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Abstract

Metastasis is the migration of cancerous cells from a primary tumor to other anatomical sites. 

While metastasis was long thought to result from monoclonal seeding, or single cellular 

migrations, recent phylogenetic analyses of metastatic cancers have reported complex patterns of 

cellular migrations between sites, including polyclonal migrations and reseeding. However, 

accurate determination of migration patterns from somatic mutation data is complicated by intra-

tumor heterogeneity and discordance between clonal lineage and cellular migration. We introduce 

MACHINA, a multi-objective optimization algorithm that jointly infers clonal lineages and 

parsimonious migration histories of metastatic cancers from DNA sequencing data. MACHINA 

analysis of data from multiple cancers reveals that migration patterns are often not uniquely 

determined from sequencing data alone, and that complicated migration patterns among primary 

tumors and metastases may be less prevalent than previously reported. MACHINA’s rigorous 

analysis of migration histories will aid in studies of the drivers of metastasis.

Cancer is an evolutionary process where somatic mutations accumulate in a population of 

cells, yielding a heterogeneous primary tumor composed of multiple cellular subpopulations 

with different complements of mutations. During cancer progression, cancerous cells may 

migrate to other anatomical sites, seeding new metastases at these sites. Since metastasis 

causes up to 90% of deaths from solid tumors1, understanding this process is of critical 

importance in improving the diagnosis and treatment of cancer2–5.
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Until recently, the dominant model of metastasis was the monoclonal theory, which posits 

that each metastasis is founded by a single founder cell6. Recent analyses of high-throughput 

DNA sequencing data have suggested more complex migration patterns between primary 

tumors and metastases6–8. In particular, several studies4,9–13 have reported polyclonal 
seeding, where cancer cells from one or more anatomical sites seed a metastasis, and 

reseeding where cancer cells migrate from a metastasis back to the primary tumor or back to 

other metastases. Such complex migration patterns can result in highly heterogeneous 

metastases with aggressive phenotypes2,14. Polyclonal seeding may be explained by either 

the simultaneous migration, or comigration, of multiple cells from distinct clones, or by 

multiple waves of migrating cells, each wave composed of cells from the same anatomical 

site8. Intriguingly, evidence from mouse models suggests that cancer cells migrate together 

in clusters, and that these cell clusters may be more efficient at forming metastases than 

single cells14–20.

Many recent analyses infer a migration history for an individual patient from phylogenetic 

trees constructed from the somatic mutations measured in multiple anatomical sites. In most 

cases, this inference relies on a combination of two assumptions that do not generally hold 

in cancer sequencing data. The first assumption, sample homogeneity, assumes that each 

sequenced sample is a homogeneous population of cells with identical somatic mutations. 

Many published analyses of bulk sequencing data from matched primary tumors and 

metastases9,13,21–38 implicitly rely on this assumption by employing standard phylogenetic 

techniques such as neighbor-joining, maximum parsimony or maximum likelihood to the 

mutations measured at each sequenced region (Fig. 1a). However, it is well established that 

tumors exhibit extensive intra-tumor heterogeneity6,39,40 and thus it is unlikely that a bulk 

tumor sample is homogeneous. Multi-region sequencing21 reduces, but does not eliminate, 

this heterogeneity, as each region remains a mixture of cells. The assumption of sample 

homogeneity can result in the construction of phylogenetic trees that have surprising 

implications for tumor evolution such as suspiciously high rates of homoplasy, or convergent 

evolution41 (Supplementary Fig. 1). To avoid the assumption of sample homogeneity, one 

can identify subpopulations of cells with the same somatic mutations, or clones, by 

clustering mutations according to their variant allele frequencies42,43. One then uses 

specialized phylogenetic algorithms to construct clone trees from mixed samples39,44–50 

(Fig. 1b). However, these specialized techniques have been used only sporadically in the 

analysis of metastasis6.

The second assumption, mutation-migration concordance, states that a tree constructed from 

the mutations present in clones at multiple anatomical sites determines the history of cellular 

migrations. In other words, the migration history follows directly from the topology and 

branch lengths of a phylogenetic tree constructed from mutations. The mutation-migration 

concordance assumption underlies many recent analyses of metastatic 

cancers9,23–25,27–29,34–36,38, as well as a recent method, Treeomics51, for reconstructing 

clone trees given sequencing data of metastatic tumors52,53. However, there are two 

problems with the mutation-migration concordance assumption. First, the migration history 

does not uniquely follow from the structure of a phylogenetic tree because the phylogenetic 

tree does not encode the anatomical sites of ancestral clones, as has been noted 

previously51,54. Second, while somatic mutations can be used as a marker for cellular 
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lineage, mutations do not directly model the history of cellular migrations between 

anatomical sites. In particular, while cellular lineage is appropriately modeled as a tree – 

since a cell divides into two daughter cells – migrations do not necessarily follow a tree 

topology (Fig. 1, center panel). Indeed, complex migration patterns, such as polyclonal 

seeding or reseeding, cannot be modeled by a tree.

An essential missing ingredient for evaluating different hypotheses about the migration 

pattern that occurred in metastasis is an explicit model that evaluates how well each 

hypothesis fits the observed sequencing data. Here, we introduce a rigorous computational 

model that represents migration patterns using a migration graph, a directed multi-graph 

describing migration of cells between anatomical sites (Fig. 1b). We introduce a taxonomy 

of migration patterns, streamlining the ambiguous language in the literature. Importantly, we 

show that minimizing the number of migrations is insufficient to distinguish different 

migration patterns, and that additional biologically-motivated criteria are necessary to 

distinguish parsimonious migration histories.

