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Prenatal environmental exposures are considered to contribute to the development of allergic sensitization by epigenetic
mechanisms. The role of histone acetylation in the placenta has not been examined yet. We hypothesized that placental histone
acetylation at the promoter regions of allergy-related immune regulatory genes is associated with the development of sensitization
to allergens in the child. Histones H3 and H4 acetylation at the promoter regions of 6 selected allergy-related immune regulatory
genes was assessed by a chromatin immunoprecipitation assay in 173 term placentas collected in the prospective birth-cohort
ALADDIN. The development of IgE sensitization to allergens in the children was followed from 6 months up to 5 years of age. We
discovered significant associations of histone acetylation levels with decreased risk of allergic sensitization in 3 genes. Decreased
risk of sensitization to food allergens was associated with higher H3 acetylation levels in placentas at the IFNG and SH2B3 genes,
and for H4 acetylation inHDAC4. HigherHDAC4 H4 acetylation levels were also associated with a decreased risk of sensitization
to aeroallergens. In conclusion, our results suggest that acetylation of histones in placenta has a potential to predict the development
of sensitization to allergens in children.

1. Introduction

During the last decades the prevalence of allergic sen-
sitization and allergic diseases has increased worldwide,

particularly in children [1, 2]. One hypothesis to explain
this allergy epidemic is that environmental and lifestyle
conditions modify the epigenome of immune cells, so the
immune response is skewed to proallergic profiles [3–5].
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Prenatal or early childhood exposures to environmental
factors, such as living in urban or rural/farming areas can
affect the programming of the immune system and are
thus risk factors for development of subsequent allergic
diseases [6]. Epigenetic modifications have been postulated
as an important mechanism mediating these effects [7–10],
which has been demonstrated mostly by human studies
investigatingDNAmethylation [11, 12]. Previously, it has been
found thatDNAmethylation levelswithin theCD14promoter
region are lower in placentas of mothers living on a farm,
suggesting that epigenetic regulation of CD14 early in life
might be involved in the protective effect of “living on a farm”,
with regard to allergy development [13].

Much less in this context is known on the eventual role
of epigenetic modifications of histones in allergy develop-
ment. Unlike DNA methylation, histone modifications, for
example, histone acetylation, methylation, or phosphoryla-
tion, are biochemical changes affecting not the nucleic acid
itself but lysine residues on histones. Increased acetylation
of histones H3 and H4 is typically associated with better
accessibility of promoters to transcriptional machinery and
thereby higher gene expression [5]. Previous studies have
shown that changes in histone acetylation levels can affect
polarization of T helper type 2 (Th2) cells/response [14].

In the present study, we hypothesized that acetylation
of H3 or H4 histones in the promoter regions of poten-
tially allergy-related immune regulatory genes in placenta
tissue is associated with the development of sensitization
to food and airborne allergens in the child early in life.
We nested our study within the prospective birth-cohort
ALADDIN (Assessment of Lifestyle and Allergic Disease
During INfancy), which consists of families with different
lifestyles, anthroposophic, partly anthroposophic or conven-
tional [15]. Anthroposophic lifestyle is mainly characterized
by organic diet with live lactobacilli, restrictive use of antibi-
otics and vaccine, and home delivery [15, 16].The ALADDIN
cohort was designed to elucidate why children in anthro-
posophic families are less sensitized to allergens compared
to those living in families with a conventional lifestyle [15,
16]. The results might indicate that acetylation of histones
in allergy-related immune regulatory genes in placenta has
a potential to predict the development of sensitization to
allergens in children early in life.

2. Materials and Methods

2.1. Study Population: The ALADDIN Cohort. Mothers and
their children in this study are part of the prospective birth-
cohort ALADDIN, which consists of families with different
lifestyles [15, 16]. A total of 330 families were recruited at
anthroposophic and conventional healthcare centers in the
Stockholm area between September 2004 and November
2007. Families were enrolled in the study at gestational weeks
25-37 (median 30). The lifestyle groups were classified based
on choice of maternal-child health centers and parental
responses to a questionnaire two months after the birth of
the child as described inmore detail elsewhere [15]. Inclusion
criteria for the present study were not severe illness before

or during pregnancy, ≥36 weeks of gestation, and availability
of snap frozen placenta specimens stored at -80∘C which
had not previously been thawed for use in other studies
ending with 173 placentas (Table 1).This study was conducted
in accordance with the Declaration of Helsinki and was
approved by the Regional Ethical Review Board in Stockholm
(project Dnr 2010/1811-32). All parents gave their written
informed consent for inclusion before they participated in the
study.

