ul Buffer RLT 750 

(Qiagen) and stored at -80⁰C. 751 

Laser capture microdissection 752 

Matched colonic tissue from the three 30-month-old mice used in this study was dissected and 753 

snap frozen at the time of bone marrow harvest. Colon tissue sectioning and laser capture 754 

microdissection (LCM) was performed as previously described80. Briefly, previously snap frozen 755 

colon tissue was fixed in PAXgene FIX (Qiagen) at room temperature for 24 hours and 756 

subsequently transferred into PAXgene Stabilizer for storage until further processing at -20⁰C. The 757 

fixed tissue was then paraffin-embedded, cut into 10 μm sections, and mounted on PEN-membrane 758 

slides. Staining of histology sections was done using haematoxylin and eosin as previously 759 

described23, with scans of each section captured thereafter. Individual colonic crypts were 760 

identified, demarcated, and isolated by LCM using a Leica Microsystems LMD 7000 microscope 761 

(Extended Data Fig.1D) followed by lysis using the Arcturus Picopure DNA Extraction kit 762 

(ThermoFisher).  763 

Whole genome sequencing  764 

For low DNA input whole genome sequencing of haematopoietic colonies (from young and aged 765 

mice) and colonic crypts (from aged mice), enzymatic fragmentation-based library preparation was 766 

performed on 1-10 ng of colony DNA, as previously described80. Whole genome sequencing (2x150 767 

bp) was performed at a median sequencing depth of 14X for haematopoietic colonies and 17X for 768 

colonic crypts on the NovaSeq platform. Reads were aligned to the GRCm38 mouse reference 769 

genome using bwa-mem. For whole genome single molecule (nanorate) sequencing, we used 770 

matched whole blood genomic DNA collected from the three aged mice during tissue harvest. 771 
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Nanorate sequencing library preparation was performed as previously described12, followed by 772 

sequencing to 146-153X coverage on the Illumina Novaseq platform.  773 

Somatic mutation identification and quality control in haematopoietic colonies 774 

Single nucleotide variants (SNVs) in each colony were identified using CaVEMan81, including an 775 

unmatched normal mouse control sample that had previously undergone whole genome 776 

sequencing (MDGRCm38is). Insertions and deletions were identified using cpgPindel82. Filters 777 

specific to low-input sequencing artefacts were applied80. As variant calling utilised an unmatched 778 

control, both somatic and germline variants were initially called. Germline variants and recurrent 779 

sequencing artefacts were then identified using pooled information across mouse-specific colonies 780 

and filters as follows: i) Homopolymer run filter. To reduce artefacts due to mapping errors or 781 

introduced by polymerase slippage, SNVs and indels adjacent to a single nucleotide repeat of 782 

length 5 or more were excluded. ii) Strand bias filter. Variants supported by reads only in positive 783 

or negative directions are likely artefacts. For SNVs, a two-sided binomial test was used to assess 784 

if the proportion of forward reads among mutant allele-supporting reads differed from 0.5. Any 785 

variant with significantly uneven mutant read support (cutoff of p<0.001) and with over 80% of 786 

unidirectional mutant reads were excluded. For each indel, if the Pindel call in the originally 787 

supporting colony lacked bidirectional support, the indel was excluded. iii) Beta binomial filter. 788 

Variants were filtered based on a beta-binomial distribution across all colonies, as previously 789 

described23. The beta-binomial distribution assesses the variance in mutant read support at all 790 

colonies for a given mutation. True somatic variants are expected to be present at high VAF (~0.50) 791 

in some colonies and absent in others, yielding a high beta-binomial overdispersion parameter (⍴). 792 

In contrast, artefactual calls are likely to be present at low VAF across many colonies, which 793 

corresponds to low overdispersion. The maximum likelihood estimate of the overdispersion 794 

parameter ⍴ was calculated for each loci. For samples with greater than 25 colonies, SNVs with ⍴ 795 

< 0.1 and indels with ⍴ < 0.15 were discarded. For samples with fewer than 25 colonies, SNVs and 796 

indels with ⍴ < 0.20 were discarded. iv) VAF filters. Variants with VAF significantly lower than the 797 

expected VAF for clonal samples across all mutant genotyped colonies, as assessed with a 798 

binomial test with p threshold <0.001, were discarded. Additionally, variants with VAF less than half 799 

the median VAF of variants that pass the beta-binomial filter were discarded. v) Germline filter. All 800 

sites at which the aggregate VAF is not significantly less than 0.45 are assumed to be germline 801 

and discarded. The aggregate VAF is derived from the mutant read count across all colonies for a 802 
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sample. The binomial test with a confidence threshold <0.001 was used to assess departure from 803 

germline VAF. vi) Indel proximity filter. SNVs were discarded if they occurred within 10 base pairs 804 

(bp) of a neighbouring indel. vii) Missing site filter. Loci at which genotype information is unavailable 805 

due to poor sequencing coverage will interfere with accurate phylogeny construction. Variants 806 

which have no genotype or coverage less than 6X in over one-third of samples were discarded. 807 

viii) Clustered site filter. SNVs and indels within 10 bp of a neighbouring SNV or indel, respectively, 808 

were filtered. ix) Non-variable site filter. Sites genotyped as mutant or wildtype in all colonies do 809 

not inform phylogeny relationships and are likely recurrent artefacts or germline variants, thus were 810 

discarded.  811 

Some colonies were excluded based on low coverage or evidence of non-clonality or 812 

contamination. Visual inspection of filtered variant VAF distributions per colony was used to identify 813 

colonies with mean variant allele fraction (VAF)<0.4 or with evidence of non-clonality (Extended 814 

Data Fig.1C).  815 

Mutation burden estimation 816 

Total SNV burden from WGS of individual colonies was corrected for differing depths of sequencing 817 

using a per-sample asymptomatic regression fit80 (Extended Data Fig.1E). A linear mixed effect 818 

model was used to estimate the rate of mutation acquisition with age, taking into account individual 819 

animals as a random effect as follows: 𝑏𝑢𝑟𝑑𝑒𝑛~𝑎𝑔𝑒 + (0 + 𝑎𝑔𝑒|𝑠𝑎𝑚𝑝𝑙𝑒𝐼𝐷).  820 

We filtered nanorate sequencing calls as previously described12, with the following modifications: 821 

we excluded variants (i) mapped to the mitochondrial genome, (ii) located within 15 bp of 822 

sequencing read ends, or (iii) observed in all duplex consensus reads as these are likely germline 823 

events. Matched colony whole genome sequencing data was used as a normal control. Mutation 824 

burdens were normalised to diploid genome size to determine the global SNV burdens. 825 

Phylogeny construction and quality control 826 

Phylogenetic trees were constructed based on shared mutations between colonies for each mouse, 827 

as extensively described previously9,34. The steps, in brief, were as follows: (i) Create genotype 828 

matrix. Every colony has high sequencing coverage (median 14X) distributed evenly across the 829 

genome, allowing the determination of a genotype for nearly every mutated site observed across 830 

colonies. Each locus was annotated as Present, Absent, or Unknown in a read depth-specific 831 

manner. The number of unattributable sites was low, allowing precise inferences of colony 832 

interrelatedness. (ii) Infer phylogenetic tree from genotype matrix. We applied the maximum 833 
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parsimony algorithm MPBoot to construct phylogenetic trees from the genotype matrix. Only SNVs 834 

were used to infer tree topology, but both SNVs and indels (if any) were assigned to inferred 835 

branches using treemut. Loci with unknown genotypes in at least one-third of colonies were 836 

annotated as missing sites and not used in phylogeny inference. (iii) Normalise branch lengths for 837 

differing sequencing depth and sensitivity. Branch lengths at this stage are defined by the number 838 

of mutations supporting each branch (molecular time). However, each colony has slightly different 839 

sequencing coverage, which correlates with differences in mutation detection sensitivity. Thus, we 840 

normalised branch lengths based on genome coverage to correct for sensitivity differences across 841 

colonies with varying depth, as described in ref. 34 (Extended Data Fig.1E). (iv) Annotate trees with 842 

phenotype and genotype information. Each terminal branch (tip) of a tree represents a specific 843 

colony. Thus, we annotated each branch of the tree with the sampled cell phenotype (HSC versus 844 

MPP).  845 

Tree-level checks were used to identify any discordant branch assignments and assess the validity 846 

of tree topology. Any branches supported by variants with mean VAF <0.4 likely contained 847 

contamination by non-clonal variants and suggested the filtering strategy (see above) was 848 

insufficient. Similarly, the branch-level VAF distributions of every colony (tip) in the tree were 849 

manually inspected to confirm supporting variants were not present in unrelated portions of the tree 850 

(topology discordance). Finally, the trinucleotide spectra of individual somatic mutations were 851 

compared between those mutations located on shared branches (that is, mutations supported by 852 

>2 colonies) and mutations only observed once, and thus present on terminal branches. Mutation 853 

spectra were highly similar, indicating that mutations not shared by more than one colony were not 854 

populated by a relative excess of artefacts (Extended Data Fig.1F). 855 

Population size trajectories  856 

We use the phylodyn package, which uses the density of coalescent events (bifurcations) in a 857 

phylogenetic tree to estimate the trajectory of 𝑁(𝑡)/𝜆(𝑡) over time9,10. Ultrametric lifespan-scaled 858 

trees were used to infer chronological timing. Under a neutral model of population dynamics, the 859 

phylogeny of a sample is a realisation of the coalescent process. In the coalescent process, the 860 

rate of coalescent events at time t is proportional to the ratio of population size, N(𝑡), to the birth 861 

rate, 𝜆(𝑡) (which in the context of stem cell dynamics is the symmetric cell division rate). The 862 

sequence of inter-coalescent intervals across any time interval [ 𝑡1, 𝑡2 ] is informative about the 863 

value of the parameter ratio 𝑁(𝑡)/𝜆(𝑡) across the same time interval. We note that only with a 864 
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constant cell division rate 𝜆 over time can the trajectory parameter be interpreted as a scalar 865 

multiple of the trajectory of population size 𝑁(𝑡). Phylodyn assumes isochronous sampling and a 866 

neutrally evolving population. We overlaid separate population size trajectories for HSCs and MPPs 867 

in Figure 3A. 868 

Approximate Bayesian computation  869 

We used inference from phylodynamic trajectories to inform the development of an HSC population 870 

dynamics model. Population size trajectories from phylodyn indicated two successive ‘epochs’ of 871 

exponential growth, with some variation in growth rate between epochs, and a steady increase in 872 

population size over time (Fig.3A). Given the constraint of tissue volumes, it may be implausible 873 

that the HSC population grows constantly. We reconcile this discrepancy by noting that there are 874 

very few late-in-life coalescences in our phylogenies, and, as a consequence, the estimated 875 

phylodyn trajectory in late adulthood is associated with very wide credible intervals. We employed 876 

a population growth model based on a linear birth-death process83 (in which a population tends to 877 

grow exponentially, subject to stochastic fluctuations), together with a fixed upper bound N on 878 

population size. The model assumed a constant birth rate 𝜆 and constant death rate 𝜈, with the 879 

population trajectory growing at a rate 𝜆-𝜈 within an epoch. The shape of the trajectory of N(𝑡)/𝜆(𝑡) 880 

depends on the cell division rate parameter 𝜆, not only through the denominator in the ratio 881 

N(𝑡)/𝜆(𝑡), but also on 𝜆-𝜈, through the tendency of the population size N(𝑡) to grow exponentially 882 

at a rate 𝜆-𝜈 . In particular, if we increase the fixed upper limit N, and at the same time increase the 883 

cell division rate 𝜆, so that their ratio remains constant, the shape of the trajectory of N(𝑡)/𝜆(𝑡) will 884 

change as a consequence of the changes in the value of the parameter 𝜆. This suggests that the 885 

parameters 𝜆, 𝜈, (in each epoch), and N, are all identifiable, and so can be estimated separately. 886 

The identifiability of 𝜆, 𝜈, and N are expanded upon in Supplementary Note 4. 887 

We applied Bayesian inference procedures41 to estimate the parameters (𝜆, 𝜈, and N) of the 888 

bounded birth-death process. We used Approximate Bayesian Computation (ABC). This method 889 

first generates simulations of population trajectories and (sample) phylogenetic trees across a 890 

lifespan. Each population simulation is run with specific values for the population dynamic 891 

parameters drawn from a prior distribution over biologically plausible ranges of parameter values. 892 

The ABC method includes a rejection step that retains only those parameter values which 893 

generated simulated phylogenies resembling the observed phylogeny (as measured by an 894 

appropriate Euclidean distance). The accepted simulations constitute a sample from the 895 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

32 

(approximate) posterior distribution. Population trajectories and sample phylogenies were 896 

simulated using the rsimpop R package. Approximate posterior distributions were computed using 897 

the R package, abc. We specified uniform joint prior densities for 𝜆, 𝜈, and N which encompassed 898 

published estimates for N (population size) and 𝜆 (symmetric division rate)31,73–75,84: N ranged from 899 

102 to 105 cells, 𝜆 ranged from 0.01 to 0.15 cell division per day, and 𝜈 ranged from 0 to 𝜆, such 900 

that the growth rate (𝜆-𝜈) is always positive (as observed in the phylodyn trajectories).  901 

Our population dynamics model was a birth-death process incorporating two separate growth 902 

epochs. The first (early) epoch lasted until 10 weeks post-conception, and the second (later) epoch 903 

lasted from 10 weeks onwards and corresponded to murine adulthood. Inferences were weak for 904 

the early epoch; thus, the later epoch was used for parameter inferences. Posterior densities from 905 

the three older mice were computed using the ‘rejection’ method (Extended Data Fig.6) and pooled 906 

to yield parameter estimates and credible intervals.  907 

Early life polytomy analysis  908 

The polytomies were used to estimate lower and upper bounds for the mutation rate per symmetric 909 

division during embryogenesis. The method detailed in Lee-Six et al. 10 was used, whereby the 910 

number of edges with zero mutation counts at the top of the tree (up to the first 12 mutations) is 911 

inferred from the number and degree of polytomies assuming an underlying tree with binary 912 

bifurcations. The mutations per division are assumed to be Poisson distributed. A maximum 913 

likelihood range is then calculated in two steps: first, using the 95% confidence interval of the 914 

proportion of zero length edges, with this next leading to a maximum likelihood estimate for the 915 

Poisson rate. Sample M7183 lacked sufficient early life diversity (<10 unique lineages within 12 916 

mutations molecular time) and thus was excluded.  917 

Shared variants between blood and colonic crypts 918 

Mutation genotype matrices (described above) were generated for colonic crypt samples at loci 919 

observed in truncal (shared) branches in the matched HSC tree. Every variant was annotated as 920 

present or absent for each colonic crypt. We applied two stages to crypt annotation. First, a crypt 921 

sample was marked positive if the given variant exceeded a per-sample minimum VAF threshold. 922 