Our computational model forms the basis for Metastatic And Clonal History INtegrative 

Analysis (MACHINA), an algorithm that does not assume sample homogeneity and 

mutation-migration concordance. MACHINA operates in three distinct modes. In the first 

mode, MACHINA infers parsimonious migration histories (PMH) for a given clone tree. In 

the second mode, MACHINA infers parsimonious migration histories and simultaneously 

resolves uncertainties in a given clone tree (PHM-TR). In the third mode, MACHINA jointly 

infers a parsimonious migration history and a clone tree that best fit measured mutation 

frequencies (PMH-TI). On simulated metastatic cancers, we show that MACHINA more 

accurately recovers clone trees and migration histories than existing approaches that assume 

sample homogeneity and/or use limited models of migration. On DNA sequencing data from 

metastatic ovarian12, prostate11, breast10 and skin4 cancer, we demonstrate that MACHINA 

provides a rigorous approach to evaluate alternative migration histories. We show that some 

previous reports of metastasis-to-metastasis migrations, polyclonal migrations, reseeding, or 

multi-source seeding are not well supported by the data. By improving the analysis of 

migration histories, MACHINA will enable further studies of the drivers and mechanisms of 

metastasis.

Results

A Computational Model for Migration Histories

Suppose we measure all clones that are present in m anatomical sites of a metastatic cancer. 

These clones are distinguished by their somatic mutations and their anatomical locations. A 

clone tree T describes the cell division history, or cell lineage, of the clones and the 

mutations that accumulated over these cell divisions (Fig. 1b). However, a clone tree does 

not describe the migration history, the process by which cells/clones moved between 

anatomical sites. This is because while we know the anatomical sites of the measured, 

present-day clones (leaves of T), we do not know the anatomical sites of ancestral clones 

(internal vertices of T). The migration history is determined by a labeling ℓ of each vertex of 

the clone tree by an anatomical site; a migration is an edge connecting vertices labeled with 

different anatomical sites (Fig. 2).

El-Kebir et al. Page 3

Nat Genet. Author manuscript; available in PMC 2018 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Distinguishing different labelings ℓ of a clone tree T requires a biologically-motivated 

scoring function. In the simplest model, we assume that each migration between anatomical 

sites is monoclonal, comprising cells from a single clone. The migration number μ(T, ℓ) 
counts the number of such monoclonal migrations. We assume that migrations are rare 

events in the evolutionary history of the cancer, and that migrations between all pairs of 

anatomical sites are equally likely. Thus, we appeal to the maximum parsimony principle 

and aim to find a labeling with the minimum migration number μ*(T) = minℓ μ(T, ℓ). Finding 

the minimum migration labeling is an instance of the small phylogeny problem and can be 

solved using the Sankoff algorithm55, as noted by Slatkin and Maddison56, and later by 

McPherson et al.12

Importantly, the maximum parsimony labeling is not unique and there are typically many 

vertex labelings of T with the same minimum migration number μ*(T ) but strikingly 

different structures of migration between anatomical sites (Fig. 2). We introduce the 

migration graph G as a mathematical representation of this structure. The vertices of G are 

anatomical sites, and directed edges indicate migrations between anatomical sites. From a 

vertex labeling ℓ of a clone tree T we obtain the migration graph G by collapsing all vertices 

labeled by the same anatomical site into a single vertex and removing any self-loops that 

connect the same vertex. Formally, the migration graph is a multi-graph, as there may exist 

multiple directed edges between the same pair of anatomical sites.

We classify a migration graph G according to its migration pattern, which is defined by two 

criteria (Fig. 3a). The first criterion is the presence of a single edge between a pair of 

anatomical sites, indicating a monoclonal migration, versus the presence of multiple edges 

between a pair of anatomical sites, indicating a polyclonal migration. We say that a 

migration graph is polyclonal (p) if the graph contains at least one multi-edge; otherwise the 

graph is monoclonal (m). The second criterion classifies the topology of migration graph G 
into three types: (1) single-source seeding (S) where for each anatomical site all migrations 

into the site originate from a single anatomical site, and thus G is a tree; (2) multi-source 
seeding (M) where at least one anatomical site has clones that originate from different 

anatomical sites but no migrations return to originating sites, and thus G is a directed acyclic 

graph; (3) reseeding (R), where at least one migration returns to an originating anatomical 

site, and thus G has a directed cycle. We denote a migration pattern by combining the two 

criteria, e.g. mS denotes monoclonal (m) single-source seeding (S).

Recent experimental evidence suggests that tumor cells can simultaneously travel in groups 

through the bloodstream or lymphatic system and settle at other anatomical sites14–20, 

suggesting that polyclonal migrations may not be unusual. Thus, we introduce a second 

model, the comigration model, which counts simultaneous, or polyclonal, migration of 

multiple clones between the same anatomical sites, as a single event. We define the 

comigration number γ(T, ℓ) as the smallest number of monoclonal and polyclonal migrations 

incurred by vertex labeling ℓ of a clone tree T. While the migration number μ(T, ℓ) equals the 

number of edges in the migration graph G, the comigration number γ(T, ℓ) equals the 

number of multi-edges in the case G is acyclic. (See Supplementary Note for the precise 

definition of γ(T, ℓ).
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Each migration pattern constrains the migration number μ and comigration number γ in a 

few ways (Fig. 3b). First, since each metastasis is seeded by at least one migrating clone, 

any vertex labeling of a clone tree T with m anatomical sites must have a migration number 

of least μmin = m − 1 and a comigration number of at least γmin = m − 1. Second, a vertex 

labeling ℓ of T corresponds to an S pattern if and only if γ(T, ℓ) = γmin = m − 1. In general, 

vertex labelings with an S pattern always exist. If such a labeling also has the minimum 

possible migration number μmin, then the labeling corresponds to an mS pattern; otherwise 

the labeling is a pS pattern. Finally, vertex labelings ℓ correspond to M and R patterns if and 

only if the comigration number γ(T, ℓ) is greater than γmin.

The interplay between the migration pattern, the migration number, and the comigration 

number imply that the analysis of migration histories is a constrained multi-objective 

optimization problem. However, parsimonious vertex labelings found by the Sankoff 

algorithm55 optimize only a single objective, the migration number, and do not consider 

tradeoffs between the migration pattern, the migration number, and the comigration number. 

We develop an algorithm, Metastatic And Clonal History INtegrative Analysis (MACHINA) 

that solves three constrained multi-objective optimization problems: the Parsimonious 

Migration History (PMH) problem, the Parsimonious Migration History with Tree 

Resolution (PMH-TR) problem, and the Parsimonious Migration History with Tree 

Inference (PHM-TI) problem (Fig. 4). We validate MACHINA using simulated metastatic 

tumors (Fig. 5). See Online Methods for further details.

