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Abstract

INTRODUCTION: Early detection of Alzheimer’s disease and cognitive impairment

is critical to improving the healthcare trajectories of aging adults, enabling early

intervention and potential prevention of decline.

METHODS: To evaluate multi-modal feature sets for assessing memory and cog-

nitive impairment, feature selection and subsequent logistic regressions were used

to identify the most salient features in classifying Rey Auditory Verbal Learning

Test-determinedmemory impairment.

RESULTS: Multimodal models incorporating graphomotor, memory, and speech and

voice features provided the stronger classification performance (area under the

curve = 0.83; sensitivity = 0.81, specificity = 0.80). Multimodal models were superior

to all other single modality and demographics models.

DISCUSSION: The current research contributes to the prevailing multimodal profile

of thosewith cognitive impairment, suggesting that it is associatedwith slower speech

with a particular effect on the duration, frequency, and percentage of pauses compared

to normal healthy speech.
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1 BACKGROUND

Dementia causes substantial loss of health and quality of life and

represents a significant health burden on individuals, their families,

caregivers, and society at large.1 Dementia is currently themost costly

health condition in the United States.2 Globally, the cost of caring

for those with dementia was $1.3 trillion in 2019 and is expected

to reach $3 trillion in 10 years’ time.3,4 While pharmaceutical inter-
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ventions like Lecanemab and Donanemab have recently demonstrated

measurable slowing of disease progression, there are currently no

widely available disease-modifying treatments for Alzheimer’s disease

(AD).5–8 When these treatments eventually do become widely avail-

able, their risk profile is such that assessment of cognitive impairment

is warranted before prescribing.9 In addition to recent pharmaceuti-

cal successes, there is also strong scientific evidence which indicates

that early engagement in lifestyle modification strategies like physical
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activity and social interaction amongst others can reduce the risk of

developing dementia by asmuch as 40%.10,11 Thus, the early detection

of cognitive impairment is critical to improving the healthcare trajec-

tories of aging adults, enabling early intervention and management, as

well as potentially preventing or mitigating disease progression.

Traditional cognitive screening tools (e.g., Mini Mental State Exam

(MMSE), Montreal Cognitive Assessment (MoCA), or MiniCog) lack

sensitivity in populations at risk of or at mild stages of cognitive

decline.12–16 Patients often present with cognitive complaints long

after subtle symptoms began, thus these traditional tests are often

administered after the onset of overt symptoms. Traditional assess-

ments also do not easily fit the time constraints of primary-care

settings-which are frequently at the forefront of cognitive screening-

without significant workflow modifications. Previous research has

indicated that a reliable, objective, digital assessmentmay significantly

increase the accuracy in identifying early cognitive impairment and

those likely to convert to AD.17

Recently, the Digital Clock and Recall (DCR) has emerged as a

novel analysis of graphomotor and delayed recall memory perfor-

mance. The DCR, a medical device registered in the United States,

European Union (EU), and Canada, combines a digital clock drawing

test (DCTclock), with a three-word immediate anddelayed verbal recall

test.18–20 Importantly, unlike theMMSE, MoCA, or MiniCog which are

administrator-scored and demonstrate low inter-rater agreement; the

DCR enables multimodal assessment of the process through which

an individual performed these cognitive tasks, as opposed to only

observing the final outcome. Cognitive domains assessed by the DCT-

clock include drawing efficiency, simple and complex motor function,

information processing, visuospatial reasoning, along with the explicit

assessment of verbal memory. The DCTclock can detect early signs

of cognitive impairment by capturing a wide variety of cognitive

and motor metrics during the clock-drawing process using machine

learning (ML) algorithms.20,21

With the inclusion of a verbal recall task, during which speech

utterances are digitally recorded and analyzed, speech timing and

acoustic voice features may be included in the analysis of cognitive

status. Speech and voice feature analysis is feasible, scalable, and cost-

effective compared to comprehensive neuropsychological batteries

which can take several hours to complete. Speech and voice metrics

have shown promise in classifying individuals with cognitive impair-

ment from their cognitively unimpaired (CU) counterparts in clinical

and research settings.22–24 Further, high accuracy has been reported

in differentiating CU individuals and those with AD (88%–97% accu-

racy) using various ML models that incorporate predominantly speech

and voice features.25

The current investigation evaluated the clinical utility of combining

multiple modalities including speech and voice, graphomotor features,

and verbal recall accuracy into a brief, objective cognitive assessment.

