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Abstract

The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many
questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been
suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of
these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone
deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P.
falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large
percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed
during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced
hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3.
Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and
between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression
and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of
HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of
histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of
histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also
emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.
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Introduction

Gene expression in the asexual intraerythrocytic developmental

cycle (IDC) of Plasmodium falciparum and vivax occurs in a

continuous cascade with the induction of most genes occurring

just once in the cycle, presumably at the time when their products

are required [1,2,3]. The next obvious and intriguing step is to

understand how this highly specialized mode of transcriptional

regulation is controlled. Emerging evidence from other eukaryotes

indicates that chromatin structure regulates gene expression

through histone modifications such as acetylation, deacetylation

and methylation [4].

Histone acetyltransferases (HATs) catalyze acetylation of lysine

residues located within histones, thereby reducing chromatin

compaction and making the DNA more accessible to regulatory

proteins resulting in transcriptional activation. The removal of

acetyl groups from the lysine residues is catalyzed by histone

deacetylases (HDACs) resulting in chromatin condensation and

transcriptional repression. Specific recruitment of HAT and HDAC

containing complexes to selected promoter elements generate

localized domains of modified histones that influence transcriptional

activity [5,6]. HATs and HDACs also function globally throughout

the genome resulting in a highly dynamic equilibrium of histone

acetylation and deacetylation reactions, which maintains a steady-

state level of histone acetylation across the entire genome [7,8].

The HDAC super-family is grouped into different classes

according to sequence similarity to yeast prototypes. Classes I, II

and IV are related to the zinc-dependent yeast Rpd3 or Hda1

deacetylases [9]. Class III HDACs, are a family of NAD-dependent

sirtuins related to the yeast silencing information regulator 2 (Sir2)

which mediates gene silencing at telomeres, mating-type loci and

ribosomal DNA [10]. Homologues of a Class I and Class III

HDAC, referred to as PfHDAC1 (PFI1260c) and PfSir2

(PF13_0152) respectively, have been characterized in P. falciparum

[11,12]. Transcripts of the nuclear localized PfHDAC1 [11] were

detected throughout the asexual IDC and in the exo-erythrocytic

stages [2]. The PfSir2 co-localizes with telomeric clusters generating

heterochromatin at the chromosome ends. In addition, PfSir2

binding and deacetylation controls the mutual exclusive expression

of the surface antigen family encoded by the telomeric var genes

[12]. The genome sequence of P. falciparum has revealed three

additional HDAC homologues (PF14_0489, PF14_0690 and

PF10_0078) all of which have yet to be characterized [13].

To understand the regulation of gene expression in P. falciparum

we took the advantage of HDAC inhibitors altering gene

transcription [14]. Recently, FR235222, a cyclic tetra-peptide
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was shown to inhibit HDAC3 activity in Toxoplasma gondii, resulting

in nucleosomal hyperacetylation of histone 4 [15]. The Class I and

II HDAC inhibitor apicidin, also a cyclic tetra-peptide, exhibits

anti-proliferative activity against several Apicomplexan parasites

including P. falciparum [16] and inhibits the enzymatic activity of

PfHDAC1 [17]. We showed that apicidin caused profound

transcriptional changes in multiple stages of the P. falciparum

IDC that were characterized by specific induction of genes that are

otherwise suppressed during that particular stage. We also showed

that apicidin induced rapid hyperacetylation of histone lysine

residues associated with promoters and coding regions of a large

number of genes indicating the disruption of both targeted and

non-targeted HDAC activities. Interestingly, only a partial overlap

between the genetic loci with altered histone modifications and

genes induced/repressed by apicidin was found. Intriguingly,

induction of stage specific transcription factors and other

transcription associated or chromatin binding proteins was

identified. The significant enrichment of the apicidin induced

histone modifications in these gene classes suggests their role in the

transcriptional de-regulation in the apicidin treated cell. These

findings highlight the important role of histone deacetylases in the

transcriptional regulation of the Plasmodium life cycle.

Results

Activation and repression of transcriptional regulated
genes by a HDAC inhibitor

A Class I and II HDAC inhibitor, apicidin, was used to analyze

the global transcriptional response of P. falciparum to inhibition of

its histone deacetylase activities. For this purpose, highly

synchronized P. falciparum cells were treated with 70nM apicidin

at the three asexual developmental stages: ring (6–14 hours post

invasion (hpi)), trophozoite (20–28 hpi) and schizont (34–42 hpi).

Treatment of P. falciparum cells with 70nM of apicidin at these

three developmental stages resulted in ,90% reduction of growth

(IC90) that was monitored by the number of newly formed rings

after the completion of the IDC (data not shown). To capture the

dynamics of the transcriptional response, RNA samples were

collected at 0.5, 1, 2, 4 and 6 hours post treatment and analyzed

by the P. falciparum DNA microarray that represents 5363 coding

sequences [18] (Dataset S1).

Overall, we observed highly dynamic transcriptional changes

induced by apicidin in all the three developmental stages

(Figure 1A). In particular, 6 hours of apicidin treatment altered

the expression of 3210 (59.8% of the genome), 1811 (33.8%) and

2760 (51.5%) genes by at least 2-fold in the ring, trophozoite and

schizont stages, respectively. Intriguingly, approximately half of

these genes were induced or repressed as early as 1-hour post

treatment. To our knowledge, this is one of the most dramatic

perturbations of the P. falciparum IDC transcriptome reported so

far. This is in sharp contrast with previous studies showing non-

specific and low amplitude changes in mRNA abundance

induced by the anti-malarial drug chloroquine [19] and the

antifolate WR99210 [20]. Interestingly, the rapid and large

changes in gene expression observed by inhibition of HDAC

activities also contradict that of inhibition of P. falciparum HAT

activities [21].

To understand the physiological relevance of the HDAC-

dependent transcriptional response we carried out functional

enrichment analyses of the genes induced/repressed by apicidin in

all the three developmental stages. Using three types of functional

terms Gene Onthology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Malaria Parasite Metabolic Pathways

(MPMP), we identified a large number of functional groups that

are significantly enriched in the apicidin altered gene expression

(Figure S1). The vast majority of the identified gene groups

represented basic metabolic and cellular functions expressed

during the P. falciparum IDC. In the case of apicidin induced gene

expression, a considerate overlap was found among the gene

groups associated with the three different stages of the IDC. These

included ‘‘Fatty acid synthesis in the apicoplast’’ (P value ,0.008)

and ‘‘Molecular motor prototypes’’ (P value ,0.004). In contrast,

with apicidin induced gene repression distinct functional groups

were statistically overrepresented in each stage. This can be

explained by the fact that any gene repression should be observed

in genes that are under normal growth conditions expressed

during that particular stage of apicidin treatment. For example,

gene groups associated with transcription and translation that are

normally induced during the ring stage were significantly repressed

(P value ,0.01) during this stage [1]. Similarly, gene groups

associated with invasion that are normally induced during the

schizont stage were significantly repressed (P value ,1029) during

this stage.