Comigrations in Ovarian Cancer

We use MACHINA to analyze the migration history of seven metastatic ovarian cancer 

patients from McPherson et al.12. These data include whole-genome and targeted sequencing 

on a total of 68 samples from different anatomical sites, including the left (LOv) and right 

ovary (ROv) and various metastases. McPherson et al.12 constructed a clone tree T for each 

patient by clustering mutations that have similar cell frequencies across different anatomical 

sites, and then determined the evolutionary relationships between the clusters using a Dollo 

parsimony model. Next, they found a minimum migrating labeling, a labeling of the internal 

vertices of T by anatomical sites with the minimum migration number μ*(T ). Since the 

anatomical site of the primary tumor is unknown, McPherson et al.12 selected the primary to 

be the anatomical site that incurred the fewest number of migrations. For six of the seven 

patients, the primary was inferred as either the left or right ovary; however, for one patient 

the primary was inferred to be the right uterosacral ligament.

We use MACHINA (in PMH mode) to find a parsimonious migration history for the 

reported clone tree T for each patient. For all patients, we find that the reported vertex 

labeling is among the vertex labelings output by MACHINA (Supplementary Table 5). 

Strikingly, we find that three of the seven patients (patients 1, 3 and 7) admit multiple vertex 

labelings that achieve the minimum migration number μ*(T), but differ considerably in the 

comigration number and the structure of migrations. For example, McPherson et al.12 report 

vertex labeling ℓC for patient 1 with migration number μ(T, ℓC) = μ*(T) = 13, designating 

ROv as the primary tumor (Fig. 6a). This labeling has comigration number γ(T,ℓC) = 10 (Fig. 

6b-c). MACHINA finds two additional vertex labelings ℓD and ℓE with the same minimum 
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migration number μ*(T) = 13 but smaller comigration number γ(T,ℓD) = γ(T,ℓE) = 7 (Fig. 

6d-e).

In addition to different designations of the primary tumor, these different labelings produce 

migration graphs with different migration patterns (Fig. 6b-e). For example, the authors 

report that the left ovary (LOv) is polyphyletic, i.e. composed of clones from distinct 

phylogenetic branches, which they report to be indicative of polyclonal migration. Indeed, in 

our nomenclature, the migration graph corresponding to ℓC has a polyclonal multi-source 

seeding (pM) pattern, with multi-source seeding of LOv from multiple clones from ROv and 

a single clone from the small bowel (SBwl). Moreover, SBwl is both a destination of clones 

from the ROv primary and a source of clones for various anatomical sites, including LOv 

and several metastases (Fig. 6c). In contrast, vertex labelings ℓD and ℓE found by MACHINA 

are much simpler than reported: there are no metastasis-to-metastasis migrations, and the 

only reseeding is between left and right ovary (Fig. 6d-e). While the reported clone trees do 

not allow one to further distinguish between these two reseeding migration patterns, the 

simpler migration patterns suggest that the left ovary is more likely the anatomical site of the 

primary than the right ovary.

By constraining MACHINA to consider only single-source seeding (S) migration patterns, 

we find a vertex labeling ℓF for patient 1 with the minimum comigration number γ(T,ℓF) = 

γmin = 6, and with μ(T,ℓF) = 14 migrations, one more than the minimum migration number 

μ*(T) = 13 (Fig. 6f). This illustrates the tradeoff between optimizing the migration number 

vs. the comigration number and demonstrates that different migration patterns are possible 

with only a small increase in the number of migrations. Without further information on the 

relative likelihood of different migration patterns one cannot definitively determine the true 

migration history of this tumor.

Similarly, applying MACHINA to ovarian patient 3 from this dataset results in a simpler 

migration history lacking the metastasis-to-metastasis migrations and multi-source seeding 

that was reported in McPherson et al. (Supplementary Note). For ovarian cancer patient 7, 

the authors designate the right uterosacral ligament as the primary tumor based on a clone 

tree T with four polytomies. MACHINA, run in PMH-TR mode, resolves these polytomies 

yielding a clone tree T′ with two migration histories that have the same minimum migration 

number μ*(T′) = 11 but with either of the two ovarian anatomical sites (LOv or ROv) as the 

site of the primary tumor. These alternative explanations of the data demonstrate that the 

inference of migration histories can help resolve ambiguities in clone trees (Supplementary 

Note).

Metastasis-to-Metastasis Migrations in Prostate Cancer

We apply MACHINA (in PHM-TR mode) to clone trees of ten metastatic prostate cancers 

reported in Ref. 11. MACHINA’s analysis supports the reported polyclonal migrations in 

these patients. However, the evidence for metastasis-to-metastasis migrations is not 

conclusive. For three of the eight patients where Gundem et al.11 reported metastasis-to-

metastasis migrations (A10, A31 and A32), MACHINA finds alternative migration histories 

with parallel seeding of all metastases from the primary tumor that are also consistent with 

the data (Supplementary Note).
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Joint Clone Tree and Migration Inference in Breast Cancer

We apply MACHINA (in PMH-TI mode) to whole-genome sequencing data from two 

metastatic triple-negative breast cancers from Hoadley et al.10, who reported that metastases 

in both patients resulted from “multiclonal seeding instead of a single cell of origin”.

For patient A7, Hoadley et al.10 sequenced m = 6 anatomical sites, and identified 10 clusters 

of somatic mutations using SciClone42 (Fig. 7a). There is considerable uncertainty in the 

variant allele frequency (VAF) for each mutation (Fig. 7b), and this uncertainty propagates 

through the construction of the clone tree, and the clonal composition of each sequenced 

anatomical site. Ignoring this uncertainty, Hoadley et al.10 report a clone tree with 22 extant 

clones (Fig. 7c). Using manual analyses, the authors describe two different migration 

histories, both of which are recovered by MACHINA (Fig. 7d). The migration history with 

the smallest migration number (μ = 12) corresponds to a polyclonal multi-source seeding 

(pM) pattern (γ = 6), where the lung is seeded by clones from the rib and breast, and 

polyclonal migrations occur from lung to brain and from liver to kidney (Fig. 7e).