The minimum VAF threshold was defined as half the median VAF for all pass-filter colonic crypt 923 

variants (as described above). Next, for each variant represented in at least one crypt, any 924 

remaining crypt with >2 mutant allele read support was marked positive. This tiered definition 925 
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allowed for shared variant capture despite differences in coverage among crypt samples. The 926 

proportion of a shared variant present among crypt samples was illustrated as a pie chart and 927 

annotated to the respective branch of the matched HSC tree (Extended Data Fig.3).  928 

Mutational signature analysis  929 

We used the Hierarchical Dirichlet Process (HDP) algorithm to extract mutation signatures across 930 

aged and young HSC and MPP colony samples, following the process detailed in ref 85. Prior work 931 

in humans has applied mutation signature extraction to SNVs found only on terminal branches of 932 

phylogenetic trees – such terminal branches displayed mutation burdens in excess of 1000 933 

mutations, depending on the organ. Given the low mutation burden in mouse hematopoietic 934 

colonies (terminal branch lengths spanning 30-150 mutations), and thus reduced mutational 935 

information, we utilised all branches with length ≥30 mutations as input. To circumvent any bias 936 

against shared variants, branches with less than 30 SNVs were collapsed to a single ‘shared 937 

branch’ sample. We generated mutation count matrices for each branch, using the 96 possible 938 

trinucleotide mutational contexts as input to the R package hdp. HDP was run i) without priors (de 939 

novo), ii) with the reference catalogue of all 79 signatures derived from the PanCancer Analysis of 940 

Whole Genomes study (COSMIC version 3.3.1) as priors, or iii) with the signatures previously 941 

defined as active in mouse colon23, SBS1, SBS5, SBS18, as priors. Trinucleotide signature 942 

definitions were adjusted to mouse genome mutation opportunities before usage as priors, and all 943 

prior signatures were weighted equally. Signature extraction parameters i) and ii) produced profiles 944 

that did not resemble any existing signatures (cosine similarity < 0.9), likely due to relatively limited 945 

SNV burden in mouse colony data. Usage of mouse colon signatures as prior information (iii) 946 

yielded four signature components. Two signature components demonstrated high similarity to 947 

SBS1 and SBS5 (cosine >0.9). The remaining two unknown components were deconvoluted to 948 

reattribute their composition to known signatures using the fit_signatures function from sigfit. This 949 

yielded three components with a reconstruction cosine similarity metric exceeding 0.99 for similarity 950 

to SBS1, SBS5, and SBS18, indicating these three signatures explain the majority of our data 951 

(Extended Data Fig.4A). We surmise the final reattribution step was necessary because of the log-952 

fold lower SNV burdens in mouse blood colonies (30-200 mutations) relative to other tissues 953 

examined in previous work (>1000 mutations).  954 
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Branch signatures assignment and analyses  955 

For each mouse, we pooled the assigned SNVs into a “private” or “shared” category depending on 956 

whether the variant maps to a shared branch or not. Signature attribution to signatures SBS1, 957 

SBS5, and SBS18 was then carried out for each of these per mouse category using 958 

sigfit::fit_to_signature with the default “multinomial” model. The per-branch attributions were then 959 

carried out by 1) assigning a per-mutation signature membership probability and then 2) summing 960 

these signature membership probabilities over all SNVs assigned to a branch to obtain a branch-961 

level signature attribution proportion. The per-mutation signature probability was calculated using: 962 

𝑃(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  ∈  𝑆𝑖𝑔) =
𝑃( 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  ∈  𝑆𝑖𝑔)𝑃0(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  ∈  𝑆𝑖𝑔)

𝛴𝑆𝑖𝑔′∈ {𝑆𝐵𝑆1,𝑆𝐵𝑆5,𝑆𝐵𝑆18}𝑃( 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  ∈  𝑆𝑖𝑔′)𝑃0(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  ∈  𝑆𝑖𝑔′)
 963 

 964 

Where the prior probability,𝑃0(𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 ∈ 𝑆𝑖𝑔), is given by the mean Sigfit attribution probability 965 

of the specified signature, 𝑆𝑖𝑔, for the category that the mutation belongs to.   966 

A linear mixed effect model was used to assess the relationship between age and the signature-967 

specific substitution burden for each colony while accounting for repeated measures. The 968 

signature-specific burdens per colony were estimated using a linear mixed model (R package lme4) 969 

with age as a random effect and mouse ID as grouping variable: 970 

𝑏𝑢𝑟𝑑𝑒𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒~𝑎𝑔𝑒 + (0 + 𝑎𝑔𝑒|𝑚𝑜𝑢𝑠𝑒𝐼𝐷).  971 

Hidden Markov tree approach 972 

Modelling the ancestral unobserved MPP and HSC states with a hidden Markov tree: We defined 973 

three unobservable (“hidden”) ancestral states, embryonic precursor cell (EMB), HSC and MPP, 974 

and used the observed outcomes (HSC or MPP tip states) to infer the transition probabilities 975 

between these identities and the most likely sequence of cell identity transitions during life. The 976 

transitions between states are modelled by a discrete time Markov chain with one step in time 977 

representing one mutation in molecular time. We require the root of the tree, presumably the 978 

zygote, to start in the “EMB” state and to stay in that state until 10 mutations in molecular time. 979 

After 10 mutations the cell then has a non-zero probability of transitioning to another state given by 980 

the transition transition matrix 𝑴: 981 

𝐌 = (

1 − 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃 0
𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶 1 − 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶 0
𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃 1 − 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 − 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃

) 982 
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This then implies the following transition probabilities for branch 𝑢, having length 𝑙(𝑢) (excluding 983 

any overlap with molecular time less than 10 mutations), starting in state 𝑖 and ending in state 𝑘 : 984 

𝑃𝑖,𝑘(𝑢) = (𝑴𝑙(𝑢))
𝑖,𝑘

 985 

Now for a node that is in a specified state, the probability of descendent states is independent of 986 

the rest of the tree. This conditional independence property facilitates recursive calculation of a 987 

best path (“Viterbi path”), the likelihood of the Viterbi path, and the full likelihood of the observed 988 

phenotypes given the model. The approach is essentially an inhomogeneous special case of the 989 

approach previously described86. 990 

Upward algorithm for determining likelihood of the observed states given 𝑴 and a prior probability 991 

of root state 𝞹: The probability of the observed data descendant from a node 𝒖 whose end of branch 992 

state is 𝒊 is given by: 993 

𝑃𝑢(𝐷𝑢 |𝑖) = ∏

𝑣∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢)

(∑

𝑆

𝑘=1

𝑃𝑖,𝑘(𝑣)𝑃𝑣(𝐷𝑣|𝑘)) 994 

where 𝑆 is the number of hidden states (𝑆 = 3 in our usage), and 𝐷𝑢 denotes the observed data 995 

descendant of 𝒖, that is, the observed tip phenotypes of the clade defined by 𝒖. 996 

Initialisation of terminal branches: The probability of observing a matching phenotype is assumed 997 

to be: 998 

𝑃𝑢(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑜𝑓 𝑢 = 𝑖|𝑖) = 1 − 𝜖 999 

The probability of observing a mismatching phenotype, 𝑗 ≠ 𝑖, is: 1000 

𝑃𝑢(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑜𝑓 𝑢 = 𝑗|𝑖) = 0.5𝜖 1001 

The root probability 𝑃𝑟𝑜𝑜𝑡(𝐷𝑟𝑜𝑜𝑡|𝑖) is calculated recursively from the above and the model likelihood 1002 

is given by: 1003 

𝑃 = ∑

𝑆

𝑖=1

𝜋𝑖𝑃𝑟𝑜𝑜𝑡(𝐷𝑟𝑜𝑜𝑡|𝑖) 1004 

Given the two-stage cell sorting approach described above, we assume nearly error-free 1005 

phenotyping and set 𝜖 = 10-12. 1006 

Determining the most likely sequence of hidden end-of-branch states: This Viterbi-like algorithm 1007 

can be run in conjunction with the upward algorithm. Here, instead of summing over all possible 1008 

states, we keep track of the most likely descendant states for each possible state of the current 1009 

node 𝒖. 1010 
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The quantity 𝛿𝑢(𝑖) is the probability of the most likely sequence of descendant states given that 1011 

node 𝒖 ends in state 𝑖: 1012 

𝛿𝑢(𝑖) = ∏

𝑣∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢)

(𝑚𝑎𝑥
𝑘

{𝛿𝑣(𝑘)𝑃𝑖,𝑘(𝑣)}) 1013 

Additionally, for each node we store the most probable child states given that 𝑢 is in state 𝑖: 1014 

𝛹𝑢,𝑣(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝛿𝑣(𝑘)𝑃𝑖,𝑘(𝑣)} 1015 

The tip deltas are initialised using the emission probabilities: 1016 

𝛿𝑢(𝑖) = 𝑃𝑢(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑜𝑓 𝑢|𝑖) 1017 

The above provides a recipe for recursively finding 𝛿𝑟𝑜𝑜𝑡(𝑖) and is combined with prior root 1018 

probability 𝜋 to give the most likely root state, 𝑚𝑎𝑥𝑘{𝛿𝑟𝑜𝑜𝑡(𝑖)}, in our case we set the prior probability 1019 

of “EMB” to unity - so EMB is the starting state. The child node states are then directly populated 1020 

using 𝛹. 1021 

Targeted duplex-consensus sequencing 1022 

Genomic DNA from freshly collected peripheral blood was purified using the Zymo Quick-DNA 1023 

Miniprep Plus kit according to the manufacturer's instructions. 1650 ng of high-molecular-weight 1024 

DNA was ultrasonically sheared to an average 300 bp fragment size using a Covaris M220 and 1025 

ligated to duplex identifier sequencing adapters87 using the Twinstrand Biosciences DuplexSeq 1026 

library prep kit. A large input of gDNA was used to ensure that the number of input genomic 1027 

equivalents (about 275,000-330,000 genomes) did not limit the achievable duplex sensitivity. A 1028 

custom baitset of biotinylated probes was used to enrich sequences targeting mouse orthologues 1029 

of common human CH driver genes over two overnight hybridisation reactions. Our target panel 1030 

spanned 61.8 kb and captured homologous regions from the entire coding region of the following 1031 

genes: Dnmt3a, Tet2, Asxl1, Trp53, Rad21, Cux1, Runx1, Bcor, and Bcorl1, and specific exons 1032 

with hotspot mutations (as observed in COSMIC) for the following genes: Ppm1d, Sf3b1, Srsf2, 1033 

U2af1, Zrsr2, Idh1, Idh2, Gnas, Gnb1, Cbl, Jak2, Ptpn11, Brcc3, Nras, and Kras. Targeted loci 1034 

encompass >95% of human CH events43 and are described in Supplementary File 2. Libraries were 1035 

sequenced on the NovaSeq platform to a raw depth between 1-3 million reads, corresponding to 1036 

duplex-consensus depths between 30,000-50,000X that vary across targeted exons 1037 

(Supplementary Note 3). Quality control of duplex sequencing is discussed in Supplementary Note 1038 

3. 1039 
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Variant identification in targeted gene duplex-consensus sequencing 1040 

Duplex-consensus and single-strand consensus reads were generated using the fgbio suite of tools 1041 

according the fgbio Best Practices FASTQ to Consensus Pipeline Guidelines 1042 

(https://github.com/fulcrumgenomics/fgbio/blob/main/docs/best-practice-consensus-pipeline.md). 1043 

To build a duplex-consensus read, we required at least 3 reads in each supporting read family (i.e., 1044 

at least 3 sequenced PCR duplicates of matched top and bottom strands from an original DNA 1045 

molecule). The ‘DuplexSeq Fastq to VCF’ (version 3.19.1) workflow hosted on DNANexus was also 1046 

used to generate duplex-consensus reads. Next, VarDict88 was used to identify all putative variants, 1047 

followed by functional annotation using Ensembl Variant Effect Predictor89. Finally, numerous post-1048 

processing filters were applied to remove false positives and artefactual variants: (i) Quality flag 1049 

filter. VarDict annotates all variants using a series of quality flags that assess mapping and read-1050 

level fidelity88. Any variant with a quality flag other than “PASS” was discarded. (ii) Read support 1051 

filter. Duplex sequencing enables detection of somatic variants even from a single read87; however, 1052 

variants supported by a consensus read (singletons) were found to be highly enriched for spurious 1053 

calls. Thus, any variant supported by a single read was discarded. (iii) Mismatches per read filter. 1054 

Variants were excluded if the mean number of mismatches per supporting read exceeded 3.0. (iv) 1055 

End Repair & A-tailing artefact filter. Library preparation enzymatic steps may introduce false 1056 

positive SNVs near read ends due to misincorporation of adenine bases during A-tailing or 1057 

mistemplating during blunting of fragmented 3’ ends. The fgbio FilterSomaticVcf tool was used to 1058 

assess the probability that any variant within 20 bp of read ends was due to such enzymatic errors; 1059 

probable end-repair artefacts were discarded. (v) Read position filter. Variants in positions ≤ 15 bp 1060 

from the 5’ or 3’ end of a consensus read were observed to be enriched for spurious variants based 1061 

on trinucleotide signature and were discarded. (vi) Oxidative damage filter. Mechanical 1062 

fragmentation (prior to duplex adapter attachment) creates oxidative DNA damage, often in the 1063 

form of 8-oxoguanine90,91, which mis-pairs with thymine and is fixed after PCR amplification. Any 1064 

variant fitting the previously described oxidative artefact signature (SBS45) were discarded. (vii) 1065 

Sequencing coverage filter. Variants at loci with duplex depth of ≤ 20,000X were considered under-1066 

sequenced and discarded. (viii) Strand bias filter. We employed a Fisher's exact test to assess for 1067 

forward or reverse strand bias between wildtype and mutant reads. Any variant enriched for 1068 

unidirectional read support was discarded. (ix) Recurrent variant filter. Variants present in ≥5% of 1069 

samples per duplex-sequencing batch or in ≥5 independent samples were discarded. (x) Indel 1070 

length filter. Long insertions or deletions could be attributed to poor mapping, erroneous fragment 1071 
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ligation, or false positive calls by VarDict. Any indels ≥15 bp were excluded. (xi) High VAF filter. 1072 

Germline variants display a VAF of 0.5 or 1.0. Any variants with VAF ≥0.4 were excluded as 1073 

putative germline variants. (xii) Impact filter. CH is driven by functional coding sequence changes 1074 

in driver genes. Thus, synonymous mutations were excluded during generation of the dot-plots in 1075 