We propose a novel multimodal machine learning model, known as the

DCRP (DCR plus voice and speech features) for classifying memory

impairment using the Rey Auditory Verbal Learning Test (RAVLT) long

delay score. We also identified the set of features most important for

classifyingmemory and global cognitive impairment.

RESEARCH INCONTEXT

1. Systematic review: Current literature was reviewed

using traditional search engines (e.g., PubMed, Embase,

CIELO). This literature review revealed limited but strong

evidence that dementia and cognitive impairment may

be associated with speech timing and acoustic voice pat-

terns. However, certain inconsistencies were seen in the

manner in which analysis was performed and very few

results were available on the analysis of short, verbal

recall tasks usingmultimodal modeling approaches.

2. Interpretation: The current research suggests that accu-

rate predictions ofmemory impairment canbemade from

a 3 minute digital cognitive assessment. It also suggests

that voice and speech features extracted from as few

as three words can aid in the prediction of cognitive

impairment.

3. Future directions: Future work in this field should inves-

tigate the additional predictive accuracy of multimodal

analyses including speech and voice features in the pre-

diction of blood- and brain-based biomarkers of amyloid

and tau burden. It should also investigate these features

longitudinally, as well as in conjunction with behavioral

and pharmaceutical interventions.

2 METHODS

A sample of 922 older adults (537 female, aged 72.0 ± 6.7 years) com-

pleted a battery of cognitive and motor function tests as part of the

Bio-Hermes study on brain health (Table 1). The Bio-Hermes study,

managed by the Global Alzheimer’s Platform (GAP), investigates state-

of-the-art methods in brain health research.26 Ethical approval was

granted by each institution participating in the GAP consortium. All

participants provided written informed consent to participate in the

study. Inclusion criteria were adults 60–85 years of age, willing to

undergo an amyloid PET scan within 60 days of signing informed con-

sent; have a study partner who, in the investigator’s judgment, has

sufficient and frequent contact with the participant and is able to pro-

vide accurate information regarding the participant’s cognitive and

functional abilities; willing to comply with all study procedures as out-

lined in the informed consent, including blood sampling; willing to be

contacted for possible participation in clinical research trials once their

participation in this study ends, fluent in the language of the tests used

and the test site, and with aMMSE score of 20–30 at screening. Exclu-

sion criteria were extensive and based on underlying conditions. In

short, exclusion criteria included participants who, in the opinion of

the Site Principal Investigator, have serious or unstable medical con-

ditions that would prohibit their completion of all study procedures

and data collection; serious or unstable medical conditions that would

likely preclude their participation in an interventional research trial;
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TABLE 2 RAVLT age-adjusted delayed recall scores alongside
mean and standard deviation delayed recall score.

Cognitive status Score (Mean± SD)

Target Impaired Unimpaired Impaired Unimpaired

RAVLT 433 (54%) 509 (46%) 2.8± 1.8 8.5± 2.3

Note: Percentages indicate the proportion of the total number of partici-

pants.

Abbreviation: RAVLT, Rey Auditory Verbal Learning Test.