We use MACHINA (in PMH-TI mode) to jointly infer the clone tree and migration history 

from confidence intervals on the VAFs derived from the SciClone clustering. We obtain a 

clone tree with only nine extant clones and a monoclonal single-source seeding (mS) 

migration pattern with migration number μmin = 5 and comigration number γmin = 5 (Fig. 

7f). This finding contradicts the reports of polyclonal migrations in patient A7.

For comparison, we also ran Treeomics51 on these data. Treeomics is unable to identify the 

two subclones that MACHINA detected in the liver and brain (Supplementary Fig. 2g). To 

demonstrate the advantages of MACHINA’s ability to resolve polytomies, we ran the 

minimum migration labeling method on the unresolved clone tree inferred by MACHINA. 

This method infers a more complex monoclonal multi-source seeding (mM) history with 

migration number μ = 6 and comigration number γ = 6, due to two polytomies in the clone 

tree, which are resolved by MACHINA (Fig. 7f), but not by the minimum migration labeling 

(Fig. 7g).

For patient A1, MACHINA identifies more parsimonious clone trees and migration histories 

than previously reported10 for patient A1 (Supplementary Note). Our results on these two 

patients show that ambiguities in the sequencing data and inaccuracies in the clone tree may 

lead to the inference of unnecessarily complex migration patterns. By accounting for 

uncertainty in bulk sequencing data and jointly inferring parsimonious clone trees and 

migration histories, MACHINA finds simpler migration histories that explain the observed 

mutation data.

Metastatic Progression in Melanoma

We applied MACHINA (in PMH-TI mode) to eight metastatic melanoma patients from 

Sanborn et al.4 MACHINA recapitulates the findings reported by Sanborn et al.4 and 

identifies parsimonious migration histories where multiple anatomical sites are seeded 

directly from the primary tumor. These results provide additional support for Sanborn et al.’s 

rejection of the commonly-accepted serial progression model in melanoma, where migration 
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proceeds from primary tumor to regional metastases to distant metastases (Supplementary 

Note).

Discussion

The increasing availability of DNA/RNA sequencing from matched primary and metastases 

samples provides data to improve our understanding of the drivers of metastasis. Recent 

phylogenetic analyses revealed that the process of metastasis may be more complicated than 

monoclonal migration of individual cells between anatomical sites, with polyclonal 

migrations of cells, multi-source seeding and reseeding between the primary tumor and 

metastases4,9–13. Here we showed that deriving such conclusions about migration patterns 

without a precise quantitative model is a risky endeavor and can lead to statements about 

migration patterns that are not adequately supported by the data. In particular, the simplest 

migration model, monoclonal single-source seeding, should be definitively ruled out before 

invoking more complicated migration patterns to explain the data.

We introduced MACHINA (Metastatic And Clonal History INtegrative Analysis), a multi-

objective optimization algorithm that jointly infers the cell division/mutation and migration 

history from DNA sequencing data while simultaneously resolving uncertainty in bulk 

samples. MACHINA is based on a mathematical model that distinguishes the process of cell 

division from the process of cell migration. This model evaluates migration histories 

according to three criteria: the migration pattern, the migration number, and the comigration 

number, the latter motivated by experimental evidence describing clusters of tumor cells 

simultaneously migrating and seeding metastases14–20. We used MACHINA to analyze 

sequencing data from metastatic ovarian12, prostate11, breast10 and skin4 cancers. 

Importantly, in each case we find that multiple migration histories are consistent with the 

sequencing data, and that in many cases, these migration histories are simpler than those 

reported. These alternative migration histories contradict reports in some patients regarding 

metastasis-to-metastasis migrations, the anatomical site of a primary tumor, or the 

occurrence of polyclonal migrations.

MACHINA fills a critical need in studies of metastases, enabling researchers to rigorously 

assess the validity of different migration patterns in individual patients and evaluate the 

prevalence of these patterns across large cohorts of patients and tumor types. However, we 

note several limitations of our analyses. First, while MACHINA relaxes the assumption of 

sample homogeneity, the subpopulations of cells, or clones, inferred by MACHINA are not 

homogeneous: complete homogeneity is obtained only at the level of individual cells. At the 

same time, we emphasize that single-cell sequencing alone does not resolve migration 

histories: even with perfect cell trees, the anatomical site of ancestral cells remains 

unknown. The PMH and PHM-TR modes of MACHINA are directly applicable to cell trees 

derived from single-cell sequencing data. Second, while MACHINA allows for uncertainty 

in the frequencies of the mutation clusters, MACHINA does not account for uncertainty in 

the composition of the clusters themselves. Inferred migration patterns may be affected by 

such uncertainty, and we evaluated how the number, purity and sequencing depth of samples 

affect the inference of migration patterns (Supplementary Note). Third, copy-number 

aberrations are an additional source of uncertainty as they lead to a divergence between the 
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fraction of cancer cells containing a mutation (often called the cancer cell fraction (CCF)) 

and the variant allele frequency of the mutation4,11,39. While CCFs cannot be uniquely 

determined from sequencing data49, one might be able to jointly infer CCFs, mutation 

clusters, clone trees and migration histories by extending the parsimony objectives we have 

introduced here. Fourth, there is evidence that primary tumors from different tissues are 

biased in the anatomical sites of metastasis57. One can encode such information as different 

weights in the current MACHINA algorithm (Supplementary Note).

There are additional future directions. Other types of data can be used to infer migration 

histories, including DNA methylation, circulating tumor DNA and circulating tumor cells. In 

addition, the computational model of migrations introduced here could be used to study 

spatial heterogeneity and cellular migrations during the growth of a tumor in a single 

anatomical site. Another possibility is to apply MACHINA to non-cancer data, e.g. to 

analyze migrations of individuals and pathogens between geographically isolated 

populations, where previous work has constrained migrations to particular topologies58,59. 

Finally, on the theoretical side, the computational complexity of the PMH, PHM-TR and 

PMH-TI problems is unknown.