To investigate whether apicidin induced a specific de-

regulation of the P. falciparum IDC transcriptional cascade [1],

we focused on genes with the most pronounced changes

(.3–4 fold) in their transcript levels (Figure 1B). In all three

stages, this analysis revealed that essentially most of the genes

induced by apicidin are under normal growth conditions

suppressed during that particular stage of treatment (Figure 1B).

For example, genes associated with the TCA cycle that are

normally expressed during the trophozoite and early schizont

stage were significantly induced (P value = 3.2561023) in the ring

stage. Similarly, genes belonging to the functional group

‘‘Subcellular localization of proteins involved in invasion’’ that

are normally expressed in schizonts, were strongly induced

(P value = 1.0461023) in the trophozoite stage by apicidin.

Using the publicly available P. falciparum exo-erythrocytic

transcriptome data [2], we also examined the top 500 genes with

the highest mRNA abundance in the sporozoite and gametocyte

stages. A significant number of genes that are considered specific

for theses stages and are normally suppressed during the IDC

were induced by apicidin (Figure S2). These included genes

Author Summary

Plasmodium falciparum, a parasitic protozoan, causes the
most lethal form of human malaria, killing more than 2
million people per year. It has a complex life cycle that
involves distinct morphological stages accompanied by
stage specific gene expression in both the mosquito and
human hosts. The lack of a vaccine for malaria and
widespread resistance highlights the urgency for new anti-
malarial drugs that act on different parasite targets. We
show that inhibition of histone deacetylase activities
results in activation and repression of transcriptionally
regulated genes in multiple stages of the P. falciparum
asexual life cycle. We also show that inhibition disrupts the
steady-state level of histone acetylation and methylation
across the P. falciparum genome. Our data strongly implies
that in P. falciparum, inhibition of histone deacetylase
activity leads to a dramatic increase in global acetylation of
histones and subsequently disruption of stage specific
gene expression. This process then leads to a collapse of
the transcriptional cascade of P. falciparum. Therefore, the
essential role of histone deacetylases in Plasmodium
parasites suggests their high potential as molecular targets
for malaria intervention strategies.

Histone Deacetylases in Plasmodium Parasites
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encoding the early gametocyte markers, Pfg27, Pfs16, Pfpeg-3

and Pfpeg-4 [22], Pf47: a member of the Pfs48/45 gene family

[23] and Pfg377: localized in the osmiophilic bodies of

gametocytes [24]. Similarly genes associated with sporozoite

invasion such as circumsporozoite protein, sporozoite surface

protein 2, SPATR and Pf52 [25] were significantly induced (.2-

fold) by apicidin.

Taken together, apicidin, a specific inhibitor of HDAC

activities affected expression of approximately half of the genome

during the P. falciparum IDC. Therefore, as a result, a large

number of functional groups were significantly affected. The

induced expression of stage specific genes indicates that the

changes in mRNA abundance are not compatible with arrest of

the IDC, but rather a generic de-regulation of the transcriptional

cascade of the P. falciparum life cycle. Intriguingly, with 70nM of

the HDAC inhibitor, this de-regulation is highly dynamic

affecting a large number of genes as early as 1-hour post

treatment.

Global levels of histone 3 and 4 acetylation altered by
apicidin

To investigate the mechanisms by which apicidin deregulates the

P. falciparum transcriptional cascade we examined the effect of this

HDAC inhibitor on histone modifications. Previous studies have

showed that the HDAC inhibitors Trichostatin A (TSA) and the two

derivatives of 2-aminosuberic acid induce overall acetylation levels

of P. falciparum histone 4 [26]. In P. falciparum, previous studies have

found stage-specific enrichment of acetylation at histone 3 lysine 9 at

putative transcriptional initiation sites, corresponding to stage-

specific expression of genes [27]. Therefore, we tested the effect of

apicidin on the overall levels of three distinct acetylations: histone 3

lysine 9 (H3K9Ac), H4K8Ac and histone 4 acetylated on lysine

Figure 1. Global transcriptional response of P. falciparum to apicidin treatment. Highly synchronized P. falciparum cells: rings (6–14 hpi),
trophozoites (20–28 hpi) and schizonts (34–42 hpi) were treated with DMSO (0.005%) and apicidin (IC90). RNA samples were collected at 0.5, 1, 2, 4
and 6 hours post treatment. cDNA, synthesized from the RNA samples, was labeled with Cy5 and hybridized against the Cy3 labeled 3D7 reference
pool. The microarray data, which included mRNA abundance ratios between each time point sample and the 3D7 reference pool, was filtered as
described in material and methods. A. For all stages, genes with a 2 or greater fold difference in expression induced by apicidin treatment in at least
one time point are shown. B. For rings and trophozoites, genes with a 3 or greater fold difference in expression in at least two or one time points
respectively are shown. For schizonts, genes with a 4 or greater fold difference in expression in at least one time point are shown. The transcription
profile of the genes under normal developmental conditions is shown in the P. falciparum IDC transcriptome. The stage of the parasites used in the
time course experiment is shown boxed in yellow.
doi:10.1371/journal.ppat.1000737.g001
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residues 5, 8, 12 and 16 (H4Ac4) (Figure 2). In addition, we also

tested for tri-methylation of histone 3 lysine 4 (H3K4me3) which has

been linked with gene expression [28].

The most striking observation was the dramatic increase in the

levels of H4K8Ac and H4Ac4 in the apicidin treated P. falciparum

cells in all three stages. This strongly indicates that the histone

acetylase and deacetylase activities specific for these histone 4

modifications exist in a highly dynamic equilibrium throughout

the entire IDC. The increase in histone 4 acetylation observed as

early as 1-hour post treatment coincides well with the rapid

transcriptional changes induced by apicidin.