2.2. Determination of Allergen Sensitization. Blood samples
were obtained from parents at inclusion in the study and
from the child at 6, 12, 24, and 60 months of age. Samples
were collected in heparin tubes and plasma was stored at -
20∘C. Parental sensitization was analyzed by ImmunoCAP
Phadiatop� for IgE to a mix of 11 aeroallergens. Available
blood samples from the children at 6, 12, and 24 months of
age were analyzed by ImmunoCAP tests for IgE to cow’smilk,
hen’s egg, peanut, cat, dog, birch, and timothy. At 60 months,
a food mix (fx5) and Phadiatop� were used. If fx5 was
positive, the allergens cow’s milk, hen’s egg, peanut, codfish,
wheat flour, and soybean were separately analyzed and if
Phadiatop� was positive, cat, dog, horse, birch, timothy,
mugwort, Cladosporium, Dermatophagoides farinae, and D.
pteronyssinus (all kits fromThermoFisher Scientific,Uppsala,
Sweden). Allergen specific IgE levels ≥0.35 kUA/L were
categorized as IgE sensitization.

2.3. Collection of Placenta Specimens and Histopathologic
Examination. The placentas (n=173) were collected by mid-
wifes directly after birth, put on ice, and sent to theKarolinska
University Hospital Solna. From each placenta, a cross-
sectional sample about 0.5 cm thick, 1.5 cm wide, and
spanning the whole thickness of the placenta was cut near
the umbilical cord, quickly washed two times in phos-
phate buffered saline (PBS) to remove as much blood as
possible and then snap frozen on dry ice and stored at -
80∘C. These samples were later used for histone acetylation
analyses.

The placentas were also subjected to routine histopatho-
logical examination. Two placental tissue biopsies, one from
the vicinity of the umbilical cord and one from the periphery
of the placenta, about 0.5 cm thick and spanning the whole
thickness of the placenta, a piece of the membranes, and
a piece of the umbilical cord were obtained. All specimens
were washed with PBS, fixed in formalin, paraffin-embedded,
and evaluated on routine haematoxylin and eosin-stained
sections. In two cases inadequate material had been sampled
leaving 171 placentas to be finally analyzed for histopathology.
An experienced perinatal pathologist (NP) who was blinded
to the demographic data for the participating families (see
Table 1) examined all slides. The presence of chorioamnioni-
tis, vasculitis, funisitis, and villitis was recorded. Chorioam-
nionitis, irrespective of grading, was defined as presence
of polymorphonuclear leucocytes in subchorionic plate or
in amniochorion. Vasculitis was defined as the presence of
leukocytes in the vessel wall of chorionic plate or umbilical
vessels. Funisitis was defined as the presence of leukocytes
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Table 1: Demographic data for the participating families and sensitization to allergens.

Anthroposophic
N=25

Partly
anthroposophic

N=105

Anthroposophic
and partly

anthroposophic
N=130

Non-
anthroposophic

N=43
p∗

Parents
Mother’s age (years) 30 (23-32) 31 (28-34) 31 (27-34) 30 (28-33) 0.468
Mother sensitized to aeroallergensa 5/25 (20%) 29/105 (28%) 34/130 (26%) 14/43 (33%) 0.537
Father sensitized to aeroallergensa 8/23 (35%) 45/100 (45%) 53/123 (43%) 14/40 (35%) 0.473
Mother during pregnancy
Parity

First 7/25 (28%) 46/103 (45%) 53/128 (41%) 17/43 (40%) 0.971
Second 9/25 (36%) 40/103 (39%) 49/128 (38%) 18/43 (42%) 0.814
Third (fourth or fifth) 9/25 (36%) 17/103 (17%) 26/128 (20%) 8/43 (19%) 0.982

Child
Sex (female) 13/25 (52%) 52/105 (50%) 65/130 (50%) 28/43 (65%) 0.122

Birth weight (g) 3550
(3355-3760)

3585
(3345-3950)

3568
(3348-3939)

3510
(3312-4010) 0.648

Gestational age at birth (completed weeks) 40 (39-41) 40 (39-41) 40 (39-41) 39 (38-40) 0.009
Child sensitized to
Food allergens at (Girls n/N; Boys n/N % p∗)