High-throughput DNA sequencing has revolutionized studies of cancer evolution. The 

complexity, subtlety, and unique features of this data necessitates the use of robust and 

reproducible analysis approaches based on quantitative models. In particular, such models 

allow researchers to evaluate the evidence for simple explanations for the data before 

proposing complex evolutionary scenarios. Just as it is necessary to rigorously examine the 

evidence for neutral evolution in a tumor before one can reliably conclude that selection has 

occured60, it is also necessary to rigorously evaluate the evidence for simple migration 

patterns in a metastatic cancer before concluding that complex migration patterns have 

occurred. In the coming years, the marriage of high-throughput genomics and epigenomics 

data with appropriate quantitative analysis will further elucidate the mysteries of metastasis.

Online Methods

We develop an algorithm, Metastatic And Clonal History INtegrative Analysis (MACHINA) 

to solve three versions of the migration analysis problem. Each version is a constrained 

multi-objective optimization problem. In the following sections, we describe these three 

versions, and provide validation and benchmarking results.

Parsimonious Migration History

The first version of the migration analysis problem is the Parsimonious Migration History 

(PMH) problem. In this problem, we are given in input a clone tree T, which has been 

derived from some other data, such as bulk-sequencing data or single-cell sequencing data. 

We are also given a set 𝒫 of allowed migration patterns. Our goal is to find a labeling ℓ of 

the vertices of T by anatomical sites that first minimizes the migration number μ(T,ℓ) and 

then minimizes the comigration number γ(T,ℓ).
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Parsimonious Migration History (PMH).

Given a clone tree T and a set 𝒫 of allowed migration patterns, find a vertex labeling ℓ with 

the minimum migration number μ*(T) and subsequently the smallest comigration number 

γ T .

We consider three different sets 𝒫 of allowed migration patterns: (1) 𝒫 = {S}, requiring the 

migration graph G to be a single-source (S) migration pattern; (2) 𝒫 = {S,M}, requiring the 

migration graph to be either an S or M pattern; (3) 𝒫 = {S,M,R} meaning that G is 

unrestricted. Note that because these cases are nested, the migration number decreases 

monotonically from case (1) to case (2) to case (3). In contrast, the most restrictive case 𝒫 = 

{S} leads to the minimum comigration number γmin. Thus, by using different sets of 

allowed migration patterns, one can explore the tradeoff between the migration pattern, 

migration number and comigration number. For example, one could assess the evidence for 

reseeding (migration pattern R) by examining the difference in number of migrations 

reported when 𝒫 = {S,M,R} versus when 𝒫 = {S,M} which restricts the migration graph to 

either an S or M pattern.

Parsimonious Migration History with Tree Resolution

The second version of the problem, the Parsimonious Migration History with Tree 

Resolution (PHM-TR) problem, aims to infer a migration history while simultaneously 
resolving polytomies of a given clone tree T, where a polytomy is an internal vertex of T 
with more than two children. As cells divide into exactly two daughter cells, such 

polytomies reflect uncertainty in the ancestral relationships of clones (Fig. 4). The PHM-TR 

problem is useful for analyzing DNA sequencing data from both bulk tumors and single 

cells, as polytomies are common in both datasets; e.g. most current published clone trees 

derived from single-cell data are not fully resolved and contain polytomies61–64.

Parsimonious Migration History with Tree Resolution (PHM-TR).

Given a clone tree T and a set 𝒫 of allowed migration patterns, find a refinement T′ of T 
and vertex labeling ℓ of T′ with the minimum migration number μ*(T′), and subsequently 

smallest comigration number γ T′ .

The resolution of polytomies has been previously studied in species phylogenetics, and 

Maddison65 provides an exponential time algorithm for resolving polytomies. In our context, 

this algorithm would minimize the migration number μ, but does not consider the 

comigration number γ.

Parsimonious Migration History with Tree Inference

The third version of the problem, the Parsimonious Migration History with Tree Inference 

(PMH-TI) problem, jointly infers a clone tree and a migration history directly from bulk 

sequencing data. In bulk sequencing data, there is often substantial uncertainty in the clone 

tree due to the fact that the sequenced samples are generally not homogeneous, but instead 

are mixtures of populations of cells, or clones, with different complements of somatic 

mutations. Analyzing these mixed samples using standard phylogenetic techniques, such as 
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neighbor-joining66, maximum parsimony67 or maximum likelihood68, yields phylogenetic 

trees with high rates of homoplasy. Thus, many specialized deconvolution algorithms that 

model bulk samples as mixtures have been proposed for inferring clone trees39,44–49,69,70. 

The computational problem that these approaches solve can be viewed as a constrained 

matrix factorization problem47. The input is a mutation frequency matrix F = [fs,i], where fs,i 

is the proportion of cells in anatomical site s that have mutation i. Given F, the goal is to find 

a nonnegative mixture matrix U = [us,j] and a binary mutation matrix B = [bj,i] such that F = 

UB. Here, bj,i = 1 if and only if mutation i is present in clone j, and bj,i = 0 otherwise. Entry 

us,j is the proportion of clone j in anatomical site s; clone j is present in an anatomical site s 
if and only if us,j > 0.

Most deconvolution methods assume the absence of homoplasy, i.e. they require mutations 

to only occur once in the clone tree and never to be lost. This no-homoplasy assumption 

(also known as the infinite sites assumptions) has two important implications for the 

computational problem47,49. First, given F and B, there is only one matrix U such that F 
=UB. Second, under this assumption there is a 1–1 correspondence between mutation 

matrices B and mutation trees T, which describe ancestral relationships between mutations. 

In contrast to a clone tree, the leaves of a mutation tree are not labeled by anatomical sites. 

From T and U, we obtain a clone tree T by attaching a leaf w to vertex vj of T and setting the 

label ℓ(w)≔ s for each entry us,j > 0, i.e. clone j is present in anatomical site s. Thus, to 

determine the presence of clones in anatomical sites one must know both the mutation tree T
(or equivalently matrix B) and U.