Figures 4-5. This filter was not utilised for analyses that require synonymous variant information 1076 

(dN/dS, fitness effect estimation). (xiii) Homologous position filter. Residues conserved with 1077 

humans are likely to be functional in mice. Variants at loci without a matching reference allele at 1078 

homologous position in humans were discarded. This filter primarily eliminated intronic variants and 1079 

was not utilised for analyses incorporating synonymous variant information. Variants identified are 1080 

detailed in Supplementary File 2.  1081 

Murine perturbation experiments 1082 

Perturbation experiments were initiated in aged (21-month) male and female mice unless otherwise 1083 

described. Mice were randomly allocated to control or experimental groups. Investigators were not 1084 

blinded to the group assignment during experiments. For Mycobacterium avium infection, mice 1085 

were infected with 2 x 106 colony-forming units of M. avium delivered intravenously as previously 1086 

described92. Mice were infected once every 8 weeks (twice in total) to ensure chronic infection. For 1087 

cisplatin exposure, mice were exposed to 3 mg/kg cisplatin delivered intraperitoneally every four 1088 

weeks, as indicated. Dose spacing was selected to allow for sufficient recovery following 1089 

myeloablation and blood counts were not altered in cisplatin-treated mice (Fig.4C), indicating 1090 

recovery of haematopoiesis. For 5-Fluorouracil exposure, 150 mg/kg 5-FU was delivered 1091 

intraperitoneally every four weeks two times; this 5-FU dose has previously been shown to drive 1092 

temporary activation of HSCs in mice93,94. Exposure to a normalised microbial experience (NME) 1093 

of murine transmissible pathogens was performed as previously described51. Briefly, immune-1094 

experienced “pet store” mice were purchased from pet stores around Minneapolis, MN. Aged (24-1095 

month) C57BL/6J:FVB/NJ laboratory mice were either directly cohoused with pet store mice or on 1096 

soiled (fomite) bedding collected from cages of pet store mice. Mice were exposed to continuous 1097 

fomite bedding for 1 month, followed by 5 months recovery on SPF bedding before tissue collection. 1098 

All NME work was performed in the Dirty Mouse Colony Core Facility at the University of Minnesota, 1099 

a BSL-3 facility. Age-matched C57BL/6J:FVB/NJ F1 laboratory mice maintained in specific 1100 

pathogen free (SPF) conditions were used as controls. For monitoring, peripheral blood (~50uL) 1101 

was collected in EDTA-coated tubes and analysed on an OX-360 automated hemocytometer (Balio 1102 
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Diagnostics). For all aforementioned mouse cohorts, peripheral blood genomic DNA was purified 1103 

and converted to duplex sequencing libraries as described above.  1104 

Differences in clone burden between control and treated cohorts was quantified using a Mann-1105 

Whitney test on cumulative VAFs per sample. Gene-level enrichment was measured using a 1106 

Fisher’s exact test on the number and mutant and wildtype reads, normalised for coverage 1107 

differences between samples. Gene-level dN/dS estimates were generated as described below.  1108 

dN/dS analysis 1109 

The ratio of nonsynonymous to synonymous mutation rates (dN/dS) can be used to assess for 1110 

selection within somatic mutations by comparing the observed dN/dS to that expected under 1111 

neutral selection. We use the R package dNdScv95 to estimate dN/dS ratios of somatic mutations 1112 

derived from whole genome and targeted gene duplex-consensus sequencing. To incorporate 1113 

mouse-specific differences in trinucleotide context composition and background mutation rates, we 1114 

generated a murine reference CDS dataset using the buildref function and genome annotations in 1115 

Ensembl (version 102). For the phylogenetic trees, we input all tree variants to the dndscv function. 1116 

dN/dS output and all coding variants detected in trees are listed in Supplementary File 1. To 1117 

examine dN/dS in targeted duplex-consensus sequencing data, we pooled all variants observed in 1118 

cross-sectionally sampled mice across ages (Fig.3A) and ran dndscv limited to exons only included 1119 

on our targeted panel (Supplementary File 2).  1120 

Targeted capture of tree variants  1121 

We designed a custom targeted DNA baitset (Agilent SureSelect) targeting mutations on the 1122 

phylogenetic trees of the aged mice, and then queried genomic DNA purified from matched 1123 

peripheral blood for tree-specific mutations using high-depth targeted sequencing. The baitset was 1124 

designed to capture mutations on the phylogenetic trees of all 3 aged mice (MD7180, MD7181, 1125 

and MD7182), and to cover mutations found in HSCs, MPPs and LSKs. The baitset was designed 1126 

as follows: (i) All variants on shared branches that pass the SureDesign tool’s “moderately stringent 1127 

filters”. (ii) All variants on a random subset of private branches that pass SureDesign’s “most 1128 

stringent filters”. Approximately 25% of the private branches of each mouse were randomly 1129 

selected. (iii) The exons and 3’ and 5’ UTRs for all CH driver genes used in our duplex sequencing 1130 

panel (listed above). Target-enriched libraries were generated according to the manufacturer’s 1131 

protocol and sequenced using the Illumina Novaseq platform. Baits were sequenced to median 1132 

depths of 2616X, 2549X and 2628X for MD1780, MD7181 and MD7182 respectively.  1133 
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To quantify the degree of HSC and MPP contribution to peripheral blood, we estimated the posterior 1134 

distribution of true VAF for every mutation captured with our targeted baitset. This was done using 1135 

the Gibbs sampling method previously developed96. Then, for each molecular time t, and for each 1136 

branch that overlaps t, we estimate the VAF of a hypothetical mutation at time t. This is done by 1137 

arranging our baitset variants in descending estimated VAF order at equally spaced intervals down 1138 

the branch and then linearly interpolating the VAF at time t based on the estimated VAF of the 1139 

neighbouring mutations. The aggregate VAF at time t for a tree or lineage is then calculated as the 1140 

sum of the estimated VAFs of the overlapping branches at time t. 1141 

Maximum likelihood estimates of fitness effects 1142 

Evolutionary framework 1143 

To generate estimates of fitness effects, mutation rates, and population size, we applied an 1144 

evolutionary framework based on continuous time branching for HSCs, as previously reported53. 1145 

The framework is based on a stochastic branching model of HSC dynamics, where variants with a 1146 

variant-specific fitness effect, s, are acquired stochastically at a constant rate μ. Synonymous and 1147 

nonsynonymous mutations detected with duplex sequencing in untreated 24-25-month-old mice 1148 

were used in the analysis. Synonymous and nonsynonymous mutations were considered 1149 

independently. Synonymous mutations are assumed to have no fitness effect and reflect behaviour 1150 

under neutral drift, while non-synonymous mutations were hypothesised to reflect behaviour under 1151 

a positive selective advantage. The density of variants declined at VAF 5•10 -5, so to only include 1152 

VAF ranges supported by informative variants, only variants above this threshold were included in 1153 

maximum likelihood estimations described below.  1154 

How the distribution of VAFs, predicted by our evolutionary framework, changes with age (𝑡), the 1155 

variant’s fitness effect (𝑠), the variant’s mutation rate (𝜇), the population size of HSCs (𝑁) and the 1156 

time in years between successive symmetric cell differentiation divisions (𝜏) is given by the 1157 

following expression for the probability density as a function of 𝑙 =  𝑙𝑜𝑔(𝑉𝐴𝐹): 1158 

𝜌(𝑙) =
𝜃

(1−2𝑒𝑙)
𝑒 −

𝑒𝑙

𝜑(1−2𝑒𝑙)
 where 𝜃 = 𝑁𝜏𝜇 and 𝜑 =

𝑒𝑠𝑡−1

2𝑁𝜏𝑠
 1159 

The value of 𝜑 =
𝑒𝑠𝑡−1

2𝑁𝜏𝑠
 is the typical maximum VAF a variant can reach and this increases with 1160 

fitness effect (𝑠) and age (𝑡). To reach VAFs ﹥𝜑 requires a variant to both occur early in life and 1161 

stochastically drift to high frequencies, which is unlikely. Therefore, the density of variants falls off 1162 

exponentially for VAFs ﹥𝜑. For neutral mutations (𝑠 = 0), 1163 
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𝜑 =
𝑡

2𝑁𝜏
 1164 

Because the mouse age 𝑡 is known and the neutral 𝜑 is measurable from the data, the ratio 𝜑/𝑡 1165 

allows us to infer 𝑁𝜏 from the distribution of neutral mutation VAFs. Because the neutral 𝜃 is 1166 

measurable from the data, and 𝜃 = 𝑁𝜏𝜇, we can also infer the neutral mutation rate (𝜇). 1167 

Probability density histograms, as a function of log-transformed VAFs, were generated using 1168 

Doane’s method for log(VAF) bin size calculation. Densities were normalised by the product of bin 1169 

sample size and width. Estimates for 𝑁𝜏 and 𝜇 were inferred using a maximum likelihood approach, 1170 

minimising the L2 norm between the cumulative log densities and the predicted densities. For 1171 

synonymous mutations, maximum likelihood estimates were optimised for 𝑁𝜏 and 𝜇. For 1172 

nonsynonymous mutations, variants with VAFs below the observed maximum synonymous VAF 1173 

(1.99•10−4) were used – these variants are within the “neutral” range – and estimates were 1174 

optimised for with the 𝑁𝜏 estimated from synonymous mutations.  1175 

Differential fitness effects 1176 

We estimated the distribution of fitness effects across nonsynonymous variants using our derived 1177 

estimates of 𝑁𝜏 and nonsynonymous 𝜇. We parameterised the distribution of fitness effects using 1178 

an exponential power distribution, which captures a strongly decreasing prevalence of mutations 1179 

with high fitness: 1180 

𝜇
𝑛𝑜𝑛−𝑛𝑒𝑢𝑡𝑟𝑎𝑙

(𝑠)  ∝ exp[− (
𝑠

𝑑
)

𝛽
] 1181 

The shape of the distribution was fixed to 𝛽 = 397. Using the VAF density histograms from 1182 

nonsynonymous variants, we estimated the scale of the distribution and non-neutral mutation rate: 1183 

∫
∞

𝑠=0
𝜇𝑛𝑜𝑛−𝑛𝑒𝑢𝑡𝑟𝑎𝑙(𝑠) 𝑑𝑠. The maximum likelihood fit predicted a scale of about 𝑑=2 and the 1184 

proportion of non-neutral nonsynonymous mutations to be about 12% (Fig.6B).  1185 

Code and data availability  1186 

SNVs and indels were detected using CaVEMan (version 1.14.0, 1187 

https://github.com/cancerit/CaVEMan), cgpPindel (version 3.9.0, 1188 

https://github.com/cancerit/cgpPindel), and VarDict (version 1.8.3, 1189 

https://github.com/AstraZeneca-NGS/VarDictJava). Variants were annotated using VAGrENT 1190 

(version 3.7.0, https://github.com/cancerit/VAGrENT), and Ensemble VEP (release 107-110.0, 1191 
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https://github.com/Ensembl/ensembl-vep). Phylogenies were constructed using MPBoot (version 1192 

1.1.0, https://github.com/diepthihoang/mpboot). Variants were assigned to phylogenies using 1193 

Rtreemut (https://github.com/nangalialab/treemut). Population trajectories were inferred using 1194 

phylodyn (https://github.com/mdkarcher/phylodyn). Bayesian inferences utilized the packages 1195 

rsimpop (https://github.com/nangalialab/rsimpop) for simulations and abc (version 2.2.1, 1196 

https://CRAN.R-project.org/package=abc) for approximate Baysesian Computation. Mutation 1197 

signatures were inferred using the hdp (https://github.com/nicolaroberts/hdp) and sigfit (version 1198 

2.2.0, https://github.com/kgori/sigfit). Duplex consensus reads were generated using the fgbio suite 1199 

of tools (version 1.5.1-2.1.0, http://fulcrumgenomics.github.io/fgbio/). dN/dS ratios were calculated 1200 

using dNdScv (version 0.1.0, https://github.com/im3sanger/dndscv). Population genetic analyses 1201 

of clone sizes and parameter inferences were based on code available at 1202 

https://github.com/blundelllab/ClonalHematopoiesis/. Other analyses were carried out using 1203 

custom R scripts and will be available at https://github.com/CDKapadia/somatic-mouse. 1204 

 1205 

Whole genome sequencing data will be deposited at the European Nucleotide Archive at accession 1206 

numbers ERP138320 and ERP144323. Targeted duplex sequencing data will be deposited at 1207 

NCBI BioProject PRJNA1033340.  1208 

 1209 

  1210 
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Supplementary Note 1: Age equivalents between mouse and human 1211 

 1212 

We used mouse and human survival data to estimate age equivalency between species. The 1213 

median lifespan of C57BL/6J laboratory mice is 28-months24 (published data reproduced in 1214 

Supplementary Fig.S1). We retrieved 2017 life-table data from the USA and the UK compiled at 1215 

the Human Mortality Database (mortality.org). Only female data was included to match the makeup 1216 

of our aged mouse dataset. We took the average of the median lifespans in the UK (82.5) and USA 1217 

(80.7) to estimate the female mean lifespan as 81.6 years. Lastly, we normalised mouse age by 1218 

median lifespan to determine an estimated equivalent human age. The above was only performed 1219 

for the aged samples. Mice reach sexual maturity earlier in lifespan relative to humans, so age-1220 

equivalency was determined by onset of reproductive maturity between species, as previously 1221 

described98. 1222 

 1223 

 1224 

Supplementary Figure S1. Mouse (C57BL/6J strain) survival data (left graph) by age for males (blue) and 1225 

females (red). Human survival data (right graph) by age for females in the UK (red) and USA (blue). Dashed 1226 

black lines mark the age of 50% survival probability for both species. Reproductive age is highlighted by the 1227 

grey box.  1228 

 1229 

  1230 
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Supplementary Note 2: Ancestral cell identity inference 1231 

 1232 

 1233 

 1234 

In our phylogenies, coalescences represent cell divisions of ancestral cells whose progeny have 1235 

been captured as observable cells (tips on the tree). Comparison of the observed cell identity 1236 

between closely related tips allows inferences of the identity of their most recent common ancestor 1237 