are unable to undergo amyloid PET; have reported or have a known

negative amyloid PET scan in past 12 months; participants with self-

reported, untreated conditions such as vitamin B12 or folate deficiency

or bladder infections; history of stroke or seizures within 1 year of

screening visit; participants with history of certain cancers within the

past 5 years; known or suspected alcohol or drug abuse or depen-

dence; a Geriatric Depression Scale (GDS) score greater than or equal

to 8; and participants who are unable to complete cognitive testing

due to inadequate visual or auditory acuity. More information can be

obtained by contacting the GAP consortium and in recently published

material.26–28

Each participant received a clinical examination which produced a

cohort status of Cognitively Normal, Mild cognitive Impairment (MCI),

or Alzheimer’s Disease Related Dementia (ADRD) based on physician

clinical judgment, objective evaluation of functional impairment on

the Functional Activities Questionnaire, and results of the RAVLT29–31

and the MMSE.32 Participant scores on the RAVLT (age-adjusted long

delay) andMMSE (total score) are detailed in Table 2. The age-adjusted

RAVLT long delay ranges from 0 to 15 and is scored as the num-

ber of words recalled after a roughly 20-minute delay from the first

five immediate recall trials. For the purposes of this study, the sam-

ple was classified into cognitively “impaired” and “unimpaired” based

on the RAVLT long delay scores. Impairment on the RAVLT long delay

was defined as at least one standard deviation below the age-adjusted

norms.33–36 Included in the examinationwas theDCR (three-word ver-

bal recall and clock drawing). The participants’ voices were recorded

and analyzed for acoustic and speech features during both immediate

and delayed three-word recall tasks. Cognitive testing was adminis-

tered via an iPad Pro (11″, 4th Generation, Apple, CA, USA), and data

including voice recordings were encrypted on the tablet and uploaded

to a secure cloud server.

T-test statistic results for “Age” and Chi2 statistics (p values) for

“Gender” and “Education” are provided for significant differences

between RAVLT-determined cognitive impairment groups (Table 1).

These results are consistent with previous literature and RAVLT norms

established in the field.33,37

2.1 Temporal and acoustic analysis

Audio was time-segmented and transcribed using Amazon Web Ser-

vices (AWS) Automatic Speech Recognition (ASR) platform “Ama-

zon Transcribe” (www.aws.amazon.com/transcribe/). Word-level time-

stamped transcriptions are then used to determine verbal recall

accuracy and dynamics of speech rate and timing. The Librosa package

(www.librosa.org/) was applied to three-word recall audio to extract

acoustic features of fundamental frequency (e.g., mean, standard devi-

ation, minimum, maximum, and jitter), loudness (e.g., mean, minimum,

maximum, standard deviation, and shimmer). Metrics of speech tim-

ing (word and syllable rates, overall time to complete speech segments,

etc.) were calculated using the AWS ASR output.25,38–40 The Librosa

analysis package allows for thedetectionof speechobtained fromdeci-

bel (dB) and frequency (Hertz; Hz) bands where speech segments are

most likely found (30–80 dB and 70–500 Hz threshold bands were

used in this analysis; Figure 1). Speech timing features included initi-

ation time, speech rate per word (total audio time/# of spoken words),

speech rate per syllable (total audio time/no. of spoken syllables), and

short and long silent speech pauses. Importantly, long silent speech

pauses (sections of audio that did not reach the 30 dB threshold) in

the current research were considered pauses of 2 seconds or longer,

occurring between the start and end of the speech. These pauses were

included in the analysis only if they occurred during speech and did

not include pauses before the speech began or after the final word

was produced. This ensures a “true” long silent speech pause metric.

Short silent speech pauses were those shorter than 2 seconds long.

The resultant output of the semi-automated analyses was manually

reviewed for accuracy. A complete list of the temporal and acoustic

features extracted from speech are listed in Tables S1 and S2. Speech

timing and acoustic voice features obtained from the audio were sub-

sequently included as candidate features for selection to the DCRP

model, to classify cognitive impairment status.

2.2 Clock drawing analysis

DCTclock derived features contributed significantly toDCTclock, DCR,

and DCRP models. Those found in each model’s feature set in Table 3

were selected from252 drawing position, timing, and drawing rate fea-

tures originally produced by the DCTclock algorithm. This algorithm

utilizes a hierarchy of low-level features which are aggregated in a

series of eight composite scales: four for the Command Clock (i.e.,

drawing a clock with a particular time without a visual cue; COM) and

four for the Copy Clock (i.e., redrawing a clock on the basis of a visual

example; COP). These composite features are then themselves aggre-

gated into a single DCTclock score (0–100), which is used to classify

a participant’s overall cognitive status. Some of these composite fea-

tures were recurrently selected in the three aforementioned models,

including COM Component Placement (i.e., a feature measuring the

spatial relationship between command clock drawing attributes), COP

and COM Information Processing (i.e., copy and command clock fea-

tures used to assess non-motor cognitive function, reliant on low-level

features such as stroke latency and the rate of time spent thinking

rather thandrawing), andCOMSpatial Reasoning (i.e., a feature assess-

ing the geometric properties of the command clock drawing, including

the circularity of the clock face aswell as the overall size andposition of

the clock on the tablet canvas). A complete list of the drawing features

extracted from the DCTclock are listed in Table S3.
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F IGURE 1 Above depicts the waveform over time and the estimated speech segments (in green) based on dB level analysis (y axis) over time (x
axis; in seconds). The red trace follows fluctuations in dB above the speech threshold. A sample of DCTclock drawing (below left) is provided and
scored in terms of drawing efficiency, simple and complexmotor, information processing, and spatial reasoning (below right). This individual was
classified as having cognitive impairment. DCTclock, digital clock test.