Conversely, apicidin induced a different effect on both H3K9Ac

and H3K4me3. In rings, a dramatic decrease in the levels of both

histone 3 modifications was observed after 2 hours of apicidin

treatment. In the first hour of treatment, an increase or no change

in H3K9Ac and H3K4me3 respectively was found. In contrast to

rings, no change in the overall levels of both modifications was

detected in schizonts. In trophozoites these modifications were

undetected (Figure 2). In agreement with a previous study [29],

immunodetection of core histones 3 and 4 generated an extremely

weak signal in both rings and trophozoites (data not shown).

Therefore, Pfactin 1 (PFL2215w) was used as a loading control for

these two stages (Figure 2). In schizonts, core histones 3 and 4 as

well as actin served as suitable loading controls. Interestingly

protein levels of PfHDAC1, a target of the HDAC inhibitor, were

not altered by the apicidin treatment.

Taken together, we observed different types of histone

modifications induced by the HDAC inhibitor apicidin. While

an increase in H4K8Ac and H4Ac4 was observed in all stages, the

two histone 3 modifications exhibited a more complex response to

HDAC inhibition. These results indicate the existence of distinct

mechanisms that control the global levels of histone modifications

and are directly or indirectly associated with HDAC activities.

Inhibition of HDACs disrupts the steady-state level of
histone acetylation and methylation across the P.
falciparum genome

Although the western blot analyzes indicated the effect of

apicidin on nucleosomal histone modifications, in our next step we

wished to investigate the distribution of these induced modifica-

tions along the P. falciparum genome. The main goal was to identify

chromosomal regions that are under the regulatory control of

Class I and II HDACs.

Thus, we carried out chromatin immunoprecipitations in

conjunction with microarray analysis (ChIP-chip) using antibodies

against the four histone modifications H4K8Ac, H4Ac4, H3K9Ac

and H3K4me3. Using this approach, we compared changes in the

chromosomal distribution of these modifications in P. falciparum

cells after 1 hour of apicidin treatment (Figure 3). For the ChIP-

chip analysis, we used the P. falciparum long oligonucleotide DNA

microarray, utilized for the transcriptional analyzes, which

represents 5363 coding sequences and features one microarray

oligonucleotide element (MOE) per 1198 base pairs on average for

all the P. falciparum coding sequences [18]. To ensure the statistical

significance of the obtained data, each ChIP-chip assay was

conducted in triplicate and the chromosomal regions with apicidin

induced modifications were identified using the method Signifi-

cance Analysis of Microarrays (SAM) [30] (see materials and

methods). To evaluate significant overlaps between the different

histone modifications we utilized several different SAM threshold

cutoffs (D) non of which, however, yielded data with a false

discovery rate (FDR) greater than 0.11% (supporting information).

First, we identified 1063 and 1627 genetic loci (represented by

the MOEs) that showed a significant increase in H4K8Ac in

apicidin treated trophozoites and schizonts respectively

(Figure 3A). With an overlap of 287 loci, a negative correlation

(P value = 0.021) between these two groups was found. However,

when overlapping genes instead of genetic loci, a most striking

positive correlation (P value ,10255) with an overlap of 356 genes

was found. This indicates that, although, increased H4K8Ac in

apicidin treated trophozoites and schizonts occurred in similar

genes, the increase occurred at different loci within the same gene

in the two stages. This is consistent with the model that each

developmental stage is characterized by its distinct pattern of

histone modifications that undergo progressive changes along the

IDC [29,31].

In addition, in the schizont stage we identified 1216 and 1228

genetic loci that showed a significant increase in H3K9Ac and

H4Ac4, after 1 hour of apicidin treatment, respectively (Figure 3B).

Overlapping these two groups of genetic loci (372 MOEs) showed

a positive correlation (P value ,10255) between H3K9Ac and

H4Ac4. Moreover, we identified 1197 genetic loci that showed a

significant decrease in H3K4me3 in apicidin treated schizonts

(Figure 3C). The overlap of 429 MOEs between the two groups of

genetic loci associated with decrease of H3K4me3 and in-

crease of H4K8Ac (schizonts) showed a positive correlation

(P value = 3.8861025) between these two modifications. Similarly,

when overlapping genes instead of genetic loci, positive corr-

elations (P value ,10255) between H3K9Ac and H4Ac4

(Figure 3B) as well as H4K8Ac and H3K4me3 (Figure 3C) were

observed.

However, these results are not reflected in the western blot

analyzes which showed dramatic changes in the overall levels of

H4Ac4/H4K8Ac but no change in H3K9Ac/H3K4me3 in

apicidin treated schizonts. This apparent discrepancy can be

explained by higher amplitudes of apicidin induced H4Ac4/

H4K8Ac compared to H3K9Ac/H3K4me3. Hence, these data

suggests that despite the differences in their overall response to

Figure 2. Global histone hyperacetylation induced by apicidin.
P. falciparum cells were treated with DMSO (0.005%) and apicidin (IC90).
Protein samples collected at 1, 2, 3 and 4 hours post treatment were
analyzed by SDS-PAGE. PfHDAC1, Pfactin 1, core histone 3 (H3), core
histone 4 (H4) and the H4K8Ac, H4Ac4, H3K9Ac and H3K4me3 sites
were detected by immunodetection. Molecular weights are shown in
kDa. 2 and + refers to DMSO and apicidin treated cells respectively.
doi:10.1371/journal.ppat.1000737.g002
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Figure 3. Genome-wide histone hyperacetylation induced by apicidin. A. Chromosomal display of genetic loci, represented by MOEs, that
showed a significant increase in H4K8Ac in apicidin treated trophozoites (D= 1.7) and schizonts (D= 5). B. Chromosomal display of genetic loci that
showed a significant increase in H3K9Ac (D= 2) and H4Ac4 (D= 3.5) in apicidin treated schizonts. C. Chromosomal display of genetic loci that showed
a significant decrease in H3K4me3 (D= 4) and increase in H4K8Ac (D= 5) in apicidin treated schizonts. The position of each line reflects the location of
each genetic loci within the P. falciparum 14 chromosomes. Venn diagrams show significant overlaps between different groups of genetic loci (shown
above the line) and genes (shown in italics below the line) associated with apicidin altered histone modifications. P values for genetic loci and genes
are shown above and below the Venn diagrams respectively. The insert graphs show the distribution of the enriched histone modifications within
individual genes (bins of 500 base pairs). MOEs were divided into groups according to their distance from the putative ATG start codon.
doi:10.1371/journal.ppat.1000737.g003
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apicidin treatment across the P. falciparum IDC there is some level

of association between H4Ac4 and H3K9Ac aswell as H4K8Ac

and H3K4me3 in the schizont stage.