Deciding whether there exists a mutation tree T respecting the no-homoplasy assumption 

that explains F (i.e. whether there exists a mutation matrix B corresponding to T and a 

mixture matrix B with nonnegative entries satisfying F = UB) is NP-complete47. Moreover, 

when such a tree exists, the problem is typically underdetermined; that is, there may exist 

many trees that explain F49. As described previously46,47, mutations trees T that explain the 

observed mutation frequencies F are constrained spanning trees of a directed acyclic graph 

obtained from F that satisfy the sum condition (SC), defined as

f s, i  ≥   ∑
v j child of vi

f s, j

for each vertex vi and anatomical site s.

In practice, there is extensive uncertainty in the mutation frequencies in F, as these 

frequencies must be estimated from the proportion of DNA sequence reads that contain a 

mutation at a locus. One way to model this uncertainty is to define confidence intervals 

f s, i
− , f s, i

+  for each mutation i in sample s. Given confidence intervals F− = f s, i
− , F+ = f s, i

+

for the frequency of each mutation i in each sample s and a mutation matrix B = [bj,i], there 

may be many mixture matrices U = [us,j] such that ∑ jus, j ⋅ b j, i ∈ f s, i
− , f s, i

+ . Thus, in 

addition to many mutation trees T explaining the observed data, each mutation tree T may 

correspond to multiple mixture matrices U. As such, the presence of clones in anatomical 
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sites is no longer fully determined given a mutation tree T (or mutation matrix B). Moreover, 

many different mutation trees may explain the observed (F−,F+). This leads to the following 

problem (Fig. 4b).

Parsimonious Migration History with Tree Inference (PHM-TI).

Given a set 𝒫 of allowed migration patterns and mutation frequency confidence intervals 

F− = f s, i
− , F+ = f s, i

+ , find a frequency matrix F = f s, i , a clone tree T, and a vertex 

labeling ℓ of T such that: (1) f s, i ∈ f s, i
− , f s, i

+ ; (2) F satisfies the sum condition for T; and (3) 

vertex labeling ℓ of T has minimum migration number μ*(T) and subsequently smallest 

comigration number γ T .

In practice, one typically does not have enough resolution in bulk sequencing data to 

determine the ancestral relationships for all pairs of mutations. Thus, instead of solving the 

PHM-TI problem for individual mutations, we consider clusters of mutations with similar 

frequencies across samples. Several specialized methods have been developed specifically to 

cluster mutations in the context of tumor sequencing42,43,71–73. It is important to note that 

the resulting mutation clusters do not directly correspond to clones; instead, they correspond 

to edge labels of an unknown mutation tree (Supplementary Fig. 3). A clone contains not 

only the mutations introduced on its incoming edge, but also all the mutations present in all 

its ancestral clones. From the output of a clustering algorithm, we obtain confidence 

intervals (F−,F+) for the frequencies of each cluster per anatomical site. These mutation 

frequency confidence intervals are input to the PHM-TI problem.

MACHINA: Algorithm for Metastatic And Clonal History INtegrative Analysis.

We solve the unrestricted PMH problem by adapting the backtrace step of the Sankoff 

algorithm. We solve the restricted variants of the PMH problem as well as all variants of the 

PHM-TR and PMH-TI problems using (mixed) integer linear programming with the Gurobi 

Optimizer (see URLs). See Supplementary Note for additional details.

Validation of MACHINA on Simulated Data

We assess the performance of MACHINA on simulated metastatic tumors, which we 

generate by extending an existing agent-based simulation of tumor growth77 to include cell 

migration. In this simulation, tumor cells may migrate to an existing anatomical site or seed 

a new anatomical site following a user-defined migration pattern (mS, pS, pM and pR) and a 

number m of anatomical sites. For simplicity, we simulate only single-nucleotide mutations 

and exclude copy-number aberrations. Each simulation results in a clone tree T*, a vertex 

labeling ℓ* and migration graph G*, which together describe the clonal and migration history 

of the simulated tumor. We generated 40 simulated tumors with either m = 5 or m = 8 

anatomical sites and varying migration patterns. For each simulated tumor, we generated 

DNA sequencing data from a single bulk sequencing sample from each metastasis and two 

bulk samples from the primary tumor. Each sample has a purity of 1 and a target DNA 

sequence coverage of 200X corresponding to a typical whole-exome sequencing experiment.
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We first benchmark MACHINA (run in PMH-TI mode) against four other methods that 

construct phylogenetic trees from metastatic tumors: (1) neighbor joining69, a standard 

approach for constructing phylogenetic trees that has been used frequently for analysis of 

recent metastatic sequencing data sets (e.g. Ref. 25,37,38); (2) Treeomics51, a recent 

phylogenetic reconstruction algorithm designed for analyzing metastatic samples; (3) 

PhyloWGS44 and (4) AncesTree47, two methods for tumor phylogeny reconstruction from 

mixed bulk samples. Importantly, each of these four methods outputs a phylogenetic tree, 

but they do not infer a vertex labeling or migration graph and thus differ considerably from 

MACHINA. Moreover, both neighbor joining and Treeomics assume sample homogeneity, 

as they record each mutation as present (1) or absent (0) in each sample, by thresholding of 

variant allele frequencies (VAFs). Specifically, Treeomics finds the most likely ‘error 

corrections’ required to transform the 0–1 valued mutation matrix into a perfect phylogeny 

matrix that describes an evolutionary tree with no homoplasy (i.e. infinite sites assumption). 

Additionally, Treeomics provides an optional heuristic, denoted as Treeomics-sub, that 

detects subclones by resolving violations of the infinite sites assumption using a variation of 

the ‘split row’ operation that was previously described75. In contrast, PhyloWGS and 

AncesTree analyze VAFs and infer subclones within a sample. Further details of the 

simulations and the mutation clustering algorithm in MACHINA are in Supplementary Note.

We find that the clone trees identified by MACHINA better resemble the simulated clone 

trees than those inferred by neighbor joining, Treeomics, PhyloWGS and AncesTree across 

all migration patterns. Fig. 5a shows that the distance between the inferred clone tree T and 

the simulated clone tree T* on simulations with m = 8 anatomical sites is substantially 

smaller for MACHINA. (Supplementary Fig. 4 shows similar results with m = 5 anatomical 

sites.) Here, we use a modified Robinson-Foulds distance79 to compute the distance between 

trees. This demonstrates the deficiency of the sample homogeneity assumption on 

heterogeneous data. Treeomics-sub does not assume sample homogeneity and performs 

better than Treeomics. However, Treeomics-sub cannot match the performance of 

MACHINA and AncesTree, likely because these latter two methods use variant allele 

frequencies to deconvolve mixed samples and thus are better able to detect subclones. 