TABLE 3 Ranked feature importance sets for DCRP, DCR, andDCTmodels in predicting age-adjusted RAVLT scores.

Model DCRP DCR DCT

Features ∙ DCR score
∙ CorrectWords Count Recall
∙ COMComponent Placement
∙ COMSpatial Reasoning
∙ DCT score (0-100)
∙ COP Log Stdev. Latency
∙ COMLongest Latency
∙ COP Information Processing
∙ COM Information Processing
∙ Gender
∙ COP Log Relative Long Latency
∙ Jitter PPQ5
∙ F0Mean
∙ Jitter
∙ COMStroke Count Conformity
∙ Long Silent Speech Pause Count
∙ Jitter Absolute

∙ DCR score
∙ CorrectWords Count Recall
∙ COMComponent Placement
∙ COMSpatial Reasoning
∙ DCT score (0-100)
∙ COMLog Stdev. Latency
∙ COM Information Processing
∙ COMAverage Latency
∙ COP Information Processing
∙ Gender
∙ COP Log Longest Latency
∙ COP Log Count Long Latencies
∙ COP Log Relative Long Latency
∙ COMPercent Think TimeOne-Side
∙ COMPercent Think Time
∙ COP Spatial Reasoning
∙ COPPercent Think TimeOne-Side
∙ COPPercent Ink Time

∙ COMComponent Placement
∙ COMSpatial Reasoning
∙ DCT score (0-100)
∙ COMLog Stdev. Latency
∙ COM Information Processing
∙ COMAverage Latency
∙ COP Information Processing
∙ Gender
∙ COP Log Longest Latency
∙ COP Log Count Long Latencies
∙ COP Log Relative Long Latency
∙ COPPercent Think TimeOne-Side

Note: Italics indicate the speech timing and acoustic voice features found to contribute to themodel predictive accuracy.

Abbreviations: Abs., absolute; COM, command clock; COP, copy clock; DCRP, DCR plus voice and speech; DCT, DCTclock™; RAVLT, Rey Auditory Verbal

Learning Test.

2.3 Preprocessing and modeling

To ensure a balanced composition of impaired and unimpaired partici-

pants in the test set the datasetwas split 80–20 (N=754,N=188) into

training and test sets. To normalize the data, the training setwas fit and

transformed using amin-max scaler for a range of 0–1. The test setwas

then transformed using the same scaler previously fit to the training

set. To handle missing data via imputation, a “missForest” iterative
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imputation method was used, whereby a random forest regressor was

employed to impute all missing values for each feature. This was done

iteratively to support imputation accuracy.41 As with normalization,

imputation was fit to the training set, and then used to transform both

the training and test sets.

Logistic regression with feature selection and regularization was

used for each classifier model in the study. DCRP, DCR, and DCTclock

models were subject to hyperparameter tuning, determined using the

mean results of a 10-fold cross-validation (10 CV) grid search method

on the training set. For smaller feature set models (i.e., Age, Gender,

Age and Gender, RAVLT), an L2 regularization penalty (Ridge) was

applied, whereas for larger feature set models (i.e., DCRP, DCR, DCT-

clock), an elastic net regularization penalty was used with varying L1

ratio values. A complete set of the hyperparameters chosen for each

model are listed in Table S4.17

2.4 Statistical feature selection

Features for DCRP (DCR plus speech and voice features), DCR, and

DCTclock models were pruned first on the basis of relevance and

redundancy, then further pruned using a 10 CV recursive feature elim-

ination method on the training set. For all models, feature selection

was conductedwithin the innermost loop of cross-validation to ensure

unbiasedmodel selection.

First, features with below 0.15 Pearson correlation with the tar-

get were removed from the feature set. Passing features were then

assessed for any high correlation across all features in the set; any fea-

tures which had correlation above 0.99 with another feature of higher

correlation with the target were subsequently removed as well. The

remaining features were then assessed for their rate of missing values;

anywith a rate above 0.05were then individually assessed for high cor-

relationwith features outside of the set, specifically thosewith a lower

rate of missing values. If other features were discovered to have a cor-

relation above 0.75 with the high missing value feature, said features

were then reincorporated into the feature set. If no other features

were foundmeeting these requirements, and the assessed feature had

a rate ofmissing values in excess of 0.10, then this featurewas removed

from the final set.