Beside these two positive correlations, the majority of genetic

loci associated with increased H4K8Ac (both in trophozoites and

schizonts) and decreased H3K4me3 originate from the first 500

base pairs of the gene coding sequences. In contrast, the genomic

regions associated with H3K9Ac and H4Ac4 exhibit essentially no

positional preference within the individual genes (Figure 3, insert

graphs). Interestingly, genetic loci associated with H4K8Ac and/

or H3K4me3 showed a tendency to be mutually exclusive to loci

associated with H4Ac4 and/or H3K9Ac (supporting information).

In summary, these results suggest that HDAC activities in P.

falciparum counteract at least two chromatin-remodeling pathways.

One of these is acetylation at H4K8 and de-methylation of

H3K4me3 mainly in the 59 (possibly promoter) regions of genes.

The other pathway is acetylation at H3K9 and tetra-acetylation of

histone 4 (at lysine residues 5, 8 12 and 16) which are distributed

evenly throughout the coding sequences of P. falciparum genes.

These two pathways appear to target two largely non-overlapping

set of P. falciparum genes. It is also important to note that all four of

the apicidin induced histone modifications occurred almost

exclusively in the intrachromosomal regions of the P. falciparum

genome. This suggests that both Class I and II HDACs act mainly

in the intrachromosomal regions and do not overlap with the

activity of PfSir2, the P. falciparum Class III HDAC, which

generates heterochromatin at the chromosome ends [12].

Apicidin induces histone hyperacetylation and
demethylation along promoter regions of P. falciparum
genes

To further explore the distribution of the apicidin induced

histone modifications along the P. falciparum genes, we carried out

RTQ-PCR measurements with the ChIP immunoprecipitated

DNA. Here we focused on four genes that were associated with

increased H4K8Ac, in trophozoites treated with apicidin

(IC90) for 1 hour. These included circumsporozoite protein

(csp: PFC0210c), erythrocyte binding antigen 175 (eba175:

MAL7P1.176), apical membrane antigen 1 (ama1: PF11_0344)

and merozoite surface protein 6 (msp6: PF10_0346) (Figure 4A). In

agreement with our ChIP-chip data (Figure 4A insert boxes),

significant changes in H4K8Ac were detected within the 59

extremes of the coding regions of all four genes. In all of the genes,

we also detected significant increase in H4K8Ac in the regions

upstream to the coding sequence. Overall, we do not detect any

consistent bias towards the promoter or the 59 regions of the

coding sequences, which suggests that apicidin induced H4K8Ac

spans both of these gene sections evenly. In this study, we

compared the apicidin induced H4K8Ac with H4K5Ac whose

levels in P. falciparum are not significantly affected by this inhibitor

(Figure 4C and data not shown).

In addition, we investigated the inverse relationship between

H4K8Ac and H3K4me3 that was observed previously in the

schizont stage (Figure 3C). In agreement with the ChIP-chip data

(insert box), the inverse relationship between these two modifica-

tions is preserved in both the 59 coding regions as well as the

upstream non-coding regions of CSP (Figure 4B). Overall, the

RTQ-PCR results correlated well with the ChIP-chip data

indicating that the observed apicidin induced H4K8 hyperacetyla-

tion and H3K4 demethylation occurred in the promoter regions as

well as the extreme 59 regions of P. falciparum genes.

In addition to their transcriptional up-regulation, both CSP and

EBA-175 proteins were detected in apicidin treated trophozoites

(Figure 4D). CSP is N-terminally processed during sporozoite

invasion of hepatocytes, resulting in a processed product that is 8–

10 kD smaller [32]. Interestingly, we detected two molecular

weight forms of CSP: the lower band migrates at the expected

molecular weight of the CSP processed product, which suggests

the presence of the putative protease in these cells. Increased

protein levels of CSP, both processed and unprocessed, were also

observed in apicidin treated rings and schizonts (data not shown);

this was consistent with the drug induced gene expression of CSP

found in all three stages of the IDC. These data indicate the

likelihood that transcripts induced by apicidin are also translated.

This suggests a lack of translational ‘‘checkpoints’’ in stage specific

protein expression and re-emphasizes the importance of transcrip-

tional control for this process.

Inhibition of HDACs induces expression of transcription
associated proteins

To investigate the association between genetic loci with altered

histone modifications and genes induced/repressed by apicidin we

determined the correlation between the RNA expression and

ChIP-chip data obtained with apicidin treated schizonts. In

particular, we analyzed the overlap between gene sets induced/

repressed by apicidin, in each individual time point and gene sets

with altered histone modifications (Tables 1 and 2). For this

analysis, we used identical SAM threshold cutoffs as described in

Figure 3.

To our surprise, no positive correlation between the studied

histone acetylations and apicidin induced gene expression was

found. Moreover, in the earlier time-points, both H4K8Ac and

H3K9Ac were negatively correlated (P value ,0.0424) with

increased transcription (Table 1). Conversely, a positive correla-

tion (P value ,0.0326) between these two histone modifications

and gene repression was found (Table 2). However, these findings

are consistent with previous studies that show H4K8Ac, H4K12Ac

and H4K16Ac are negatively correlated with increased gene

expression in yeast [33]. Since H3K4me3 has been linked with

gene expression [28] it was not, surprising that demethylation of

H3K4me3 was found to be positively correlated (P value ,0.0143)

with gene repression (Table 2).

However, despite this partial correlation, the majority of the

apicidin induced/suppressed genes did not associate with the four

studied histone modifications. This discrepancy can be explained

by two working hypotheses that are not mutually exclusive. First,

additional histone modifications that act independently or in the

context of each other (e.g. histone code) mediate the apicidin

induced transcriptional changes. Given that post-translational

modifications on over 60 different histone residues have been

detected in eukaryotic systems [4], it will be intriguing to pursue

further studies that analyze their role in regulation of the P.

falciparum life cycle. Second, some of the observed transcriptional

changes could result from secondary effects where apicidin alters

the expression of stage specific transcription factors and other

transcription associated or chromatin binding proteins which in

turn contributes to the de-regulation of the transcriptional cascade

of P. falciparum.

These secondary effects can be especially responsible for the

transcriptional changes in the later experimental time-points of the

6-hour apicidin time course treatment during which the number of

induced/repressed genes increases progressively (Tables 1 and 2).