(MRCA) and the nature of the ancestral cell division captured as a coalescence on the phylogenetic 1238 

tree.  1239 

 1240 

As an illustrative example above, if two closely related observed (‘tip’) cells are HSCs (scenarios A 1241 

and C), then it is inferred that their most recent common ancestor was also an HSC. This HSC 1242 

must have symmetrically divided to create two daughter HSCs, with both lines of descent also 1243 

generating HSCs that were eventually sampled as the observed cells. From this inferred cell identity 1244 

of their most recent common ancestor, if the cell state of the next closest relative is also an HSC, 1245 

then their most recent common ancestor is similarly inferred to be an HSC (scenario A). HSCs 1246 

coalescences are in blue, while MPPs are in red (scenarios B and D). Neighbouring tip states that 1247 

differ in cell type (e.g., 1 HSC and 1 MPP as in scenario E) can arise in two ways. First, there may 1248 

have been an ancestral asymmetrical cell division generating one HSC and one MPP initially, with 1249 

subsequent progeny along both lines of descent retaining these identities until sampling. 1250 

Alternatively, the same tip states could also occur via a symmetrical self-renewing division of either 1251 

MPP or HSC, followed by a later cell type change (e.g., via asymmetric cell division or direct 1252 

change) of one of the daughter cells. Either way, one cell type change from HSC to MPP (or MPP 1253 

to HSC) is required to explain these tip states; therefore we mark their ancestral coalescence as 1254 

blue/red. In these scenarios, because we cannot infer the cell identity of the MRCA, the upstream 1255 

lineage is subsequently labelled in black. These principles can be applied to all coalescences in 1256 

the observed phylogenetic trees (Fig.2A, Extended Data Fig.2, scenarios A-E above). This intuition 1257 

does not rely on any assumptions of ontogeny, such as the hierarchy of HSCs over MPPs.  1258 
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 1259 

 1260 

 1261 

However, current models of the hematopoietic hierarchy dictate that HSCs give rise to MPPs 1262 

(HSC>MPP). With this assumption made (top row “HSC-first assumption), one can label more of 1263 

the branches and coalescences assigned as ‘black’ in the logic detailed above. For example, 1264 

assuming an ‘HSC-first’ hierarchy, the common ancestor for scenarios C-E is now inferred to be 1265 

an HSC, and the unobservable ancestral division in scenario E is inferred to be an HSC self-1266 

renewal. In the ‘MPP-first’ assumption (lower row), the inverse is inferred. These heuristics are 1267 

applied to all coalescences in the observed phylogenetic trees.  1268 

 1269 

We then asked how many cell state transitions are required to explain the tip states given an HSC-1270 

first or an MPP-first model. To perform this comparison, for each tree, we subsampled the largest 1271 

category of HSC and MPPs so that there were equal numbers of MPP and HSC tips. To reduce 1272 

the risk of the downsampling being unrepresentative the subsampling was conducted 10,000 times 1273 

for each tree, and the average number of required transitions under the two unidirectional models 1274 

was calculated. We then counted the total number of transitions required to result in the observed 1275 

cell type tips. It was observed that the number of transitions required was similar for HSC-first and 1276 

MPP-first and that there was no consistent pattern of one being higher than the other (Fig.2D). It 1277 

was then natural to ask whether our cell type information was at all informative and so we randomly 1278 

permuted the tip cell types and then resolved the tree in an HSC-first fashion. This sub-sampling 1279 

and permutation was carried out 10,000 times and, as expected, the number of changes required 1280 
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by either the MPP-first or HSC-first models were generally far fewer than is consistent with the null 1281 

model that all balanced cell type categorisations require the same number of tree-based transitions 1282 

to explain the tip phenotype under an unidirectional model. In summary, both HSC-first and MPP-1283 

first models are less parsimonious, i.e., requiring more cell state changes, than the model first 1284 

presented in which no assumptions are made about a hierarchy between HSCs and MPPs. The 1285 

most parsimonious model would be that of HSC and MPP lineages being derived in parallel during 1286 

similar development periods from non-overlapping common ancestors.  1287 

 1288 

A simple 3 state model for Murine Progenitor Ontogeny 1289 

To formalise the above ideas in the context of a simple model of HSC and MPP ontogeny, we 1290 

considered the state of all cells prior to 10 mutations in molecular time as being in an embryonic 1291 

precursor state (EMB), given that haematopoietic and colonic lineages remain uncommitted until 1292 

at least this time (Extended Data Fig.3). We then assumed that in each unit molecular time there 1293 

is a fixed probability of transitioning out of this embryonic state into either an HSC state, 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶, 1294 

or an MPP state, 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃. Furthermore, there is a fixed probability of transitioning from an HSC 1295 

to an MPP, 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃, and from an MPP to an HSC, 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶. Thus, the evolution of the cells 1296 

down the tree is governed by a discrete time Markov chain process. The likelihood of the observed 1297 

tip cell types is calculated using a hidden Markov tree approach (Methods). Maximum likelihood 1298 

estimates of the model parameters are obtained by maximising the sum of the log-likelihoods 1299 

across mouse-specific phylogenetic trees. Finally, for each mouse, the most likely sequence of 1300 

unobserved states for the nodes of the phylogenetic tree is calculated using the fitted model 1301 

parameters. 1302 

 1303 

We performed the maximum likelihood estimation using the R package “bbmle”. The maximisation 1304 

was performed on logit transformed quantities: 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃, 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶, 
𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶

𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶+𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃
 and 1305 

𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 + 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃. Whilst we were able to obtain parameter estimates and Hessian-based 1306 

standard errors, the profile-based estimation of confidence intervals did not work in all cases. So, 1307 

to obtain more robust estimates in the CIs of the model we implemented a Stan-based Bayesian 1308 

version of the model using the directly calculated likelihood as described above. Uniform priors on 1309 

the unit interval were assumed for 
𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶

𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶+𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃
 and 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 + 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃 and uniform 1310 
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priors on the interval (0-0.5) were assumed for both 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃 and 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶 . The model was 1311 

run with four chains, each for 10,000 iterations. 1312 

Separate young and old mouse cohorts provide optimal model fit 1313 

We compared fitting the model with a per-mouse, per-age, and pan cohort strata. A likelihood ratio 1314 

test analysis revealed that the best model is an age-specific model where parameters are estimated 1315 

separately in old and young mice (Supplementary Table S1). 1316 

Supplementary Table S1. Log likelihood values and Akaike information Criterion (AIC) assessing model fit. 1317 

A lower AIC value indicates a better model fit.  1318 

 1319 

Young and Old mice exhibit differing patterns of differentiation 1320 

Applying our hidden Markov tree approach, we fitted an HSC-first model where, 1321 

𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶

𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶+𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃
  1322 

is fixed at unity. That is, all EMB must transition to an HSC before any emergence of MPPs (HSC-1323 

first). In the context of this simple model, we can reject the HSC-first model across the combined 1324 

age group model (p=1.11e-18) and also for the old group (p=1.38e-19). However, we were unable 1325 

to reject the HSC-first model for the young animal group (p=0.397). 1326 

 1327 

Examining the types of cell-state transitions in the trees, we observed that aged animals exhibit 1328 

several independent transitions from the embryonic precursor state followed by relatively few 1329 

transitions between HSC to MPP or vice versa (Supplementary Fig.S2). In contrast, young animals 1330 

exhibit a tendency towards HSC-first followed by a relative abundance of HSC->MPP transitions 1331 

(Supplementary Fig.S2). Both HSC-specification and MPP-specification occur within the first 50 1332 

mutations molecular time (Supplementary Fig.S3). The cell identity transition rates, per unit 1333 

molecular time, are listed below and were used to generate Fig.2E. 1334 

 1335 

 1336 

Model 
Degrees of 

freedom 

Log 

Likelihood 
AIC Likelihood Ratio Test 

Pan Cohort 4 -840.2 1,688.4  

Age-Specific 8 -800.2 1,616.5 vs. Pan Cohort: P=1.78e-16 

Mouse-Specific 24 -796.2 1,640.3 vs. Age Specific: P=0.945 
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 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶 

Young Donors 0.158 0.037 0.0164 0.0070 

Aged Donors 0.036 0.034 0.0013 0.0006 

 1337 

The above result are fairly consistent with the Stan based results for which we show the medians 1338 

of the marginal posterior distribution followed by the 95% credibility intervals: 1339 

 1340 

 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 𝑝𝐸𝑀𝐵−>𝑀𝑃𝑃 𝑝𝐻𝑆𝐶−>𝑀𝑃𝑃 𝑝𝑀𝑃𝑃−>𝐻𝑆𝐶 

Young 0.43(0.11 - 0.9) 0.063(0.0048 - 0.27) 0.017(0.014 - 0.022) 0.0078(0.0029 - 0.016) 

Aged 0.04(0.025 - 0.068) 0.038(0.025 - 0.064) 0.0014(0.00079 - 0.0022) 0.00071(0.00022 - 0.0015) 

 1341 

Of note, the mode of the marginal posterior distribution of 𝑝𝐸𝑀𝐵−>𝐻𝑆𝐶 peaks at 0.19, which is 1342 

reassuringly close to the maximum likelihood estimate of 0.158.  1343 

 1344 

 1345 

Supplemental Figure S2: Transition Type Counts. The old mice exhibit an abundance of approximately 1346 

equally prevalent EMB->HSC and EMB->MPP transitions followed by relatively few transitions to the eventual 1347 

observed cell types. The young mice exhibit relatively fewer EMB->HSC and EMB->MPP and then a relative 1348 

abundance of HSC->MPP transitions. 1349 

 1350 

 1351 

 1352 
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 1353 

Supplementary Figure S3: Cumulative Distribution of Specification Timing. For each colony we use the 1354 

molecular time of the A) start of the branch, or B) end of the branch on which the ancestral lineage first 1355 

transitions to the observed cell type as an upper bound for the timing of its transition to its final observed 1356 

state. The panels show the cumulative distribution of these upper bounds calculated form the most likely 1357 

sequence of transitions inferred using the age-specific model and the pan cohort model. Vertical lines indicate 1358 

the time at which 50% of the sampled cells have specified identity. 1359 

  1360 
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Supplementary Note 3: Quality control of targeted duplex-sequencing 1361 

We expected that somatic clones in mice might be rare events at small clone sizes, thus would 1362 

require a sensitive detection assay. High-depth sequencing can be used for detection of subclonal 1363 

variants, but with increasing coverage, the error-rate intrinsic to short-read sequencing can obscure 1364 

true low variant allele fraction (VAF) variants. To circumvent this sensitivity limit, read-level error-1365 

correction approaches are necessary. Thus, we applied duplex-consensus sequencing, which 1366 

offers among the highest sensitivity for subclonal variant detection. In duplex-sequencing, each 1367 

initial dsDNA molecule is uniquely barcoded such that reads derived from complementary 5’ and 1368 

3’ strands are linked, but also distinguishable. Detected variants must be present on both uniquely 1369 

barcoded strands of the initial dsDNA fragment to pass bioinformatic filtration (Supplementary 1370 

Fig.S4). By enforcing that variants are present in reads derived from both of the matched 1371 

complementary strands of DNA, one can eliminate the majority of sequencer-induced artefacts that 1372 

usually hamper sensitivity. To apply this technology to murine clonal haematopoiesis (CH), we 1373 

developed a target panel of the mouse homologs of genes most frequently mutated in human CH 1374 

(Methods, Supplemental File 2).  1375 

 1376 

Supplementary Figure S4: Error correction strategy in targeted duplex sequencing.  1377 

PCR during library preparation and sequencing introduce low-frequency artefacts. Duplex barcodes allow 1378 

grouping of PCR duplex reads from a single DNA library molecule (read families) and single-strand read 1379 

consensus generation. Next, single strand consensus reads from complementary strands on initial dsDNA 1380 

are matched to generate a duplex consensus. To build a duplex-consensus read, we required at least 3 1381 

reads in each supporting read family (i.e., at least 3 sequenced PCR duplicates of matched top and bottom 1382 

strands from an original dsDNA molecule). 1383 

 1384 

  1385 
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Coverage requirements to generate a duplex consensus: To generate a duplex-consensus read, 1386 

an initial DNA molecule must be sequenced multiple times with reads from matched 5’ and 3’ 1387 

strands sufficiently represented. To ensure that clone detection sensitivity would not be limited by 1388 

input genomic DNA (i.e., the libraries contained sufficient genomic complexity), we input at least 1389 

100,000 genomic equivalents (or at least 1650 ng of genomic DNA) into our library preparations. 1390 

High library complexity decreases the probability of matched 5’ and 3’ reads being sequenced by 1391 

chance; thus, even with a target panel enrichment, extremely high sequencing depth is required to 1392 

capture library complexity in duplex consensus reads. Median raw, non-deduplicated coverage 1393 

spanned 1,000,000X to 3,000,000X at targeted loci per sample. This correlated with a single-strand 1394 

consensus coverage spanning 60,000X-120,000X, which, after 5’ and 3’ linkage, further collapsed 1395 

to duplex consensus coverage spanning 30,000X-40,000X (Supplementary Fig.S5). Duplex 1396 

coverage at specific exons within targeted genes was variable between samples (Supplementary 1397 

Fig.S6) 1398 

 1399 

Supplementary Figure S5: Sequencing coverage at targeted loci for all samples in Fig.4A. The relationship 1400 

between raw (not deduplicated), single strand consensus, and duplex consensus coverage is shown.  1401 
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1402 
Supplementary Figure S6: Duplex coverage at coding exons in Dnmt3a, Tet2, and Asxl1 for a series of 1403 

aged samples.  1404 

 1405 

Mutation filtering: To supplement the sensitivity afforded by duplex sequencing, stringent read- and 1406 

variant-level filters were applied to reduce the presence of false positive mutations or spurious 1407 

calls. Without filtration, we observed an enrichment of C>A mutations (Supplementary Fig.S7), 1408 

reminiscent of mutation signature SBS45,which is likely attributable to oxidative damage during 1409 

sequencing90,91. Such oxidative damage mutations likely arose after duplex barcode attachment, 1410 

were enriched at read ends, and likely caused mutations within the duplex barcode sequence. Due 1411 

to mutations in duplex barcodes, a read family derived from a single initial dsDNA molecule (a 1412 
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singleton) would erroneously appear as derived from an additional read family (a doublet). This 1413 

observation led us to apply a stringent series of filters (Methods), after which the trinucleotide 1414 

spectra of variants detected in duplex sequencing more resembled that seen with blood 1415 

(Supplementary Fig.S7).  1416 

 1417 

Supplementary Figure S7: Trinucleotide spectra of duplex-sequencing variants before and after post-1418 

processing filters. See Methods for filtering strategy details. 1419 

 1420 

Clone size calculation: Given the differences in coverage between loci, we normalised the variant 1421 

read counts to allow accurate clone size comparisons between samples. In general, clone size for 1422 

a given variant is defined as: 1423 

𝐶𝑙𝑜𝑛𝑒 𝑠𝑖𝑧𝑒 =  
𝑀𝑢𝑡𝑎𝑛𝑡 𝑎𝑙𝑙𝑒𝑙𝑒 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡
 1424 