The final set of features was then pruned through a process of

recursive feature elimination on the training set, where features were

individually dropped from the set if their inclusion did not demon-

strably affect the model’s area under the curve (AUC) score when

predicting the target, that is, age-adjustedRAVLT long delay score.33,42

DCRP, DCR, and DCTclock models had a subset of all features which

were first composed using RAVLT long delay score as a target (Table 3.).

2.5 Missing data

While there were no missing values in the outcome variable, 58 indi-

viduals, particularly those with cognitive impairment, were not able to

recall any of the words in the delayed recall task. Timing or acoustic

values were not calculated in these cases; thus, values were imputed

based on observed covariates using the missing forest algorithm in

Python v3.9.41 The acoustic voice timing features selected are robust

to environment noise and recording equipment.43,44

3 RESULTS

Results of logistic regression classifier models using missing forest

imputation demonstrated that incorporating features across multi-

ple modalities increased cognitive classification accuracy with each

subsequent model. The model including the DCTclock graphomotor

metrics, DCR verbal recall accuracy, and DCRP provided the most

accurate means of classifying cognitive impairment. Age and gender

models were also evaluated for reference and benchmarking purposes

(Table 4).

The speech timing and acoustic voice features were shown in the

final model to be most strongly associated with cognitive impairment

as determined by the RAVLT using logistic regression are displayed in

Table 3. Long silent speech pause countwas themost important speech

timing feature in classifying cognitive impairment. Acoustic voice fea-

tures related to jitter (peak-to-peak frequency variations) and average

fundamental frequency (perceptually equivalent to vocal pitch) met

the criteria for inclusion in the DCRP model for classifying cognitive

impairment as defined by RAVLT long delay (Table 3).

Figure 2 details the results of logistic regression models used to

predict RAVLT determined cognitive impairment (Table 4). AUC of the

receiver operating characteristic (ROC) curve, classification accuracy

(Acc), sensitivity (Sens), and specificity (Spec) were used to evalu-

ate the model performance. Sens provides a percentage of impaired

individuals correctly identified where Spec represents the percentage

of individuals correctly identified as unimpaired. Finally, positive and

negative predictive values (PPV and NPV) indicate the proportions

of correct positive and negative memory impairment classification

(Table 4).

Results indicate that features included in the DCRP speech and

voice model provided the highest classification value (AUC = 0.83;

Sens = 0.81, Spec = 0.80). This is an improvement over the DCR

(AUC = 0.82; Sens = 0.80, Spec = 0.79), and DCTclock of only

(AUC = 0.77; Sens = 0.75, Spec = 0.70) model feature sets. The DCRP

outperforms all single domain and demographics models as predictors

of RAVLT-determinedmemory impairment (Table 4).

4 DISCUSSION

The novel multimodal approach incorporating analysis of graphomo-

tor, verbal recall, speech, and voice features results in higher Sens

and Spec than single modality and demographic statistical models in

classifying cognitive impairment as determined by the RAVLT. This

novel multimodal approach results in incrementally higher accuracy in

classifying cognitive impairment. A comparison of classification accu-

racy betweenmodels based ondemographics, DCTclock features alone
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TABLE 4 Classifier performance for DCRP, DCR, DCT, and age+ gendermodels in predictingmemory impairment determined by age-adjusted
RAVLT scores.

Model Acc. AUC Sen. Spec. PPV NPV Thresh.

DCRP 0.80

[0.75, 0.86]

0.83

[0.77, 0.89]

0.81

[0.73, 0.90]

0.80

[0.73, 0.87]

0.85

[0.79, 0.92]

0.75

[0.65, 0.84]

0.53

DCR 0.79

[0.74, 0.86]

0.82

[0.76, 0.88]

0.80

[0.71, 0.89]

0.79

[0.71, 0.87]

0.84

[0.77, 0.91]

0.74

[0.63, 0.83]

0.55

DCT 0.72

[0.65, 0.79]

0.77

[0.70, 0.84]

0.75

[0.65, 0.85]

0.70

[0.61, 0.78]