Recent reports have suggested that the Apicomplexan AP2

(ApiAP2) family of putative transcriptional regulators play a major

role in stage specific gene expression during the Plasmodium IDC

and possibly other developmental stages. In P. falciparum, the

ApiAP2 gene family consists of 26 members each of which shows

stage specific gene expression spanning the IDC [34]. In addition,

Histone Deacetylases in Plasmodium Parasites
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Figure 4. Apicidin induces histone hyperacetylation along promoter regions and protein expression of P. falciparum genes. A.
Distribution of acetylated H4K8 and H4K5 along the 59 flanking upstream and coding regions. CHIPs were carried out with trophozoites treated with
DMSO (0.005%) and apicidin (IC90) for 1 hour and with antibodies directed against either H4K8Ac or H4K5Ac. B. Distribution of H4K8Ac and H3K4me3
along the 59 flanking upstream and coding regions of CSP. CHIPs were carried out with schizonts treated with DMSO (0.005%) and apicidin (IC90) for
1 hour and with antibodies directed against either H4K8Ac or H3K4me3. RTQ-PCR was carried out on immunoprecipated DNA and input genomic
DNA obtained from DMSO and apicidin treated cells. The log2 ratios of H4K8Ac (black bars) and H4K5Ac/H3K4me3 (white/gray bars) were calculated
by using the DDCt method (Ct of apicidin-treated immunoprecipitated target gene - Ct of apicidin-treated input target gene) minus (Ct of DMSO
treated immunoprecipitated target gene-Ct of DMSO treated input target gene). Black box represents PCR fragment encoding the MOE. The insert
boxes show the fold increase in H4K8Ac/H4K5Ac/H3K4me3 in apicidin treated samples, obtained from ChIP-chip data analysis. C and D. Trophozoites
were treated with apicidin (IC90) for 1 hour. Protein samples were analyzed by SDS-PAGE followed by immunodetection using an antibody directed
against H4K8Ac and H4K5Ac (C) or CSP and EBA-175 (D). Molecular weights are shown in kDa. 2 and + refers to DMSO and apicidin treated cells
respectively.
doi:10.1371/journal.ppat.1000737.g004
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two of the ApiAP2 members (PF14_0633 and PFF0200c) were

each found to bind specific DNA motifs found in the promoter

regions of a number of Plasmodium genes with highly coherent

expression patterns [35]. In our study, apicidin affected transcrip-

tion of a number of ApiAP2 genes with the majority of these being

up-regulated in the developmental stage in which they are

normally suppressed (Figure 5A). To determine association

between genetic loci with altered histone modifications and

ApiAP2 genes induced by apicidin we overlapped data from

RNA expression analysis and ChIP-chip carried out with apicidin

treated schizonts. Within 30 minutes of treatment, 8 ApiAP2

genes were significantly induced (.2-fold) and positively correlat-

ed (P value = 0.0078) with a change in at least one acetylation or

methylation in apicidin treated schizonts. Four of these ApiAP2

proteins, PF11_0404, PF14_0079, PF13_0097 and PFL1075w are

normally only expressed during the ring or trophozoite stages. In

addition, 3/8 of these ApiAP2 proteins, PF14 _0271, PFF1100c

and PFD0200c, classified as not expressed during the asexual

erythrocytic stage were also up-regulated in other stages

(Figure 5A). It is tempting to speculate that these proteins might

be responsible for the expression of the exo-erythrocytic genes that

were observed in our study (Figure S2).

In addition, we identified 52 genes that carry at least one

predicted domain linked with DNA binding and/or transcriptional

regulation and whose expression was affected by apicidin in at

least one developmental stage (Figure 5B). Interestingly, 45 out of

the 52 genes are also associated with at least one of the apicidin

induced histone modifications in at least one locus corresponding

to an MOE. We were unable to find a statistically significant

correlation between their change in RNA expression and

association with a specific apicidin induced histone modification.

Although, this is likely due to the heterogeneous character of this

compiled group of 52 proteins, some of these factors may be

involved in the apicidin induced transcriptional changes.

Hierarchical clustering of the composite dataset revealed 21

genes that are linked with H4K8Ac in the schizont stage while

their expression is altered in both schizont and ring stages

(Figure 5B cluster D). Interestingly, this cluster includes

PFL1005c, recently identified as the heterochromatin protein 1

(PfHP1) that binds to subtelomeric chromatin and is linked to

mutually exclusive expression of the major virulence var gene

family [36,37]. The sensitivity of pfhp1 gene expression to

apicidin and its association with the H8K4Ac and demethylation

of H3K4me3 might signal the link between subtelomeric gene

silencing and the general epigenetic regulation in P. falciparum. In

addition, this cluster contains 9 proteins with transcription

factor-like DNA binding domains (zinc-finger (zf)-B-box, zf-CCCH,

zf-DHHC, zf-C2H2, zf-Tim10_DDP, and SNF2), 4 proteins with

chromatin binding domains (High Mobility Group (HMG),

structural maintenance of chromosomes (SMC_N), and Hop1p,

Rev7p and MAD2 (HORMA)), and 4 proteins with RNA

recognition motif (RRM) which were previously implicated in

RNA stability, splicing as well as posttranscriptional regulation

[38].

Similar functional representation was found in the cluster of

genes that are associated with H4K8Ac and over-expressed

predominantly in the trophozoite stage (Figure 5B cluster C).

Interestingly, one of the HDAC homologues (PF14_0690) is

associated with increase in H4K8Ac in apicidin treated tropho-

zoites (Figure 5B cluster C) and schizonts (Figure 5B cluster D).

This suggests an intriguing possibility that epigenetic regulation of

this gene is mediated by the activity of its own protein product.

Table 1. Association between the genetic loci with altered histone modifications and genes induced by apicidin.

Hours 0.5 1 2 4 6

Genes induced 422 P value 595 P value 773 P value 970 P value 1124 P value

H4Ac4 (901) 74 100 124 153 176

H4K8Ac (1450) 95 0.0424 135 0.0184 189 253 277

H3K9Ac (830) 52 69 0.0107 94 0.0151 130 163

H3K4me3 (1102) 76 112 144 194 215

Genes induced by 2-fold or greater, in each individual time point in apicidin treated schizonts was determined. In brackets the number of genes associated with an
apicidin induced histone modification in at least one locus corresponding to an MOE are shown. For each individual time point, the number of genes with both a
change in RNA expression (.2-fold) and associated with an apicidin induced histone modification are shown. Blank boxes refer to P values .0.05. P values represented
as italics correspond to negative correlation.
doi:10.1371/journal.ppat.1000737.t001

Table 2. Association between the genetic loci with altered histone modifications and genes repressed by apicidin.