PhyloWGS achieves similar performance to Treeomics-sub but performs worse than 

AncesTree and MACHINA. Importantly, MACHINA outperforms both PhyloWGS and 

AncesTree, thus showing that MACHINA’s advantage is not only a result of its analysis of 

subclones but also because of its simultaneous inference of clone trees and migration 

histories.

Next, we examined whether the goal of minimizing migrations, as done in McPherson et al.
12 using the Sankoff algorithm, was sufficient to determine the correct migration pattern. For 

simulated polyclonal single-source seeding (pS) migration patterns, we found that simulated 

clone trees typically have multiple vertex labelings with the same minimum number of 

migrations but varying migration patterns that are more complex than pS, such as pM and 

pR (Fig. 5b). The fraction of minimum migration labelings of the correct clone tree that 

were pS ranged from 0 to 1, with a median of 0.52 across the 10 simulated instances. Thus, 

choosing one of the minimum migration labelings will often not result in the correct 

migration pattern. Moreover, one of the trials, indicated by ‘*’ in Fig. 5b, does not admit a 

minimum-migration vertex labeling with a pS pattern. However, by solving the PMH 
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problem with a single-source seeding constraint, MACHINA determines that a vertex 

labeling with such a pS pattern requires only one additional migration. These findings 

demonstrate the importance of more sophisticated scoring functions that account for the 

complexity of the resulting migration pattern. See Supplementary Note for corresponding 

results for mS, pM and pR patterns.

Finally, we assess MACHINA’s ability to infer the correct migration graph and to identify 

the clones that migrate and seed anatomical sites. Fig. 5c shows migration graph G inferred 

by MACHINA closely resembles the simulated migration graph G* for the mS and pS 

simulations. The more complicated pM and pR patterns are more difficult to infer correctly, 

with MACHINA sometimes inferring simpler migration patterns than simulated 

(Supplementary Fig. 5). This may be due to the resolution of the data not allowing us to 

detect the minor subclones involved in more complex seeding events. Finally, Fig. 5d shows 

that MACHINA identifies the mutations present in migrating clones with high precision and 

recall for all simulated migration patterns. Accurate identification of such mutations is an 

important prerequisite for further experimental validation of the mutations that drive 

metastatic progression. In summary, our simulations show that MACHINA accurately infers 

clone trees and migration histories, outperforming existing methods.

In Supplementary Note, we show that MACHINA continues to outperform existing clone 

tree inference methods when given mutation clusters from different clustering algorithms. 

Moreover, we show that MACHINA benefits from having more samples and higher 

coverage sequencing, with the number of samples having the largest impact, followed by the 

depth of sequencing and the sample purity. Finally, we performed subsampling experiments 

running MACHINA on subsets of mutations from simulated WGS data. We found that 

MACHINA performs well, given only a small subset (< 5%) of mutations, demonstrating 

that MACHINA can accurately infer migration patterns given only whole-exome sequencing 

(WES) data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogenetic analysis of metastatic tumors.
(Center) Accurate analysis of the history of metastases requires the consideration of two 

distinct processes: (1) Cell division and acquisition of mutations; (2) Cell migration between 

anatomical sites. (a) Standard phylogenetic tree reconstruction algorithms applied to 

mutations measured in distinct anatomical sites (or regions within a site) result in a sample 
tree that does not accurately model either of these two processes. This approach relies on the 

assumption of sample homogeneity that is generally not true for bulk tissue samples. (b) 

Specialized tumor phylogenetic techniques construct a clone tree that describes the 

heterogeneity within each site. However, the structure of the clone tree does not directly 

determine the migration history; falsely assuming mutation-migration concordance may 

result in incorrect conclusions about the pattern of migration. MACHINA (Metastatic And 

Clonal History INtegrative Analysis) jointly infers parsimonious clone trees and migration 

histories from sequencing data of a metastatic cancer. MACHINA labels the internal vertices 

of a clone tree by anatomical sites resulting in a migration graph whose topology records the 

migration number and migration pattern (e.g. monoclonal vs. polyclonal, single-source vs. 

multi-source seeding). MACHINA finds all parsimonious migration histories with distinct 

migration patterns. At the same time, MACHINA uses constraints from the migration history 

to resolve ambiguities in clone trees, including polytomies and uncertainties in bulk 

sequencing data.
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Figure 2. The migration number μ does not determine the migration pattern.
A clone tree T describes the relationships between clones from a primary tumor P and two 

metastases M1 and M2. Every labeling ℓ of the vertices of T induces a migration graph G 
whose topology determines the migration pattern. In clone tree T, we observe two clones 

present in each site (indicated by colored leaves). (a-d) Four maximum parsimony labelings 

of the internal vertices of T, each with the minimum possible migration number μ* = 4 but 

different migration patterns, which are explained in Fig. 3.
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Figure 3. Migration history analysis requires evaluation of tradeoffs between migration pattern, 
migration number and comigration number.
(a) The taxonomy of migration patterns is defined using two different criteria. First, the 

migration graph G is polyclonal (p) if it contains multi-edges; otherwise the graph is 

monoclonal (m). Second, the topology of the migration graph defines the migration pattern. 