0.79

[0.71, 0.88]

0.65

[0.54, 0.75]

0.45

Age+Gender 0.62

[0.55, 0.69]

0.67

[0.60, 0.75]

0.75

[0.65, 0.84]

0.52

[0.43, 0.62]

0.74

[0.64, 0.83]

0.54

[0.44, 0.63]

0.40

Age 0.51

[0.44, 0.58]

0.59

[0.50, 0.67]

0.82

[0.73, 0.90]

0.28

[0.19, 0.36]

0.68

[0.54, 0.82]

0.46

[0.38, 0.54]

0.44

Gender 0.63

[0.57, 0.70]

0.63

[0.56, 0.70]

0.59

[0.47, 0.69]

0.67

[0.58, 0.76]

0.69

[0.60, 0.78]

0.57

[0.46, 0.68]

0.39

Abbreviations: ACC, accuracy;DCR, digital clock and recall; DCRP,DCRplus voice and speech;DCT,DCTclock™; NPV, negative predictive value; PPV, positive

predictive value.

F IGURE 2 ROC curves for logistic regressionmodels, evaluated binary classification of cognitive impairment as determined by the RAVLT long
delay. AUC, area under the curve; DCR, digital clock and recall; DCRP, Digital Clock and Recall Plus Voice and Speech; DCT, digital clock test
(DCTclock); RAVLT, Rey Auditory Verbal Learning Test; ROC, receiver operating characteristic.
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(graphomotor), DCR metrics (DCTclock and verbal recall), and DCRP

(DCR, speech timing, andacoustic analysis of verbal recall) revealed the

highest Sens, Spec, PPV, and NPV values for DCRP models in impair-

ment on the RAVLT long delay. Thus, the addition of several advanced

speech and voice features extracted from a short verbal recall task

to memory and global cognitive assessment should be considered in

impairment classificationmodels.

Acoustic features, largely language independent, can be altered in

individuals with cognitive impairment and can be referenced longi-

tudinally to show decline in performance.45 This study, however, is

one of a very small number of studies to attempt to classify mem-

ory and cognitive impairment using a speech task of a maximum of

only three words. The acoustic features are more commonly extracted

from longer speech samples such as picture description or sponta-

neous speech tasks, the acoustic features identified in the short verbal

recall task of the DCRP are consistent with those noted in other

studies.17,25,30,36 Acoustic voice timing features included in this anal-

ysis have been shown to be reliable to changes in environment noise

and recording equipment, making them ideal for in-clinic and mobile

screening (feature sets andmean (SD) values detailed in Table S5).43,44

In particular, five speech timing and acoustic voice features extracted

from the DCRP verbal recall carried substantial importance in pre-

dicting memory impairment on the RAVLT. The acoustic features that

provided the most contribution to the multimodal cognitive impair-

ment classification model were the average fundamental frequency,

jitter, jitter Period PerturbationQuotient (PPQ5), and absolute-valued

jitter (Table 4).

Fundamental frequency, a correlate of voice pitch, has been shown

in a number of studies to predict MCI and ADRD.46–48 These stud-

ies have investigated fundamental frequency (F0) and cycle-to-cycle

characteristics of frequency revealing that individuals with cognitive

impairment tend to have lower mean of F0 and higher cycle-to-cycle

variations. From a real-world perspective, these acoustic features

result in lower sounding vocal pitch and a flat, monotonous affect,

respectively. This research has shown consistently lower fundamental

frequency (and range of frequencies) in individuals with varying lev-

els of cognitive impairment. Clinically, this results in a flat affect, with

fewer fluctuations in the tone of the voice.

Jitterquantifies the cycle to cycle (peak topeak) variationsof speech

frequencies.40,44 Disordered jitter output is commonly seen in dyspho-

nic voices where the vocal folds vibrate in an abnormal way (or are

very breathy). Jitter PPQ5 and absolute-valued jitter compare indi-

vidual voice signal periods with the five speech cycles that surround

them. Generally, higher jitter values correlate with rougher sounding,

breathy voice quality that sounds less natural and more disordered

than traditional voice.49,50 Several researchers suggest that mean,

absolute, andPPQ5 jitter tend to behigher in individualswith cognitive

impairment.25,51,52 Perceptually, an increase in these jittermeasures is

associated with breathy, strained voices that lack stability.50 Increased

vocal instability also affects the overall perception of voice quality.