Hours 0.5 1 2 4 6

Genes repressed 319 P value 466 P value 514 P value 593 P value 737 P value

H4Ac4 (901) 50 85 86 103 127

H4K8Ac (1450) 68 0.0273 140 161 0.0326 210 5.6E-06 259 9.8E-07

H3K9Ac (830) 64 0.025 106 2.5E-05 91 95 102

H3K4me3 (1102) 73 119 0.0074 128 0.0143 150 0.0051 168

Genes repressed by 2-fold or greater, in each individual time point in apicidin treated schizonts was determined. In brackets the number of genes associated with an
apicidin induced histone modification in at least one locus corresponding to an MOE are shown. For each individual time point, the number of genes with both a
change in RNA expression (.2-fold) and associated with an apicidin induced histone modification are shown. Blank boxes refer to P values .0.05. P values represented
as bold or in italics correspond to positive and negative correlation respectively.
doi:10.1371/journal.ppat.1000737.t002
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The third cluster contains 23 MOE representing 11 genes

which are up-regulated by apicidin in one or more developmen-

tal stage and are predominantly associated with H4Ac4/

H3K9Ac (Figure 5B cluster B). Finally, three proteins with

transcription factor-like DNA binding domains and three

proteins linked with structural maintenance of chromosomes

were found to be associated with H4Ac4 or H3K9Ac and down-

regulated in schizonts but up-regulated in rings (Figure 5B

cluster A).

In conclusion, we found positive correlation between the

apicidin induced histone modifications and gene repression but

not with transcriptional activation. However, enrichment of

these apicidin induced histone modifications in gene classes

associated with transcriptional regulation suggests their role in

the observed transcriptional response to the HDAC inhibitor

apicidin. Thus, these proteins are suitable candidates as

transcriptional regulatory factors during the P. falciparum life

cycle.

Figure 5. Inhibition of HDACs induces expression of transcription associated proteins. A. Apicidin disrupts stage specific expression of the
ApiAP2 proteins. B. Apicidin induces expression of transcription associated proteins. MOEs corresponding to individual genes and showing changes
in gene expression and histone modifications induced by apicidin treatment are shown. The specific stage of expression, under normal
developmental conditions, for each ApiAP2 protein is indicated on the right hand side. PfHDAC1 (PFI1260c), PfSir2 (PF13_0152), HDAC homologues
(PF14_0489, PF14_0690 and PF10_0078), circumsporozoite protein (PFC0210c), erythrocyte binding antigen 175 (MAL7P1.176), apical membrane
antigen 1 (PF11_0344), merozoite surface protein 6 (PF10_0346), ApiAP2 proteins (PF14_0633, PFF0200c, PF11_0404, PF14_0079, PF13_0097,
PFL1075w, PF14 _0271, PFF1100c and PFD0200c), heterochromatin protein 1 (PFL1005c), Pfg27 (PF13_0011), Pfs16 (PFD0310w), Pfpeg-3 (PFL0795c),
Pfpeg-4 (PF10_0164), Pf47 (PF13_0248), Pfg377 (PFL2405c), sporozoite surface protein 2 (PF13_0201), SPATR (PFB0570w), Pf52 (PFD0215c), PfGCN5
(PF08_0034), Pfactin 1 (PFL2215w) and PfMYST (PF11_0192).
doi:10.1371/journal.ppat.1000737.g005
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Discussion

The HDAC inhibitor apicidin induced profound transcriptional

changes in all the stages of the P. falciparum IDC. Apicidin altered

the expression of 59.8%, 33.8% and 51.5% of the genome in the

ring, trophozoite and schizont stages respectively (Figure 1). This

transcriptional response of P. falciparum to the HDAC inhibitor

differs considerably from other eukaryotic organisms. Treatment

of yeast cells with TSA was found to parallel the expression profile

of the yeast RPD3 deletion strain (Class I HDAC prototype) with

only a limited number (200–300) of genes exhibiting altered

mRNA levels compared to the wild type strain [39]. Similarly, in

cancer cell lines, HDAC inhibitors affect only limited groups of

genes that typically include no more than 2–17% of the genome

[14,40].

The vast majority of genes regulated by HDAC inhibitors in

mammalian or yeast cells are involved in regulatory functions

including apoptosis, mitosis and cell cycle regulation [39,41].

Surprisingly in P. falciparum, we found no bias in gene groups

affected by apicidin associated with basic metabolic pathways,

cellular pathways or biological processes essential for the parasite’s

development. Another feature of the apicidin-induced transcrip-

tional response is up-regulation of genes that should be under

normal growth conditions only expressed in the following or

preceding developmental stage or during the exo-erythrocytic

stages (sporozoites and gametocytes). These findings conclude that

histone deacetylase activities, that are inhibited by apicidin, play

an essential role in regulation of stage specific gene expression in

Plasmodium parasites.

Apicidin also induced rapid histone hyperacetylation in P.

falciparum parasites. The P. falciparum HATs PfGCN5, involved in

acetylation of H3K9 and H3K14 [21], and PfMYST, implicated

in acetylation of H4K5, K8, K12 and K16 [42] are ideal

candidates to consider for the robust histone hyperacetylation

observed by the apicidin treatments. The apicidin-induced histone

acetylations and transcriptional changes, observed as soon as

1 hour of treatment, shows the highly dynamic role of HDAC and

HAT activities in chromatin remodeling and its profound effect on

transcriptional regulation.

Work by Vogelauer et al [7] showed that deletion of Class I and

II HDACs resulted in HAT induced global histone acetylation,

spanning large chromosomal regions containing both intergenic

and coding regions. They also showed that, promoter targeted

histone modifications occur in a background of global acetylation

and deacetylation that exists in a dynamic equilibrium across the

genome controlling basal transcription. This was further explored

by Katan-Khaykovich and Struhl [8] who showed that reversal of

targeted histone deacetylation or acetylation, upon dissociation of

a repressor or activator, to the initial state of acetylation was

carried out rapidly by the non-targeted global acetylation or

deacetylation respectively. Reversal of targeted acetylation, by

globally acting HDACs, was found to be 3–5 times more rapid

than that of targeted deacetylation. In agreement with this model,

our data strongly implies that in P. falciparum inhibition of HDAC

activity leads to a dramatic increase in global acetylation of

histones and subsequently a general induction of basal transcrip-

tion. This process then leads to a collapse of the transcriptional

cascade of the P. falciparum IDC.