In single-source seeding (S), each anatomical site is seeded by clones originating from at 

most one anatomical site, and the migration graph G is a tree. In multi-source seeding (M), 

at least one anatomical site is seeded by clones originating from more than one site; 

however, the migration graph G is acyclic. In reseeding (R), clones migrate back and forth 

between anatomical sites, and the migration graph has a directed cycle. (b) The 2D plot 

shows that each migration pattern constrains the migration number μ and the comigration 

number γ. Note that μ ≥ γ, since the comigration model allows for simultaneous migrations 

of clones. Moreover, with m anatomical sites, the minimum possible comigration number 

γmin is m − 1, and is achieved only by a single-source seeding (S) pattern. Additionally, the 

monoclonal single-source seeding (mS) pattern also has the minimum possible migration 

number μmin = m − 1. In contrast, M and R patterns have comigration number γ ≥ m, with 

the polyclonal pM and pR patterns having migration numbers μ ≥ m + 1. Labels of 

individual points on the graph indicate the scores of the corresponding clone tree labelings in 

Fig. 2.
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Figure 4. The MACHINA algorithm for joint clone tree inference and migration history analysis.
(a) One mode of MACHINA solves the PMH problem. Here, one is given a set 𝒫 of allowed 

migration patterns and a clone tree T whose leaves correspond to extant clones and where 

each leaf is labeled by the anatomical site where the clone is present. The task is to infer a 

vertex labeling ℓ of T that minimizes the migration number μ and comigration number γ. (b) 

Another mode of MACHINA solves the PMH-TI problem. Here, one does not directly 

observe the clone tree, but only mutation frequencies, whose uncertainty is recorded as 

confidence intervals with corresponding frequency matrices (F−,F+). In addition, one is given 

a set 𝒫 of allowed migration patterns. The task is to infer a frequency matrix F, a clone tree 

T, and vertex labeling ℓ of T that minimize the migration number μ and comigration number 

γ.
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Figure 5. MACHINA accurately infers clone trees and migration histories on simulated data.
(a) Distance between simulated clone trees and clone trees inferred by MACHINA, neighbor 

joining66, Treeomics51, PhyloWGS44 and AncesTree47. The simulated tumors have 

monoclonal single-source seeding (mS), polyclonal single-source seeding (pS), polyclonal 

multi-source seeding (pM) and polyclonal reseeding (pR). By jointly inferring parsimonious 

migration and clonal histories, MACHINA recovers the simulated clone trees more 

accurately than existing methods that disregard migration histories. (b) The proportion of 

inferred migration patterns from the minimum migration vertex labelings for 10 simulated 

pS tumors. The number of minimum migration labelings is shown in square brackets. The 

fractions of minimum migration labelings with the correct pS pattern ranges from 0 to 1, 

with a median of 0.52. (*) On this simulated tumor, by enforcing single-source seeding (S), 

MACHINA finds a pS migration pattern with migration number μ = 12, one more than the 

minimum migration number μ* = 11. (**) On this simulated tumor, the simulated vertex 

labeling is not the most parsimonious vertex labeling. (c) MACHINA identifies the 

migration graph with high precision and recall for mS and pS patterns, as summarized by the 

F1 score. More complicated pM and pR patterns are more difficult to infer, with MACHINA 

often reporting simpler migration patterns. (d) MACHINA identifies the clones that migrate 

to different anatomical sites with high precision and recall across all migration patterns. 

Only MACHINA results are shown in (c) and (d), as the other methods do not infer a vertex 

labeling and migration graph.
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Figure 6. Joint analysis of migrations and comigrations leads to more parsimonious migration 
histories in metastatic ovarian cancer.
(a) McPherson et al.12 report a clone tree T for patient 1 with n = 9 clones over m = 7 

anatomical sites with 189 single nucleotide variants (SNVs). They also report a vertex 

labeling ℓC of T with the minimum migration number μ*(T) = 13. (b) MACHINA finds 

multiple vertex labelings (ℓC,ℓD,ℓE) with the minimum migration number μ*(T) = 13 but with 

different comigration number γ. Points are different labelings of the clone tree and are 

annotated by corresponding figure panel and inferred site of primary tumor. Shapes 

correspond to different migration patterns. (c) The migration graph obtained from the 

reported vertex labeling ℓC has comigration number γ(T,ℓC) = 10, and a complex pM 

migration pattern, with multi-source seeding of the left ovary (LOv), and metastasis-to-

metastasis migrations from the small bowel (SBwl) metastasis. SBwl is both a destination 

for clones from the right ovary (ROv) and a source of clones for multiple anatomical sites, 

including the left ovary (LOv) and several other metastases. (d-e) Two additional migration 

graphs found by MACHINA with comigration number γ(T,ℓD) = γ(T,ℓE) = 7, and polyclonal 

reseeding (pR) migration patterns. LOv is the primary tumor which directly seeds all the 

metastases. (f) Constraining MACHINA to find a single-source seeding (S) migration 

pattern yields vertex labeling ℓF with minimum comigration number γmin = 6, and migration 

number μ(T,ℓF) = 14. This is only one more than the minimum migration number μ*(T) = 13, 

indicating the tradeoff between minimizing the migration number and the comigration 

number.
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Figure 7. Joint analysis of mutations and migrations reveals a monoclonal single-source 
migration history for a metastatic breast cancer patient.
(a) Variant allele frequencies (VAFs) for ten mutation clusters across six anatomical sites 

reported in patient A7 from Hoadley et al.10. (b) 95% confidence intervals for the VAFs of 

each cluster in kidney; overlapping intervals indicate presence of a single clone in kidney. 

(c) The reported10 mutation tree: each edge is labeled by a mutation cluster; each vertex 

corresponds to a clone comprised of the mutation clusters on the unique path to the root. (d) 

Migration number, comigration number and migration pattern for migration histories 

reported in Ref. 10 (e), reported by MACHINA (f), and identified by the minimum 

migration labeling (g). (e) The reported10 migration history has migration number μ = 12, 

comigration number γ = 6, and a polyclonal multi-source seeding (pM) pattern. Each leaf 

label is the proportion of the extant clone in the corresponding anatomical site; small or 

negative proportions are due to analysis of mutation clusters and not clones in the published 

work. Note that the clone tree has many polytomies. (f) MACHINA infers a monoclonal 

single-source seeding (mS) migration history, the simplest possible migration history, 

implying that the sequencing data does not strongly support complicated polyclonal 

migration patterns in this patient. (g) Without MACHINA’s polytomy resolution, a 

minimum migration labeling of the unresolved clone tree selects one of possible labelings 

that minimize the migration number μ, leading to more complicated migration history with 

multi-source seeding of the lung.
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