The speech timing and acoustic voice features shown to be most

associated with cognitive impairment in this study are consistent with

previous literature related to predicting MCI and ADRD.25 Research

indicates that the speech of individuals with cognitive impairment is

slower, with more frequent silent pauses both long and short.23,25,53,54

Most consistently, there is a higher percentage, count, length, and rate

of silent pauses especially compared to speech content. The number

of long pauses has evidence of being negatively impacted by cognitive

impairment in anumberof different speechcontexts: reading, sentence

repetition, picture description, and spontaneous speech.25,53,55,56 The

current research demonstrates increased number and length of silent

pauses in a relatively short three-word recall context for individuals

with cognitive impairment.

The ROC curves in Figure 2 demonstrate the ability of each sta-

tistical model in classifying memory impairment as determined by

the age-adjusted RAVLT.33,42 These findings are of increasing clinical

importance due to recent research indicating a wide range of Sens and

Spec for commonly used tests like theMMSE,MiniCog, andMoCA, par-

ticularly in the early identification of MCI.15 Arevalo-Rodrigez et al.

published a systematic review of the MMSE’s utility in early detection

of cognitive impairment in AD, stating: “Although the MMSE [. . . ] cov-

ers multiple cognitive domains at once, it is necessary to remark that

this test was not developed to identify the early stages of dementia

or even to predict the development of dementia in the long term. In

our review, [. . . ] the descriptive data provided by the studies showed

that neither the sensitivity nor specificity exceeded 80% at the same

time.”15 They then called for cautioned use of the commonly used

cognitive assessments and recommended a more specialized cognitive

screening tool.

Besides the statistical model based on demographics, the DCTclock

only model demonstrated the lowest performance of the cognitive

assessments included in this analysis. However, the DCTclock grapho-

motor features proved crucial in cognitive impairment classification

both when recall and speech and voice analysis were included in the

models (Table 4 and Figure 2). In particular, DCTclock latency values

and spatial reasoning features are important when paired with recall

accuracy and result in a more accurate cognitive impairment DCRP

classificationmodel.

At an average time to completion of 3 min, the DCRP is quicker to

administer thanmost other commonly used cognitive assessments, can

be easily integrated into electronic health records, and avoids many

false positives that might otherwise be cumbersome to primary care

and clinicalworkflows. Including voice and speech to enhance cognitive

impairment analytics models, the DCRP has increased classification

accuracy over graphomotor analysis during digital clock drawing and

verbal recall accuracy alone, thereby increasing its value in a clinical

setting. By removing the subjectivity in scoring and the necessity for

manual data entry required by paper and pencil cognitive testing, the

DCRP is a brief, scalable, multimodal, alternative cognitive screening

option.

Limitations of this work include the cross-sectional nature of the

data collected.While research indicates that theacoustic featuresused

in this study present good to excellent reliability in normal healthy indi-

viduals (ICC = 0.76 to 0.99),57,58 there is evidence to suggest small

but statistically significant variability of these features over time.59–62

Future investigations should include a longitudinal analysis of speech
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timing and acoustic voice features from a number of speaking contexts

in memory and cognitively impaired populations. Further longitudi-

nal analysis should include validation of findings. Finally, the cohorting

used to classify memory (RAVLT long delay) did so into cognitively

impaired and unimpaired groups. Future research should be enhanced

with inclusion of neuroimaging or fluid biomarkers of MCI or mild

dementia due toAD such as beta-amyloid and/or tau to understand the

ability of the DCRP to classify individuals who exhibit both cognitive

impairment and AD biomarker positivity.

The current research contributes to the prevailing speech profile of

individuals with cognitive impairment, suggesting that it is associated

with slower speech, with a particular effect on the duration, frequency,

and percentage of pauses compared to speech. Novel contributions

include increased classification accuracy of memory impairment using

speech timing and acoustic features extracted from a limited num-

ber of words compared to traditional, longer duration speech tasks.

Consistent with the recent consensus work group requirements for

brief cognitive assessments, the DCRP can be completed under 5 min,

available in multiple languages, with the capability of integrating with

electronic health records.17 The current study shows that the DCRP

also meets the rigorous requirements of the consensus work group

that clinically relevant brief cognitive assessments are recommended

to show 80% sensitivity and specificity.
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