Interestingly, only a partial overlap between the genetic loci

with altered histone modifications and genes induced/repressed by

apicidin was observed. Why did some genes respond transcrip-

tionally to HDAC inhibition while others did not? Previous studies

have shown that in spite of global hyperacetylation of core

nucleosomal histones induced by HDAC inhibitors, this does not

result in global changes in gene expression [40]. Specific histone

modifications recruit binding of non-histone proteins such as

transcription factors [43,44], chromatin remodeling proteins

[36,45] and complexes [43]. Therefore particular combinations

of histone modification patterns can dictate specific biological

functions such as gene transcription or silencing [46]. Presumably,

treatment with HDAC inhibitors would severely alter these histone

modification patterns resulting in changes in the biological

readout. This emphasizes the intricate and multifaceted processes

that control gene expression.

In agreement with our ChIP-chip analysis, Lopez-Rubio et al

[47] have also showed that H3K4me3 has a broad distribution

across the P. falciparum genome and is mainly absent from the

heterochromatin loci found at the chromosome ends. An

interesting finding of this perturbation study has been the decrease

in levels of nucleosomal H3K4me3 (Figure 3C and 4B). This

histone modification, in particular, is intriguing since it recruits

both activating and repressing effector proteins and complexes such

as the yeast SAGA complex, which contains the GCN5 HAT, and

the Sin3-HDAC1 deacetylation complex [48]. How the inhibition

of HDAC activities results in decreased levels of H3K4me3 is yet

unclear.

ChIP-chip analysis of the knockout strain for the PfSir2 showed

that H3K9me3 levels were reduced and H3K9Ac levels were

increased, compared to the wild type strain, in the 59UTR regions

of a subset of up-regulated var and rifin genes [47]. This proposes a

link between Sir2-mediated deacetylation and tri-methylation of

H3K9 [36]. Similarly, in our findings inhibition of either Class I or

II HDAC activities results in reduced H3K4me3 levels on

nucleosomes associated with putative promoter sites (Figure 3C

and 4B). It will be intriguing to identify any cross-talk between

HDACs and tri-methylation of histone 3 lysine 4.

Although the mechanisms of the growth inhibition of Plasmodium

cells by HDAC inhibitors need further studies, our data suggest

that the general de-regulation of the global transcriptional

regulation might be one of its important (if not the most

important) component. The profound effect of the HDAC

inhibitor on P. falciparum growth suggests a high potential of

HDAC enzymes as molecular targets for malaria intervention

strategies [17]. Given the importance of transcriptional regulation

in other Plasmodium developmental processes such as hepatocyte

invasion and schizogony [49] and gametocytogenesis [50], HDAC

inhibitors might provide good candidates for chemotherapeutic

development for these stages.

Materials and Methods

Parasite culture and drug treatment
The P. falciparum 3D7 clone was cultured and synchronized as

described by Bozdech et al [51]. Apicidin Fusarium sp (Calbio-

chem) was prepared as a stock in 100% di-methyl sulfoxide

(DMSO). Synchronized P. falciparum cells, at 5% parasitemia and

2% hematocrit, were treated with 70nM apicidin. This concen-

tration of 70nM apicidin represents the median IC90 value

determined from the individual IC90 values calculated for each

stage of the IDC. The IC90 concentration resulted in 90%

reduction of growth (IC90), compared to matched DMSO

(0.005%) treated controls, that was monitored by the number of

newly formed rings after the completion of the IDC (data not

shown). Rings, trophozoites and schizonts were grown in the

presence of either DMSO or apicidin for 48, 32 and 18 hours

respectively and then examined by Giemsa staining, Cells were

harvested by centrifugation at 1,500g for 5 min, washed in

phosphate buffered saline (PBS) and pelleted at 1,500g for 5 min.
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Cell pellets were rapidly frozen in liquid nitrogen and stored at

280uC.

RNA expression analysis by microarray hybridization
Synchronized P. falciparum cells: rings (6–14 hpi), trophozoites

(20–28 hpi) and schizonts (34–42 hpi) were treated with either

DMSO (0.005%) or 70nM apicidin as described above. Cells were

harvested at 0.5, 1, 2, 4 and 6 hours post treatment. Total RNA

extraction, amino-allyl cDNA synthesis and DNA microarray was

carried out as described previously [51]. cDNA, synthesized from

each time point sample, was hybridized against a 3D7 reference

pool which was assembled from equal mass of RNA from samples

representing 8 hour interval stages throughout the IDC. A P.

falciparum genome-wide microarray containing 10166 MOEs

representing 5363 coding sequences was used for this study [18].

The raw microarray data included mRNA abundance ratios

between each time point sample and the 3D7 reference pool.

These data were subjected to linear normalization and filtered as

follows: signal intensity . background intensity + 2 6 standard

deviation of background intensity, recorded for each MOE

individually. MOE ratios were averaged for genes with more than

one MOE (Dataset S1). Hierarchical clustering was carried out

using log-transformed ratios in Gene Cluster and visualized using

Java Treeview [51].

Immunodetection of altered histone modifications and
induced protein expression

Synchronized ring, trophozoite and schizont stage parasites

were treated with either DMSO (0.005%) or 70nM apicidin as

described above. Cells collected at 1, 2, 3 and 4 hours post

treatment were lyzed in saponin (0.15%) and washed three times

with PBS. The isolated parasites were resuspended directly in SDS

sample buffer, incubated at 100uC for 10 min and centrifuged at

16,000g for 10 min. The supernatant was analyzed by 15% SDS-

PAGE and transferred onto nitrocellulose membranes. Antibodies

directed against core histone 4, H3K9Ac, H4K8Ac, H4K5Ac,

H4Ac4 and H3K4me3 were obtained from Upstate Biotechnol-

ogy. Antibodies against core histone 3 and Pfactin 1 were obtained

from Abcam (1791) and Sigma (A2066) respectively. Antibodies

against the P. falciparum CSP (MRA-24) and EBA175 (MRA-2)

were obtained from the Malaria Research and Reference Reagent

Resource Center. The polyclonal PfHDAC1 antiserum was

generated by immunizing rabbits with a peptide corresponding

to amino acids 421–435, STTHHLRRKNYDDD, of PfHDAC1

(PFI1260c). The peptide had a N-terminal cysteine added for

conjugation purposes (i-DNA Biotechnology). Horseradish perox-

idase conjugated secondary antibodies and an enhanced chemi-

luminescence kit were used according to manufacturer’s instruc-

tions (GE Healthcare).