For very small clones, there is a degree of stochasticity affecting if sufficient mutant read alleles 1425 

will be converted to duplex consensus reads to allow detection. Duplex clones supported by very 1426 

few mutant allele reads would have a low numerator, thus clone size estimations may be skewed. 1427 

Given more single-strand consensus reads are generated than duplex consensus reads 1428 

(Supplementary Fig.S6), we reasoned that mutant allele reads would be relatively more abundant 1429 

within single-strand consensus reads – that is, mutant allele reads would be present among the 1430 

reads ‘discarded’ due to insufficient evidence to generate a duplex consensus. To normalise clone 1431 

size, especially in low-magnitude clones, we used de-duplicated single-strand consensus reads, 1432 

as follows: 1433 

𝐶𝑙𝑜𝑛𝑒 𝑠𝑖𝑧𝑒𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑀𝑢𝑡𝑎𝑛𝑡 𝑎𝑙𝑙𝑒𝑙𝑒 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑟𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑟𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
 1434 

By using the de-duplicated single-strand consensus reads for clone size calculation, the numerator 1435 
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(variant allele count) and denominator (coverage) both increase, reducing any skewing that may 1436 

be present in clone size calculations from duplex consensus reads. All clone sizes depicted on dot 1437 

plots are calculated in this manner.  1438 

 1439 

Biological replicates: To validate reproducibility within the targeted duplex-sequencing library 1440 

preparation and variant calling pipelines, we assessed clone prevalence in biological replicate 1441 

samples. For each replicate, peripheral blood was separately collected (in different tubes) and 1442 

underwent genomic DNA extraction independently. Thus, the genomic DNA “pools”, while derived 1443 

from the same sample mouse, were purified in separate reactions. Replicate DNA samples 1444 

underwent duplex library preparation and variant calling as described in Methods. As shown in 1445 

Supplementary Figure S8, clone detection is concordant between paired replicates. Clones unique 1446 

to a single replicate were at the limit of detection for the specific locus, and thus it is likely in the 1447 

paired replicate that insufficient variant reads were sequenced to generate duplex consensus read 1448 

support. Such borderline detectable clones will likely be detectable within single-strand consensus 1449 

reads, which carry nearly double greater read depth, though at the expense of duplex sensitivity. 1450 

We examined single-strand consensus reads from the biological duplicate samples and were able 1451 

to “rescue” missing variants from the paired replicate sample, in about half of cases(Supplementary 1452 

Figure S8). This confirms that much of the missing replicate clones were lost during duplex 1453 

consensus building, for example when a clone has insufficient top or bottom strand support to 1454 

create a duplex read.  1455 

 1456 
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 1457 
Supplementary Figure S8. Native CH in biological replicate samples. Shaded and unshaded pairs 1458 

represent duplex libraries separately prepared from an identical initial blood sample. Clones are presented 1459 

as described in Fig.4A. Transparency indicates a clone that was only detectable within single strand 1460 

consensus reads but not duplex consensus reads. 1461 

 1462 

In silico estimation of the sensitivity and specificity of duplex-sequencing results: We next sought 1463 

to understand if the degree of clone concordance between biological replicate samples was 1464 

consistent with the sensitivity of our assay. We consider a simple model for SNVs of conditional 1465 

base calling probabilities for the reference base (R), a mutant base (A) and the two other bases 1466 

(B,C). For an individual read (or read family/bundle) the probability of observing the bases is 1467 

modeled in the following manner: 1468 

 1469 

𝑃(𝐵𝑎𝑠𝑒 𝑖𝑠 𝐴) = 1472 

 𝑃(𝐷𝑁𝐴 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑠 𝑚𝑢𝑡𝑎𝑛𝑡 𝐴 𝑎𝑡 𝑠𝑖𝑡𝑒)  ∗ 1470 

 𝑃(𝐵𝑎𝑠𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 𝑚𝑢𝑡𝑎𝑛𝑡 𝐴|𝐷𝑁𝐴 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑠 𝑚𝑢𝑡𝑎𝑛𝑡 𝐴 𝑎𝑡 𝑠𝑖𝑡𝑒) 1471 

+𝑃(𝐷𝑁𝐴 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑢𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒) ∗ 1474 

 𝑃(𝐵𝑎𝑠𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑠 𝑚𝑢𝑡𝑎𝑛𝑡 𝐴|𝐷𝑁𝐴 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑢𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒).  1473 

  1475 

Now 𝑃(𝐷𝑁𝐴 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑠 𝑚𝑢𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒) =
𝐴𝑏𝑒𝑟𝑟𝑎𝑛𝑡 𝐶𝑒𝑙𝑙 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑝𝑙𝑜𝑖𝑑𝑦
= 𝑉𝐴𝐹 where for economy we now 1476 

use the term (true) VAF to characterise the clone. Moreover we assume there is a base calling 1477 
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error rate (“epsilon”) 𝜖. It is assumed that this results in the one of the 3 incorrect bases to be called 1478 

with equal probability of 𝜖/3: 1479 

𝑃(𝐵𝑎𝑠𝑒 𝑖𝑠 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = (1 − 𝑉𝐴𝐹)(1 − 𝜖) + 𝑉𝐴𝐹
𝜖

3
 1480 

𝑃(𝐵𝑎𝑠𝑒 𝑖𝑠 𝐴) = 𝑉𝐴𝐹(1 − 𝜖) + (1 − 𝑉𝐴𝐹)
𝜖

3
 1481 

𝑃(𝐵𝑎𝑠𝑒 𝑖𝑠 𝐵) = 𝑉𝐴𝐹
𝜖

3
+ (1 − 𝑉𝐴𝐹)

𝜖

3
=

𝜖

3
 1482 

𝑃(𝐵𝑎𝑠𝑒 𝑖𝑠 𝐶) =
𝜖

3
 1483 

For a given bait set wide depth of sequencing, 𝑑𝑒𝑝𝑡ℎ, a given site has depth that is Poisson 1484 

distributed with mean 𝑑𝑒𝑝𝑡ℎ. For a clone to be detected it is only required that at least 2 mutant 1485 

reads are observed. We assume we have a known clone, with VAF=1-4 or VAF=1-3, and with 1486 

mutant allele A. The A clone is discovered if there are 2 or more mutant “A” reads, and no other 1487 

mutant reads (“B” or “C”). With these criteria, we can plot the sensitivity for a given error rate, 𝜖, 1488 

shown below in Supplementary Figure S9.  1489 

 1490 

Supplementary Figure S9: True clone discovery across error rates using multinomial modeling. 1491 

Estimated sensitivity of detecting a variant at a given site with true VAF 1-3 (left) or 1-4 (right) across 1492 

increasing error rates. A range of duplex depth at variant sites are shown. 1493 

 1494 

The above plots show that using single strand consensus sequencing with error rate of ~3 -5 at 1495 

depth 60,000x provides a sensitivity of 30% for clone sizes of VAF=1-3 or less. However, using 1496 
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duplex depth of 30,000x with an error rate of 1-6 to 1-7 (as described in Kennedy et al.87) provides 1497 

a sensitivity of >75%. 1498 

 1499 

If we assume the extreme (and implausible) case of error-free sequencing, then the clone detection 1500 

sensitivity is purely governed by the binomial distribution with a probability of True VAF. 1501 

Importantly, even if the sequencing was error-free, we would not expect there to be concordance 1502 

of clone detectability in different samples. In the Supplementary Figure S10 below we can see that 1503 

for error-free sequencing at depth 20,000X, we would actually have a concordance of around 60%. 1504 

This aligns with the observed duplex clone concordance seen in the biological replicate samples 1505 

shown in Supplementary Figure S8.  1506 

 1507 

Supplementary Figure S10: True clone discovery with error-free sequencing. The estimated sensitivity 1508 

for clone detection at increasing VAFs in the scenario of error-free variant detection. In the absence of an 1509 

error rate, detection sensitivity can be described with a binomial distribution. A range of duplex depth at 1510 

variant sites are shown. 1511 

 1512 

Finally, we can estimate the probability of false positive clone detection at a given error rate 𝜖. As 1513 

shown below, when querying a range of feasible duplex-sequencing sensitivities and duplex-1514 

corrected sequencing depths, a false positive clone is far less likely than a false negative clone 1515 

(missing a true event). As an illustrative example, for duplex depths 20,000X to 30,000X and the 1516 

duplex error rate of <8e-04 (estimated error rate of <1e-06), the false positive rate is <0.01. 1517 

(Supplementary Figure S11). 1518 

 1519 
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 1520 

Supplementary Figure S11: False positive variant detection. The estimated incidence of incorrectly 1521 

detecting a variant at a given site is shown, using multinomial modeling of detection error rate and site-1522 

specific duplex depth. 1523 

 1524 

 1525 

Concordance of duplex sequencing data explored through mixing mutant and wildtype reads:  1526 

The in-silico analyses described above suggest that a true variant clone may not be observed due 1527 

to insufficient duplex read support, and sensitivity increases with additional duplex depth. In this 1528 

case, an expected variant would likely be detectable in single-strand consensus reads 1529 

(Supplementary Figure S4), which require reduced read support to build a consensus read, and 1530 

harbour far higher coverage (Supplementary Figure 5), though at the expense of sensitivity.  1531 

 1532 

We performed a mixing analysis using our duplex data, with the aim to evaluate 1) the concordance 1533 

of calling serially lower VAF clones in different sample, and 2) the degree missing-but-expected 1534 

clones can be found in single-strand consensus data.  1535 

 1536 

We selected clones with a large detectable clone size, then generated serial dilutions of input 1537 

mutant file reads with wild-type file reads to simulate diminishing read support and the subsequent 1538 

detection of an expected variant in duplex reads. Mutant file reads were diluted by the following 1539 

percentages: 50%, 20%, 10%, 5%, 2%. Five replicates of each random subsample dilution were 1540 

used as technical replicates. Read dilution was done with raw, unmodified reads; that is, before 1541 

any mapping or consensus building steps. Mutant reads were mixed with wildtype reads to the 1542 

same overall read count as the original data, then analysed using the duplex consensus building 1543 

and variant calling pipeline described herein. In cases where the expected variant was not detected 1544 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

59 

in duplex consensus reads (either due to lack of read support, or failing to pass stringent filters), 1545 

we examined matched single strand consensus reads for the variant, and often were able to detect 1546 

the expected clone.  1547 

 1548 

As shown below in Supplementary Figure S12, we observe concordance among technical 1549 

replicates when the mutant clone is relatively less diluted from the original data, with reduced 1550 

variant detection in duplex reads as the mutant read support is diminished. The missing variants 1551 

can be rescued when examining single-strand consensus data. With increasing dilution, the variant 1552 

eventually lacks sufficient read support to build both duplex or single-strand consensus reads, and 1553 

is not detectable.  1554 

 1555 

 1556 
Supplementary Figure S12: Dilution of mutant reads and subsequent variant call concordance. For 1557 

five initially large clones, reads from the original input file (ie supporting the observed clone) were diluted at 1558 

the indicated proportion with wildtype reads. Five replicates for each dilution factor are grouped. The original 1559 

clone observed in these unmixed data are shown at the far left column. Clones are presented as described 1560 

in Fig.4A. Transparency indicates a clone that was not detected with standard duplex filtering, but was 1561 

detectable within single-strand consensus reads.  1562 

 1563 

 1564 
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Supplementary Note 4: Inferring population size and division rates from cell phylogenies 
 
Introduction 

The aim of this exercise is to understand the apparent identifiability of the model parameters, 

seen in Bayesian inferences about the dynamics of HSC populations in mice (and other systems 

with similar population dynamics), when the phylogeny of a sample of descendent cells is the only 

available data. These Bayesian inferences were performed using ABC (approximate Bayesian 

computation) methods. Here the term approximate Bayesian computation refers to a class of 

Monte Carlo methods for generating samples from posterior distribution, which avoid computation 

of the likelihood function, by relying on simulation of the model. The more descriptive term 

likelihood-free Bayesian computation is also used. These methods include rejection sampling 

(pioneered by Pritchard et al.99), and various regression methods (introduced by Beaumont et al. 

41). 

The ABC results reported here were obtained by using the rsimpop package34 to perform 

simulations of models of cell population dynamics, and then using the abc package100 to compute 

(approximate) marginal posterior densities for modal parameters. The rsimpop package allows us 

to specify a wide range of stochastic growth models based on an underlying birth-death process. 

In the case of neutral deterministic growth models, we have exact formulas for the likelihood 

function, where the model parameter is a sequence of effective population sizes (or a sequence 

of drift intensities). For these models, efficient Monte Carlo methods101 are available for sampling 

from the exact posterior distribution of the model parameters. In the case of stochastic growth 

models which can be approximated by a neutral deterministic growth model, we can obtain an 

approximate formulas for the likelihood function in which sequence of effective population sizes 

is replaced by a parameter vector which includes birth rates and death rates as model parameters. 

We will use approximate likelihood functions obtained in this way to address the issue of 

identifiability of parameters for various models. 

Likelihood functions for neutral models given phylogeny data 

When we have genome sequences from a sample of single cells taken from an individual donor, 

we can construct a phylogeny for the sample, with the mutations assigned to branches. From this 

phylogeny, we can obtain an ultrametric tree, in which the relative lengths of the branches can be 
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estimated (taking account of the number of mutations assigned to each branch). We also know 

the age 𝑡𝑆 of the donor at the time point at which the sample was taken. (Here age is measured 

from the moment of conception.) 

From the phylogeny on a sample of 𝑛 cells, together with the estimated absolute branch lengths, 

we can label the internal nodes (coalescent event) with integers 2, 3, …, 𝑛, where 𝑛 is the label 

on the most recent node (closest to the time of sample collection), and where 2 is the label on the 

earliest node on the phylogeny (the root node). We let 𝑆 be the sequence of node heights 

(𝑆(𝑛), 𝑆(𝑛 − 1), … , 𝑆(2)), where 𝑆(𝑟) is the height (time in days or years, measured backwards 

from sample collection) of internal node 𝑟. These node heights are determined by the branch 

lengths. The same information is contained in the sequence 𝑇 of inter-coalescent interval 

durations (𝑇(𝑛), 𝑇(𝑛 − 1), … , 𝑇(2)). The inter-coalescent interval duration 𝑇(𝑟) is the duration (in 

days or years) of the time interval during which exactly 𝑟 lines of descent remain. 

We begin by allowing the neutral model to take a very general form, which can be viewed as a 

generalisation of the neutral Moran model102. For now, we measure time 𝑡 forward from 

conception (𝑡 = 0) when the population of cells contains a single founder cell (𝑁0 = 1), which is 

the zygote. This time 𝑡 coincides with age (measured from conception). The sequence of distinct 

time points (ages) at which the population size changes, together with the age 𝑡𝐶 at the time of 

sample collection, is recorded as 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝐶), where 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐶 . So we have a 

sequence of 𝐶-1 population events which occur before sample collection. We assume that at each 

population event, these changes in population size occur instantaneously, so that we can define 

a population size 𝑁𝑘 which persists throughout the time interval [𝑡𝑘 , 𝑡𝑘+1⟩ from event 𝑘 to the 

moment immediately preceding the next event. 

At each of these events (𝑘 = 1, 2, …, 𝐶-1) at which the population size changes, we allow the 

number of births 𝑏𝑘 (cell division) to be either 0 or 1, and the number of deaths 𝑑𝑘 (cells which 

leave the stem cell population, either via cell deaths, or via cell differentiation events) to any 

integer value from 0 up to 𝑁𝑘−1 (the size of the population when it enters event 𝑘). 

Note that in a birth-death process it is more usual to assume that each event is either a birth event 

(where 𝑏𝑘 = 1, and 𝑑𝑘 = 0) or a death event (where 𝑏𝑘 = 0, and 𝑑𝑘 = 1). However, it turns out that 

while the analysis outlined below is greatly complicated if we allow 𝑏𝑘 to exceed 1, when we relax 
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the constraints on 𝑑𝑘 we encounter very little additional difficulty. We have the following recursion 

for the population size 

𝑁𝑘 = 𝑁𝑘−1 + 𝑏𝑘 − 𝑑𝑘, (1)  

for 𝑘 = 1, 2, …, 𝐶-1, subject to the constraints that either 𝑏𝑘 = 0 or 𝑏𝑘 = 1, and 0 ≤ 𝑑𝑘 ≤ 𝑁𝑘−1. 

There is one more sequence which it is useful for us to define here. This is the sequence of drift 

intensities, 𝜉 = (𝜉1, 𝜉2, … , 𝜉𝐶−1), where 

𝜉𝑘 = (
𝑁𝑘

2
)

−1
𝑏𝑘 =

2𝑏𝑘

𝑁𝑘(𝑁𝑘−1)
(2) 

for 𝑘 = 1, 2, …, 𝐶 − 1. Recall that if there was no birth (cell division) at event 𝑘, then 𝑏𝑘 = 0, and 

therefore 𝜉𝑘 = 0. Notice that here we are using the conventional notation (
𝑛

𝑘
), for binomial 

coefficients. In particular we have 

(
𝑛

2
) =

𝑛(𝑛−1)

2
(3) 

We can define the function 

𝑏(𝑡) = ∑

𝐶−1

𝑘=1

𝑏𝑘𝛿(𝑡, 𝑡𝑘), 

which represents the intensity of birth events. We can also define the function 

𝜉(𝑡) = ∑𝐶−1
𝑘=1 𝜉𝑘𝛿(𝑡, 𝑡𝑘), (4) 

which represents the intensity of random drift. 

We can express the drift intensity function as 

𝜉(𝑡) = (
𝑁(𝑡)

2
)

−1
𝑏(𝑡) =

2𝑏(𝑡)

𝑁(𝑡)(𝑁(𝑡)−1)
, (5) 

which is in agreement with the earlier definition (Equation 4). The trajectory of the intensity of 

random drift, as specified by the drift intensity function 𝜉(𝑡) (Equations 4 and 5), takes us a step 

closer to our goal of deriving an expression for the likelihood function for the sample phylogeny 
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data. However, in order to express the likelihood function in its most familiar and convenient form, 

we need to express the trajectory 𝜉(𝑡) (and the related trajectories 𝑁(𝑡), and so on) as functions 

of time 𝑠 measured backwards from the time point at which the sample was collected (𝑠 = 0). The 

relationship between the forward time 𝑡 (age from conception) and the backwards time 𝑠, is given 

by 

𝑠 = 𝑡𝐶 − 𝑡, 

and hence 𝑡 = 𝑡𝐶 − 𝑠. 

So we can represent the backwards time trajectory for population size as the function 

𝑁(𝑠) = 𝑁(𝑡𝐶 − 𝑠). 

Similarly, we can represent the backwards time trajectories for other quantities of interest as 

follows 

𝑏̃(𝑠) = 𝑏(𝑡𝐶 − 𝑠)  

and 

𝜉(𝑠) = 𝜉(𝑡𝐶 − 𝑠).  

Now that we have this definition of the (reverse time) population size function 𝑁(𝑠), we can 

express the (reverse time) drift intensity function as 

𝜉(𝑠) = (
𝑁̃(𝑠)

2
)

−1

𝑏̃(𝑠) =
2𝑏̃(𝑠)

𝑁̃(𝑠)(𝑁̃(𝑠)−1)
, (6) 

which is simply the reverse time version of Equation 5. 

Recall that we defined the sequence 𝑡 of distinct (forward) times (ages) at which the population 

size changes, together with the age 𝑡𝐶 at the time of sample collection, 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝐶), where 0 

< 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐶 . The same sequence of time points, representing population events, which 

we have labelled with forward times (ages) 𝑡𝑘, can also be labelled with reverse times 𝑠𝑘 = 𝑡𝐶 −

𝑡𝑘, for 𝑘 = 1, 2, …, 𝐶-1. We now define the sequence 𝑠 of distinct reverse times at which the 

population size changes, together with the time 𝑠0 (= 𝑡𝐶) at which conception occurred, 𝑠 = 
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(𝑠0, 𝑠1, 𝑠2, … , 𝑠𝐶−1), where 𝑠𝑘 = 𝑡𝐶 − 𝑡𝑘, for each event 𝑘. Therefore, we have 𝑠0 > 𝑠1 > 𝑠2 > ⋯ >

𝑠𝐶−1 > 0. The function 𝜉(𝑠) (and the function 𝜉(𝑡)) is completely determined by the sequence pair 

(𝑡, 𝜉), and also by the (equivalent) sequence pair (𝑠, 𝜉). 

When the phylogeny, with (estimated) absolute branch lengths, is the only available data, the 

likelihood function of the model parameter given the data, is (up to a constant factor) equal to the 

joint probability density 

𝑝𝑛(𝑇(𝑛), 𝑇(𝑛 − 1), … , 𝑇(2); 𝑠, 𝜉) = ∏𝑛
𝑟=2 𝑓𝑟(𝑇(𝑟)|𝑆(𝑟 + 1); 𝑠, 𝜉), (7) 

where 

𝑆(𝑟) = 𝑇(𝑛) + 𝑇(𝑛 − 1) + ⋯ + 𝑇(𝑟), 

and where each factor 

𝑓𝑟(𝑤|𝑠; 𝑠, 𝜉) = (
𝑟

2
) 𝜉(𝑠 + 𝑤) ⋅ 𝑅𝑟(𝑤|𝑠; 𝑠, 𝜉), (8) 

is the (marginal) probability density of the waiting time to the next coalescent event, starting from 

time point 𝑠, when 𝑟 lines of descent remain (each of which can be traced back from the sample). 

The function 𝜉(𝑠) is the drift intensity at time 𝑠 (measured backwards from the time of sample 

collection). The function 

 𝑅𝑟(𝑤|𝑠; 𝑠, 𝜉) = 𝑒𝑥𝑝 [− (
𝑟

2
) ∫

𝑢=𝑠+𝑤

𝑢=𝑠
𝜉(𝑢)𝑑𝑢], (9) 

gives the probability that the waiting time to the next coalescent event (starting from time point 𝑠, 

when 𝑟 lines of descent remain) is exceeds 𝑤. We could describe 𝑅𝑟(𝑤|𝑠; 𝑠, 𝜉) as the reliability 

function (or survival function), and interpret 𝑇(𝑟) as a kind of failure time (at which one line of 

descent fails to persist). 

Strictly speaking, Equations 8 and 9 represent an approximation which is valid whenever the 

entire sample phylogeny lies within a time interval throughout which the intensity of random drift 

𝜉(𝑠) remains small (the effective population size remains large). See refs. 103,104 for derivation of 

the properties of the (reverse-time) genealogical process. 
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We want to draw attention to a feature of the likelihood function represented by Equations 7, 8, 

and 9. From the likelihood function (Equations 7 and 8) it is evident that, while segments (spanning 

certain time intervals) of the trajectory for the drift intensity (represented variously as a sequence 

pair 𝑠, 𝜉, or as a function of time), may constitute an identifiable parameter (when we have a 

phylogeny on a large enough sample), the trajectory for the population size, and the trajectory for 

the intensity of birth events, in the absence of additional constraints, are non-identifiable 

parameters. This is because the population sizes and the counts of birth events do not appear 

separately in the likelihood function, but only in the particular combination represented by the 

trajectory for the drift intensity. 

In Section 3 below, parameter identifiability is defined more carefully, with some pointers to the 

literature. We also discuss in more detail the implications of non-identifiability for parameter 

estimation in our current model. In particular we will discuss how additional constraints on the 

population trajectory can restore identifiability of the population size, and the intensity of birth 

events. 

Parameter estimation and identifiability 

We usually make some further assumptions about the possible trajectories which the population 

is allowed to follow through time. In the case of a deterministic growth model, we assume that the 

sequence pair (𝑠, 𝜉) of event times and drift intensities belongs to a family of trajectories, in which 

the individual trajectory is completely determined by a parameter vector 𝜙. (Typically this 

parameter vector is of low dimension.) We say that the family of trajectories is parametrised by 

𝜙. Here we have in mind models of deterministic exponential growth, where the model parameters 

include rates of cell division and rates of cell death. 

In the case of a stochastic growth model, we assume that the sequence pair (𝑠, 𝜉) is drawn from 

a distribution which belongs to some family of distributions. Within this family of distributions, the 

specific distribution is completely determined by a parameter vector 𝜙. We say that the family of 

distributions is parametised by 𝜙. Here we have in mind models based on a birth death process, 

where the model parameters again include rates of cell division and rates of cell death. 

In order to emphasise the dependence on the parameter vector 𝜙, it is convenient to use the 

notation 
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𝐿(𝜙|𝑇)  = 𝑝𝑛(𝑇(𝑛), 𝑇(𝑛 − 1), … , 𝑇(2); 𝜙)  

         = ∏𝑛
𝑟=2 𝑓𝑟(𝑇(𝑟)|𝑆(𝑟 + 1); 𝜙), (10) 

for the likelihood function specified by Equations 7 and 8. 

We say that a parameter vector 𝜙 is non-identifiable whenever there is a mapping 𝜗 (to a vector 

of lower dimension) for which the likelihood function 𝐿(𝜙|𝑇) depends on the parameter vector 𝜙 

only through 𝜃 = 𝜗(𝜙). In other words 𝜗(𝜙1) = 𝜗(𝜙2) implies that 𝐿(𝜙1|𝑇) = 𝐿(𝜙2|𝑇). If there is no 

such mapping 𝜗, then we say that the parameter vector 𝜙 is identifiable. When the parameter 

vector 𝜙 is identifiable, we may also refer to the components of this vector as identifiable 

parameters. See ref. 105 (non-identifiability is introduced in Section 3.15, on page 70, and 

discussed further on pages 72 and 74). 

If such a mapping 𝜗 (to a vector of lower dimension) exists (so that 𝜙 is non-identifiable), then this 

means (loosely speaking) that from the fixed data 𝑇, we can not learn anything about the 

unobserved parameter vector 𝜙, beyond what we can learn about the (lower dimensional) 

parameter vector 𝜃. We can state this more precisely. First, we can always (leaving aside 

technical issues and pathological cases) express the prior density 𝜋(𝜙) for the parameter vector 

𝜙, in the form 

 𝜋(𝜙) = 𝜋(𝜙|𝜃)𝜋(𝜃).  (11) 

If 𝜙 is non-identifiable, and 𝜃 = 𝜗(𝜙) is identifiable, then the posterior density 𝜋(𝜙|𝑇) of the 

parameter vector 𝜙 is of the form 

 𝜋(𝜙|𝑇) = 𝜋(𝜙|𝜃)𝜋(𝜃|𝑇).  (12) 

As a consequence, we also have 

 𝜋(𝜙|𝑇, 𝜃) = 𝜋(𝜙|𝜃).  (13) 

This means that if we knew the (lower dimensional) parameter vector 𝜃, then the observed data 

𝑇 would tell us nothing more about the (higher dimensional) parameter vector 𝜙. 
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First we consider a family of models where the population trajectory includes prolonged epochs 

during which birth events and death events occur equally often, so that the population size 

remains stable. Then we consider neutral models where the trajectory includes epochs of 

(deterministic) exponential population growth (Section 5). Finally, we consider birth-death 

processes, without an upper boundary (Section 6), and with an upper boundary (Section 7) on 

the population size, and how these stochastic growth models can be approximated by 

deterministic growth models. 

Epochs of stable effective population size 

First we consider a family of models where the population trajectory includes prolonged epochs 

during which the population size remains stable. Suppose that across the time interval [𝑎, 𝑏], the 

population size remains constant at 𝑁𝐴. In order to maintain a constant population size, the birth 

rate 𝛽𝐴 must be balanced by an equal death rate. 

The observed inter-coalescent interval durations 𝑇(𝑟), which fall within the time interval [𝑎, 𝑏], 

contribute factors to the likelihood function which are of the form 

 𝑓𝑟(𝑇(𝑟)|𝑆(𝑟 + 1); 𝜙) = (
𝑟

2
)

2𝛽𝐴

𝑁𝐴
⋅ 𝑒𝑥𝑝 [− (

𝑟

2
)

2𝛽𝐴

𝑁𝐴
𝑇(𝑟)],  (14) 

where 𝜙 = (𝑁𝐴 , 𝛽𝐴) is the parameter vector of the model. 

From the expression on the right hand side of Equation 14, it appears that the only identifiable 

parameter is the ratio 𝛽𝐴/𝑁𝐴. 

Epochs of exponential population growth 

Now we turn to neutral models where the trajectory includes epochs of exponential population 

growth. Suppose that the (forward time) estimated trajectory 𝜉(𝑡) of the drift intensity appears to 

fit an exponential growth path across the time interval [𝑡𝐴 , 𝑡𝐶 ], where 𝑡𝐶 is the time (age) at which 

the sample of 𝑛 genome-sequenced cells was collected. The estimated trajectory 𝜉(𝑡) at time 𝑡 

can be interpreted as a kind of average drift intensity over some interval centred on the time point 

𝑡. The (forward time) estimated trajectory is 

 𝜉(𝑡) = 𝑘̂ ⋅ 𝑒𝑥𝑝[𝜌̂(𝑡 − 𝑡𝐴)], (15) 
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which is based on point estimates 𝜌̂ (for the growth rate) and 𝑘̂ (for the initial drift intensity). Notice 

that when 𝜌̂ is positive, the drift intensity declines exponentially, with increasing age 𝑡. 