Chromatin immunoprecipitation and quantitative real-
time PCR

Synchronized trophozoite and schizont stage parasites were

treated with either DMSO (0.005%) or 70nM apicidin. After

1 hour of treatment, the cells were lyzed in saponin (0.15%) and

washed three times with PBS. Chromatin was crosslinked by

incubating the isolated parasites with formaldehyde to a final

concentration of 0.5% for 10 min at room temperature.

Immediately after, the parasites were treated with glycine

(0.125M final concentration) and washed twice with cold PBS.

For nuclei isolation, parasites were resuspended in buffer A

(25mM Tris-HCl pH 7.8, 1mM EDTA, 0.25% Nonidet P-40,

protease inhibitor cocktail (Roche), 2mM PMSF), incubated on ice

for 1 hour and then lyzed by 200 strokes in a pre-chilled

homogenizer. The nuclei were pelleted by centrifugation at 2,300g

for 5 min. In order to obtain DNA fragments in the range of 200

to 1000 bp, the nuclei was resuspended in 200 ml of sonication

buffer (1% SDS, 10mM EDTA, 50mM Tris, pH 8.0), incubated

on ice for 15 min and then sonicated 6 times for 10 seconds at

25% amplitude with 1 min intervals between each pulse (Sonics

Vibra Cell). After centrifugation at 16,000g for 10 min the

supernatant was diluted 10-fold in ChIP Dilution Buffer (Upstate

Biotechnology). An aliquot of 100 ml was kept as input DNA and

the remainder was subjected to chromatin immunoprecipitation as

described by Upstate Biotechnology ChIP Assay Kit (#26225).

For each antibody tested a 1:200 dilution was used.

An equal volume of immunoprecipitated DNA from DMSO

and apicidin treated samples was amplified using random primers

[52]. From each sample equal concentrations of the amplified

DNA was co-hybridized against an input pool DNA. This input

pool DNA was assembled from equal mass of input DNA from

apicidin and DMSO treated samples. A P. falciparum genome-wide

microarray representing 5363 coding sequences was used [18].

The raw microarray data included ratios between the immuno-

precipitated sample and the input pool DNA. These data were

filtered as follows: signal intensity . background intensity + 2 6
standard deviation of background intensity, recorded for each

MOE individually. To identify MOEs with statistically significant

changes in levels of acetylation and methylation the filtered data

was analyzed by the method Significance Analysis of Microarrays

(SAM) [30]. SAM assigned a score to each MOE on the basis of

change in acetylation or methylation level relative to the standard

deviation of repeated measurements for that MOE. Various SAM

threshold cutoffs (D) were used to generate sets of MOEs showing

significant changes for each histone modification (supporting

information). For each set the percentage of MOEs identified by

chance, the false discovery rate (FDR), was determined as 0.11%

or less.

RTQ-PCR were carried out, with immunoprecipated and input

DNA obtained from DMSO and apicidin treated cells, using the

Power SYBR Green PCR Master Mix (Applied Biosystems)

according to manufacturer’s instructions. The log2 ratios were

calculated by using the DDCt method (Ct of apicidin-treated

immunoprecipitated target gene - Ct of apicidin-treated input

target gene) minus (Ct of DMSO treated immunoprecipitated

target gene-Ct of DMSO treated input target gene), where Ct is

the threshold cycle.

Supporting Information

Dataset S1

Found at: doi:10.1371/journal.ppat.1000737.s001 (1.19 MB

TXT)

Figure S1 Functional classes affected by apicidin treatment.

Functional groups significantly associated (P value ,0.05) with

induced (A) and repressed (B) expression (.2-fold) by apicidin in

all three stages of the P. falciparum IDC are shown. The functional

annotations based on Malaria Parasite Metabolic Pathways

(MPMP) are used. The P values are shown as logarithm values

with base 10.

Found at: doi:10.1371/journal.ppat.1000737.s002 (0.39 MB TIF)

Figure S2 Apicidin treatment alters expression of gametocyte

(A) and sporozoite (B) genes in asexual blood stages. Highly

synchronized P. falciparum cells: rings (6–14 hpi), trophozoites (20–

28 hpi) and schizonts (34–42 hpi) were treated with 70nM

apicidin. RNA samples were collected at 0.5, 1, 2, 4 and 6 hours
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post treatment. cDNA, synthesized from the RNA samples, was

labeled with Cy5 and hybridized against the Cy3 labeled 3D7

reference pool. The data include mRNA abundance ratios

between each time point sample and the 3D7 reference pool.

The data was filtered as described in material and methods. The

first 500 genes showing the highest mRNA abundance in the

publicly available P. falciparum gametocyte and sporozoite gene

expression datasets [2] were analyzed within our apicidin

perturbation dataset. Genes with a 2 or greater fold difference in

expression, in at least one time point, in apicidin treated rings,

trophozoites or schizonts were shown.

Found at: doi:10.1371/journal.ppat.1000737.s003 (0.62 MB TIF)

Table S1 The effect of apicidin treatment for 1 hour on four

histone modifications (H4K8Ac, H3K9Ac, H4Ac4 and

H3K4me3) in the schizont stage was studied. In addition, the

effect of apicidin treatment for 1 hour on H4K8Ac in the

trophozoite stage was also studied. Chromatin immunoprecipita-

tions in conjunction with microarray analysis (ChIP-chip) were

carried out.The method Significance Analysis of Microarrays

(SAM) was used to statistically discriminate MOEs showing altered

histone modifications induced by apicidin treatment. SAM

assigned a score to each MOE on the basis of change in

acetylation or methylation level relative to the standard deviation

of repeated measurements for that MOE. Different SAM

threshold cutoffs were used to generate sets of MOEs showing

significant changes for each histone modification. For each set the

percentage of MOEs identified by chance, the false discovery rate

(FDR), was determined. The significance of the overlap between

the different sets of MOEs corresponding to each of the histone

modifications was also determined. Overlap numbers and P values

shown in red correspond to positive correlation.

Found at: doi:10.1371/journal.ppat.1000737.s004 (0.02 MB XLS)
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