If we measure time backwards from sample collection, then the (reverse time) estimated trajectory 

𝜉(𝑠) of the drift intensity appears to fit an exponential growth path across the time interval [0, 𝑠𝐴]. 

The (reverse time) estimated trajectory is 

 𝜉(𝑠) = 𝑘̂ ⋅ 𝑒𝑥𝑝[𝜌̂(𝑠𝐴 − 𝑠)], (16) 

where 𝑠𝐴 = 𝑡𝐶 − 𝑡𝐴  is the time measured backwards from sample collection to the time point at 

which the epoch of exponential growth began. Notice that when 𝜌̂ is positive, the drift intensity 

increases exponentially, with increasing time 𝑠. 

There is this one very simple model of population growth, in which births occur at a constant rate 

𝜆, and deaths occur at a constant rate 𝜈, which results in an exponential trajectory. This is an 

exceptionally parsimonious explanation for the observed exponential trajectory. If we can accept 

this parsimonious explanation, then we can set aside the general problem of making inferences 

about an arbitrary trajectory 𝜉(𝑡) for the intensity of random drift (the reciprocal of the effective 

population size), and restrict our attention to the very specific problem of making inferences about 

the parameters of the deterministic exponential growth model, or the parameters of the birth death 

process. 

Having observed an (approximately) exponential trajectory for the drift intensity (and its reciprocal, 

the effective population size), from age 𝑡𝐴, up to the point of sample collection (at age 𝑡𝐶), we 

have arrived at a parsimonious explanation which we now examine in more detail. The population 

size has been growing at a constant growth rate 𝜌, while the birth rate has remained constant at 

a value 𝜆, and the death rate has remained constant at a value 𝜈, which yields the constant growth 

rate 𝜌 = 𝜆 − 𝜈. Now we can express the trajectory for the population size 𝑁(𝑡), forward in time 

across the epoch of exponential growth (from age 𝑡𝐴 to age 𝑡𝐶) as 

 𝑁(𝑡) = 𝑁𝐴𝑒𝑥𝑝[𝜌(𝑡 − 𝑡𝐴)], (17) 

while the forward time trajectory for the drift intensity is 
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 𝜉(𝑡) =
2𝜆

𝑁𝐴
⋅ 𝑒𝑥𝑝[−𝜌(𝑡 − 𝑡𝐴)], (18) 

where 𝑁𝐴 is the size of the ancestral population at age 𝑡𝐴 (when the epoch of exponential growth 

begins). 

We now return to time measured backwards from sample collection. The reverse time trajectory 

for the population size is 

 𝑁(𝑠) = 𝑁𝐴𝑒𝑥𝑝[𝜌(𝑠𝐴 − 𝑠)], (19) 

where 𝑠𝐴 = 𝑡𝐶 − 𝑡𝐴  is the time measured backwards from sample collection to the time point at 

which the epoch of exponential growth began. The reverse time trajectory for the drift intensity is 

 𝜉(𝑠) =
2𝜆

𝑁𝐴
⋅ 𝑒𝑥𝑝[−𝜌(𝑠𝐴 − 𝑠)]. (20) 

The (marginal) probability density 𝑓𝑟(𝑤|𝑠; 𝜙) of the waiting time to the next coalescent event 

(starting from time point 𝑠, when 𝑟 lines of descent remain), is in this case 

  𝑓𝑟(𝑤|𝑠; 𝜙)  =  (
𝑟

2
)

2𝜆

𝑁𝐴
⋅ 𝑒𝑥𝑝[𝜌(𝑤 + 𝑠 − 𝑠𝐴)] ⋅ 𝑅𝑟(𝑤|𝑠; 𝜙),  (21) 

where 𝜙 = (𝜆, 𝜈, 𝑁𝐴) is the parameter vector of this model, and where 

  𝑅𝑟(𝑤|𝑠; 𝜙)  =  𝑒𝑥𝑝 [− (
𝑟

2
)

2𝜆

𝑁𝐴
⋅

1

𝜌
𝑒𝑥𝑝[𝜌(𝑠 − 𝑠𝐴)](𝑒𝜌𝑤 − 1)],  (22) 

is the reliability function. 

The observed inter-coalescent interval durations 𝑇(𝑟), which fall within the time interval [0, 𝑠𝐴] (the 

epoch of exponential growth), contribute factors to the likelihood function which are of the form 

  𝑓𝑟(𝑇(𝑟)|𝑆(𝑟 + 1); 𝜙)  

 =  (
𝑟

2
)

2𝜆

𝑁𝐴
⋅ 𝑒−𝜌(𝑈(𝑟)−𝑇(𝑟)) ⋅ 𝑒𝑥𝑝 [− (

𝑟

2
)

2𝜆

𝑁𝐴
⋅

1

𝜌
𝑒−𝜌𝑈(𝑟)(𝑒𝜌𝑇(𝑟) − 1)],  (23) 

where 𝑈(𝑟) = 𝑠𝐴 − 𝑆(𝑟 + 1). 
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The parameter vector of this model is 𝜙 = (𝜆, 𝜈, 𝑁𝐴), where 𝜆 is the birth rate, 𝜈 is the death rate, 

and 𝑁𝐴 is the size of the ancestral population at the start of the epoch of exponential growth. (This 

occurs at age 𝑡𝐴, which precedes sample collection by time interval of duration 𝑠0 = 𝑡𝐶 − 𝑡𝐴.) From 

the formula for this factor of the likelihood function, it appears that the parameter vector 𝜙 is non-

identifiable, while the parameter vector 𝜃 = (𝑁𝐴/𝜆, 𝜌) is identifiable. The components of the 

parameter vector 𝜃 are the ratio 𝑁𝐴/𝜆, and the difference 𝜌 = 𝜆 − 𝜈 (the population growth rate). 

In the special case where the epoch of exponential growth (at constant growth rate 𝜌) extends all 

the way back to the founding individual (zygote cell), we know 𝑁𝐴 = 1, and we know that (reverse) 

time 𝑠𝐴 = 𝑠𝐶 (age 𝑡𝐴 = 0) corresponds to the moment of conception. In this special case, the 

unobserved parameters 𝜆 and 𝜈, are identifiable. More generally, if the population size at the 

beginning of the epoch of exponential growth 𝑁𝐴 is known with certainty, then the parameter 

vector 𝜃 = (𝜆, 𝜈) is identifiable. 

In the case of a sample of single cell genome sequences obtained from blood-derived colonies, 

from a mouse (or any species with similar HSC dynamics), the parameter 𝑁𝐴 is the size of the 

ancestral population of HSCs at age 𝑡𝐴 (when the epoch of exponential growth begins); or if the 

time 𝑡𝐴 is even earlier, then 𝑁𝐴 is the size of the population of embryonic cells existing at this time 

which are ancestral to the HSCs. Unfortunately we do not have direct observations of the 

ancestral HSC population size 𝑁𝐴 (at the age 𝑡𝐴 when the epoch of exponential growth begins). 

However, we can place some bounds on the value of 𝑁𝐴. First of all there is an upper bound 𝑀𝐴, 

on 𝑁𝐴, which can be obtained from embryological observations. We know the approximate 

number of cells in the embryo at age 𝑡𝐴. If some differentiation has already occurred, we may be 

able to exclude some cell types as HSC ancestors, and thus perhaps obtain an upper bound 𝑀𝐴 

which is somewhat lower than the average total number of cells in a mouse embryo at age 𝑡𝐴. 

Secondly, we have a lower bound on 𝑁𝐴, which we can obtain directly from the phylogeny. This 

the number of lines of descent 𝑛𝐴 present on the tree at time 𝑡𝐴. 

The linear birth-death process 

A linear birth-death process is a simple stochastic growth model in which birth events and death 

events occur at constant rates (birth rate 𝜆 and death rate 𝜈) per individual (cell) per unit of time 

(day or year). Therefore the total rate of birth (respectively death) events in the population at each 
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time point is proportional to the total number of individuals in the population at that time point 

(hence a linear birth-death process. The total size 𝑁(𝑡) of the population at each time point is 

determined by the (stochastic) sequence of events (births and deaths) up to that time point. For 

the properties of the linear birth-death process, see ref. 83, and ref 106, pages 174–177. 

Whenever the population size is not too small, and the growth rate is not too close to zero, the 

linear birth-death process behaves much like deterministic exponential growth. The trajectory for 

the population size 𝑁(𝑡) is well approximated by Equation 17, with growth rate 𝜌 = 𝜆 − 𝜈, provided 

that the birth rate 𝜆 exceeds the death rate 𝜈, so that 𝜌 is positive. 

In the case of an epoch of stochastic growth (under a linear birth-death process) it is important to 

bear in mind that the formula for the factors of the likelihood function in Equation 21, is an 

approximation, which can break-down. A conclusive argument about the identifiability of the 

model parameters should be based on an exact formula for the likelihood function for the linear 

birth-death process, when the phylogeny is the only available data. 

The birth-death process with an upper boundary on population size 

If a mouse lives long enough, we would expect that the propensity of the mouse HSC population 

to grow exponentially will eventually be checked by the physical constraints on the space available 

to accommodate the HSC cells within the bone marrow. 

In the case of a model where the population undergoes deterministic exponential growth until an 

upper boundary 𝑁𝐵 on population size is reached, the phylogeny may contain additional 

information about the time 𝑇𝐵 at which the population first hits the upper boundary 𝑁𝐵. Such 

information can be present only if the sample of cells has been collected from the population at a 

time point after the time 𝑇𝐵. In this case, the hitting time parameter 𝑇𝐵 occurs in the likelihood 

function. 

In the case of a model where the population undergoes deterministic exponential growth until an 

upper boundary 𝑁𝐵 population size is reached. The hitting time 𝑇𝐵 is determined by model 

parameters (𝑁𝐴/𝑁𝐵 and 𝜌 = 𝜆 − 𝜈). Using Equation 17, we can obtain 

 
𝑁𝐵

𝑁𝐴
= 𝑒𝑥𝑝[𝜌(𝑇𝐵 − 𝑡𝐴)], (24) 
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and therefore 

 𝑇𝐵 = 𝑡𝐴 +
1

𝜌
𝑙𝑛 (

𝑁𝐵

𝑁𝐴
). (25) 

When the population reaches the upper boundary on population size, the marginal birth rate and 

the marginal death rate must be equal (𝛿𝐵 = 𝛽𝐵). The parameter vector of the model is now 𝜙 = 

(𝜆, 𝜈, 𝑁𝐴 , 𝑁𝐵 , 𝛽𝐵). 

As usual we inspect the formula for the likelihood function in order to discover which parameters 

may be identifiable, and which are clearly non-identifiable. The factors of the likelihood function 

representing the epoch of exponential growth are of the form given in Equation 21, in which the 

parameter combinations 𝜆/𝑁𝐴 and 𝜌 appear. The factors of the likelihood function representing 

the epoch of stable population size are of the form given in Equation 14, in which the parameter 

combination 𝛽𝐵/𝑁𝐵 appears. We have also seen from Equation 24 that the ratio 𝑁𝐵/𝑁𝐴 is 

determined by the parameter 𝜌 and the the hitting time 𝑇𝐵. The hitting time 𝑇𝐵 is a change point, 

which also appears in the likelihood function. Therefore, from the formulas for the factors of the 

likelihood function, it appears that the parameter vector 𝜃 = (𝜌, 𝜆/𝑁𝐴, 𝛽𝐵/𝑁𝐵 , 𝑁𝐵/𝑁𝐴) is identifiable. 

Notice also that by combining the last three components of 𝜃, we obtain 

𝑁𝐵

𝑁𝐴
⋅

𝜉𝐵

𝜉𝐴
=

𝑁𝐵

𝑁𝐴
⋅

𝛽𝐵

𝑁𝐵
⋅

𝑁𝐴

𝜆
=

𝛽𝐵

𝜆
. 

So the ratio 𝛽𝐵/𝜆 is also identifiable. 

In the special case where 𝑁𝐴 is known for certain, the parameter vector 𝜃 = (𝜆, 𝜈, 𝑁𝐵 , 𝛽𝐵) is 

identifiable. As already discussed in Section 5, when the epoch of exponential growth (at constant 

growth rate 𝜌) extends all the way back to the founding individual (zygote cell), we know 𝑁𝐴 = 1. 

So, in this case, the parameters 𝜆, 𝜈, 𝑁𝐵, and 𝛽𝐵, are all identifiable, and amenable to estimation 

from the phylogeny of a sample. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

73 

REFERENCES 

1. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat Med 27, 

45–48 (2021). 

2. Patel, S. H. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. 

Nature 606, 747–753 (2022). 

3. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014). 

4. Kucinski, I. et al. A time- and single-cell-resolved model of murine bone marrow 

hematopoiesis. Cell Stem Cell 31, 244-259.e10 (2024). 

5. Takizawa, H., Regoes, R. R., Boddupalli, C. S., Bonhoeffer, S. & Manz, M. G. Dynamic variation 

in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208, 273–

284 (2011). 

6. Munz, C. M. et al. Regeneration after blood loss and acute inflammation proceeds without 

contribution of primitive HSCs. Blood 141, 2483–2492 (2023). 

7. Fanti, A.-K. et al. Flt3- and Tie2-Cre tracing identifies regeneration in sepsis from multipotent 

progenitors but not hematopoietic stem cells. Cell Stem Cell 30, 207-218.e7 (2023). 

8. Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nature 

Reviews Immunology 10, 201–209 (2010). 

9. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 

343–350 (2022). 

10. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic 

mutations. Nature 561, 473–478 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

74 

11. Osorio, F. G. et al. Somatic Mutations Reveal Lineage Relationships and Age-Related 

Mutagenesis in Human Hematopoiesis. Cell Reports 25, 2308-2316.e4 (2018). 

12. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 

593, 405–410 (2021). 

13. Spencer Chapman, M. et al. Lineage tracing of human development through somatic 

mutations. Nature 595, 85–90 (2021). 

14. Jaiswal, S. Clonal hematopoiesis and nonhematologic disorders. Blood 136, 1606–1614 

(2020). 

15. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and 

malignancies. Nature Medicine 20, 1472–1478 (2014). 

16. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, 

(2019). 

17. Kapadia, C. D. & Goodell, M. A. Tissue mosaicism following stem cell aging: blood as an 

exemplar. Nat Aging 4, 295–308 (2024). 

18. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. 

Nature 580, 640–646 (2020). 

19. Martincorena, I. et al. High burden and pervasive positive selection of somatic 

mutations in normal human skin. Science 348, 880–886 (2015). 

20. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the 

human bladder. Science 370, 75–82 (2020). 

21. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

75 

Science 362, 911–917 (2018). 

22. Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver 

disease. Nature 598, 473–478 (2021). 

23. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 

517–524 (2022). 

24. Yuan, R. et al. Genetic coregulation of age of female sexual maturation and lifespan 

through circulating IGF1 among inbred mouse strains. Proc Natl Acad Sci U S A 109, 8224–

8229 (2012). 

25. Chin, D. W. L. et al. Aged healthy mice acquire clonal hematopoiesis mutations. Blood 

139, 629–634 (2022). 

26. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-Term Lymphohematopoietic 

Reconstitution by a Single CD34-Low/Negative Hematopoietic Stem Cell. Science 273, 242–

245 (1996). 

27. Adolfsson, J. et al. Upregulation of Flt3 Expression within the Bone Marrow Lin−Sca1+c-

kit+ Stem Cell Compartment Is Accompanied by Loss of Self-Renewal Capacity. Immunity 15, 

659–669 (2001). 

28. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor 

cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005). 

29. Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct Hematopoietic 

Stem Cell Subtypes Are Differentially Regulated by TGFβ1. Cell Stem Cell 6, 265–278 (2010). 

30. Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

76 

immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. 

Cell Stem Cell 15, 507–522 (2014). 

31. Pietras, E. M. et al. Functionally Distinct Subsets of Lineage-Biased Multipotent 

Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell 

17, 35–46 (2015). 

32. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014). 

33. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells 

in vivo. Nature 518, 542–546 (2015). 

34. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from 

phylogenies. Nature 602, 162–168 (2022). 

35. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 

724–732 (2022). 

36. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. 

Nature 592, 80–85 (2021). 

37. Bryder, D., Rossi, D. J. & Weissman, I. L. Hematopoietic stem cells: the paradigmatic 

tissue-specific stem cell. Am J Pathol 169, 338–346 (2006). 

38. Qin, P. et al. Integrated decoding hematopoiesis and leukemogenesis using single-cell 

sequencing and its medical implication. Cell Discov 7, 2 (2021). 

39. de Haan, G. & Van Zant, G. Dynamic Changes in Mouse Hematopoietic Stem Cell 

Numbers During Aging. Blood 93, 3294–3301 (1999). 

40. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

77 

hematopoietic stem cells. Nat Med 2, 1011–1016 (1996). 

41. Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in 

population genetics. Genetics 162, 2025–2035 (2002). 

42. Koonin, E. V. Splendor and misery of adaptation, or the importance of neutral null for 

understanding evolution. BMC Biology 14, 114 (2016). 

43. Challen, G. A. & Goodell, M. A. Clonal hematopoiesis: mechanisms driving dominance of 

stem cell clones. Blood 136, 1590–1598 (2020). 

44. Yoshizato, T. et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. 

New England Journal of Medicine 373, 35–47 (2015). 

45. King, K. Y., Huang, Y., Nakada, D. & Goodell, M. A. Environmental influences on clonal 

hematopoiesis. Experimental Hematology 83, 66–73 (2020). 

46. Florez, M. A. et al. Clonal hematopoiesis: Mutation-specific adaptation to environmental 

change. Cell Stem Cell 29, 882–904 (2022). 

47. Coombs, C. C. et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-

hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem 

Cell 21, 374-382.e4 (2017). 

48. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. 

Nat Genet 52, 1219–1226 (2020). 

49. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related 

acute myeloid leukaemia. Nature 518, 552–555 (2015). 

50. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

78 

in laboratory mice. Nature 532, 512–516 (2016). 

51. Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science 

373, (2021). 

52. Matatall, K. A. et al. Chronic Infection Depletes Hematopoietic Stem Cells through 

Stress-Induced Terminal Differentiation. Cell Rep 17, 2584–2595 (2016). 

53. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal 

hematopoiesis. Science 367, 1449–1454 (2020). 

54. Kimura, M. & Ohta, T. The Average Number of Generations until Fixation of a Mutant 

Gene in a Finite Population. Genetics 61, 763–771 (1969). 

55. Challen, G. A., Pietras, E. M., Wallscheid, N. C. & Signer, R. A. J. Simplified murine 

multipotent progenitor isolation scheme: Establishing a consensus approach for multipotent 

progenitor identification. Experimental Hematology 104, 55–63 (2021). 

56. Sheikh, B. N. et al. MOZ (KAT6A) is essential for the maintenance of classically defined 

adult hematopoietic stem cells. Blood 128, 2307–2318 (2016). 

57. Kobayashi, M. et al. HSC-independent definitive hematopoiesis persists into adult life. 

Cell Reports 42, 112239 (2023). 

58. Abkowitz, J. L., Catlin, S. N., McCallie, M. T. & Guttorp, P. Evidence that the number of 

hematopoietic stem cells per animal is conserved in mammals. Blood 100, 2665–2667 (2002). 

59. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation 

programs in vivo. Cell Stem Cell 1, 218–229 (2007). 

60. Gros, P. & Casanova, J.-L. Reconciling Mouse and Human Immunology at the Altar of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

79 

Genetics. Annu Rev Immunol 41, 39–71 (2023). 

61. Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T. & Hurles, M. E. Similarities and 

differences in patterns of germline mutation between mice and humans. Nat Commun 10, 

4053 (2019). 

62. Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 

615, 285–291 (2023). 

63. Gould, S. J., Lewontin, R. C., Maynard Smith, J. & Holliday, R. The spandrels of San Marco 

and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the 

Royal Society of London. Series B. Biological Sciences 205, 581–598 (1997). 

64. Brayton, C. F., Treuting, P. M. & Ward, J. M. Pathobiology of aging mice and GEM: 

background strains and experimental design. Vet Pathol 49, 85–105 (2012). 

65. Shepherd, B. E. et al. Hematopoietic stem-cell behavior in nonhuman primates. Blood 

110, 1806–1813 (2007). 

66. Koelle, S. J. et al. Quantitative stability of hematopoietic stem and progenitor cell clonal 

output in rhesus macaques receiving transplants. Blood 129, 1448–1457 (2017). 

67. Shin, T.-H. et al. A macaque clonal hematopoiesis model demonstrates expansion of 

TET2-disrupted clones and utility for testing interventions. Blood 140, 1774–1789 (2022). 

68. Yu, K.-R. et al. The impact of aging on primate hematopoiesis as interrogated by clonal 

tracking. Blood 131, 1195–1205 (2018). 

69. Hsu, J. I. et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic 

Chemotherapy. Cell Stem Cell 23, 700-713.e6 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

80 

70. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal 

hematopoiesis. Cell 184, 1348-1361.e22 (2021). 

71. Meisel, M. et al. Microbial signals drive pre–leukaemic myeloproliferation in a Tet2–

deficient host. Nature 557, 580–584 (2018). 

72. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal 

hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428-1442.e6 (2021). 

73. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell 

cycle kinetics of long-term self-renewing hematopoietic stem cells. Proceedings of the 

National Academy of Sciences 96, 3120–3125 (1999). 

74. Wilson, A. et al. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-

Renewal during Homeostasis and Repair. Cell 135, 1118–1129 (2008). 

75. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic Stem 

Cells Count and Remember Self-Renewal Divisions. Cell 167, 1296-1309.e10 (2016). 

76. Chen, J., Astle, C. M. & Harrison, D. E. Genetic regulation of primitive hematopoietic 

stem cell senescence. Exp Hematol 28, 442–450 (2000). 

77. Ahmad, A. et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. 

Mol Cell Biol 28, 5082–5092 (2008). 

78. Nadon, N. L., Strong, R., Miller, R. A. & Harrison, D. E. NIA Interventions Testing 

Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous 

Mouse Model. EBioMedicine 21, 3–4 (2017). 

79. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

81 

reversible phase-specific engraftment defect. J Clin Invest 116, 2808–2816 (2006). 

80. Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture 

microdissection and low-input DNA sequencing. Nat Protoc 16, 841–871 (2021). 

81. Jones, D. et al. cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect 

Somatic Single Nucleotide Variants in NGS Data. Curr Protoc Bioinformatics 56, 15.10.1-

15.10.18 (2016). 

82. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach 

to detect break points of large deletions and medium sized insertions from paired-end short 

reads. Bioinformatics 25, 2865–2871 (2009). 

83. Kendall, D. G. Stochastic Processes and Population Growth. Journal of the Royal 

Statistical Society. Series B (Methodological) 11, 230–282 (1949). 

84. Challen, G. A., Boles, N., Lin, K. K.-Y. & Goodell, M. A. Mouse hematopoietic stem cell 

identification and analysis. Cytometry. Part A : the journal of the International Society for 

Analytical Cytology 75, 14–24 (2009). 

85. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. 

Nature 574, 532–537 (2019). 

86. Durand, J.-B., Goncalves, P. & Guedon, Y. Computational methods for hidden Markov 

tree models-an application to wavelet trees. IEEE Transactions on Signal Processing 52, 

2551–2560 (2004). 

87. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by Duplex Sequencing. 

Nature protocols 9, 2586–606 (2014). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

82 

88. Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing 

in cancer research. Nucleic Acids Res 44, e108 (2016). 

89. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 122 

(2016). 

90. Costello, M. et al. Discovery and characterization of artifactual mutations in deep 

coverage targeted capture sequencing data due to oxidative DNA damage during sample 

preparation. Nucleic Acids Res 41, e67 (2013). 

91. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 

578, 94–101 (2020). 

92. Feng, C. G., Weksberg, D. C., Taylor, G. A., Sher, A. & Goodell, M. A. The p47 GTPase Lrg-

47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2, 83–

89 (2008). 

93. Lerner, C. & Harrison, D. E. 5-Fluorouracil spares hemopoietic stem cells responsible for 

long-term repopulation. Exp Hematol 18, 114–118 (1990). 

94. Dong, S. et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell 

function. Nature 591, 117–123 (2021). 

95. Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 

171, 1029-1041.e21 (2017). 

96. Campbell, P. et al. Clonal dynamics after allogeneic haematopoietic cell transplantation 

using genome-wide somatic mutations. Preprint at https://doi.org/10.21203/rs.3.rs-

2868644/v1 (2023). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

83 

97. Poon, G. Y. P., Watson, C. J., Fisher, D. S. & Blundell, J. R. Synonymous mutations reveal 

genome-wide levels of positive selection in healthy tissues. Nat Genet 53, 1597–1605 (2021). 

98. Flurkey, K., M. Currer, J. & Harrison, D. E. Mouse Models in Aging Research. in The 

Mouse in Biomedical Research (Second Edition) (eds. Fox, J. G. et al.) 637–672 (Academic 

Press, Burlington, 2007). doi:10.1016/B978-012369454-6/50074-1. 

99. Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A. & Feldman, M. W. Population growth 

of human Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and 

Evolution 16, 1791–1798 (1999). 

100. Csilléry, K., François, O. & Blum, M. G. abc: an R package for approximate Bayesian 

computation (ABC). Methods in ecology and evolution 3, 475–479 (2012). 

101. Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient Bayesian 

inference framework for coalescent-based nonparametric phylodynamics. Bioinformatics 31, 

3282–3289 (2015). 

102. Moran, P. A. P. Random processes in genetics. Proceedings of the Cambridge 

Philosophical Society 54, 60–71 (1958). 

103. Kingman, J. F. C. On the Genealogy of Large Populations. J. Appl. Probab. 19A, 27–43 

(1982). 

104. Griffiths, R. C. & Tavaré, S. Sampling theory for neutral alleles in a varying environment. 

Philosophical Transactions of the Royal Society, London, Series B 344, 403–410 (1994). 

105. O’Hagan, A. & Forster, J. Bayesian Inference. vol. 2B (Arnold, London, UK, 2004). 

106. Moran, P. A. P. An Introduction to Probability Theory. (Oxford University Press, Oxford, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

84 

UK, 1968). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.613129doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613129
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Biorvix RevisedManuscript_SomaticMouse.pdf
	Abstract
	Introduction
	RESULTS
	Whole genome sequencing of hematopoietic stem and progenitor cells
	Somatic mutation accumulation in murine haematopoietic stem cells
	Haematopoietic population dynamics over life
	Stem cell contribution to progenitors and mature blood cells
	Positive selection during homeostatic and perturbed murine haematopoiesis
	Figure Legends
	Figure 1. Somatic mutations in murine stem cell-derived haematopoietic colonies


	A) Study approach. Single-cell derived colony whole genome sequencing (WGS) of long-term haematopoietic stem cells (HSC) and multipotent progenitors (MPP) to study somatic mutations, lineage relationships and population dynamics, top; targeted duplex-...
	Figure 2. Phylogenetic trees of HSCs and MPPs from a young and old mouse
	Figure 3. Population dynamics and selection in the murine stem cells
	Figure 4. Clonal haematopoiesis during normal ageing in mouse
	Figure 5. Haematopoietic perturbation modulates selection landscapes
	Figure 6. The fitness landscape of known drivers of clonal haematopoiesis
	Extended Data Figure 1. Cell isolation strategy and quality control
	Extended Data Figure 2. Additional phylogenetic trees from young and aged mice
	Extended Data Figure 4. Mutational processes in murine stem cells


	Revision_Figures_SomaticMouse.pdf
	Biorvix RevisedManuscript_SomaticMouse
	Acknowledgements
	Author contributions
	METHODS
	Cohort
	Hematopoietic progenitor purification
	Single-cell haematopoietic colony expansion in vitro
	Laser capture microdissection
	Somatic mutation identification and quality control in haematopoietic colonies
	Mutation burden estimation
	Phylogeny construction and quality control
	Population size trajectories
	Approximate Bayesian computation
	Early life polytomy analysis
	Shared variants between blood and colonic crypts
	Mutational signature analysis
	Branch signatures assignment and analyses
	Upward algorithm for determining likelihood of the observed states given 𝑴 and a prior probability of root state 𝞹: The probability of the observed data descendant from a node 𝒖 whose end of branch state is 𝒊 is given by:
	Initialisation of terminal branches: The probability of observing a matching phenotype is assumed to be:

	Determining the most likely sequence of hidden end-of-branch states: This Viterbi-like algorithm can be run in conjunction with the upward algorithm. Here, instead of summing over all possible states, we keep track of the most likely descendant states...
	Targeted duplex-consensus sequencing
	Variant identification in targeted gene duplex-consensus sequencing
	Murine perturbation experiments
	dN/dS analysis
	Targeted capture of tree variants
	Maximum likelihood estimates of fitness effects
	Code and data availability


	Supplementary Note 1: Age equivalents between mouse and human
	Supplementary Note 2: Ancestral cell identity inference
	Supplementary Note 3: Quality control of targeted duplex-sequencing
	Introduction
	REFERENCES