6 mob (4/70 5.7; 6/63 9.5 p=0.52) 0/16 (0%) 4/84 (5%) 4/100 (4%) 6/33 (18%) 0.022
12 mob (8/68 11.8; 10/59 16.9 p=0.45) 0/13 (0%) 9/77 (12%) 9/90 (10%) 9/37 (24%) 0.068
2 yrsb (7/68 10.3; 13/62 21.0 p=0.14) 2/15 (13%) 9/79 (11%) 11/94 (12%) 9/36 (25%) 0.108
5 yrsc (13/60 21.7; 8/52 15.4 p=0.47) 1/16 (6%) 10/69 (14%) 11/85 (13%) 10/27 (37%) 0.012

Aeroallergens at
6 mod (3/64 4.7; 0/53 0.0 p=0.25) 0/13 (0%) 2/72 (3%) 2/85 (2%) 1/32 (3%) 0.999
12 mod (2/65 3.1; 2/56 3.6 p=1.0) 0/12 (0%) 1/75 (1%) 1/87 (1%) 3/34 (9%) 0.120
2 yrsd (3/68 4.4; 6/60 10.0 p=0.30) 0/15 (0%) 4/77 (5%) 4/92 (4%) 5/36 (14%) 0.130
5 yrse (11/61 18.0; 11/53 20.8 p=0.81) 1/16 (6%) 13/71 (18%) 14/87 (16%) 8/27 (30%) 0.201

Categorical variables: n/N yes/total number (%). Continuous variables: median (interquartile range).
∗p for comparisons of combined anthroposophic and partly anthroposophic versus nonanthroposophic lifestyle group and for girls vs boys regarding
sensitization to allergens. Categorical variables: Fisher’s exact test; continuous variables: Mann-Whitney-Wilcoxon rank-sum test.
aClassified as sensitized if IgE level was ≥0.35 kUA/L measured using Phadiatop� (Thermo Fisher Scientific) a mix of 11 aeroallergens.
bClassified as sensitized if IgE level was ≥0.35 kUA/L for at least one of the three food allergens analyzed using ImmunoCAP� (Thermo Fisher Scientific).
cClassified as sensitized if IgE level was≥0.35 kUA/L for at least one of the six food allergens analyzed using a foodmix, fx5, followed by separate ImmunoCAP�
tests (Thermo Fisher Scientific).
dClassified as sensitized if IgE level was ≥0.35 kUA/L for at least one of the four aeroallergens analyzed using ImmunoCap� (Thermo Fisher Scientific).
eClassified as sensitized if IgE level was ≥0.35 kUA/L for at least one of the 9 aeroallergens analyzed using Phadiatop� followed by separate ImmunoCAP�
tests (Thermo Fisher Scientific).

in Wharton’s jelly. Villitis was defined as the presence of
mononuclear cell infiltrates in the villous stroma [17].

2.4. Selection of Genes for Acetylation Analyses in Placenta.
CD14 (CD14 molecule), FOXP3 (Forkhead box P3), HDAC4
(Histone deacetylase 4), INFG (Interferon gamma), and
IL13 (Interleukin 13) were selected based on (1) previous
data showing significant differences in DNA methylation
between atopic and nonatopic children [18], (2) empirical
evidence of differential DNA methylation due to exposure
to environmental factors such as farming [13], (3) other
studies showing potential allergy-relevant association on the
epigenetic level [19, 20], and (4) evidence in various allergy-
related animal models of epigenetic changes that could be

transmitted to offspring [21, 22]. SH2B3 (SH2B adaptor
protein 3) was selected based on the results of a genome-wide
DNA methylation study revealing significant differences in
the DNA methylation levels of this gene in purified memory
cutaneous lymphocyte-associated antigen (CLA)+ T cells
from atopic eczema patients [23].

2.5. Isolation of Chromatin from Snap Frozen Placenta, Chro-
matin Immunoprecipitation, and Quantitative Polymerase
Chain Reaction. A subsection spanning the whole thickness
of the placenta was manually obtained in a -80∘C freezer
from the original sample and then kept for 8 min in 1 ml 1%
paraformaldehyde (PFA; Sigma-Aldrich, Munich, Germany)
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Table 2: Primers used for quantitative assessment of H3 or H4 histone acetylation by PCR following chromatin immunoprecipitation (ChIP).

Gene Forward primer Reverse primer
CD14 ATCAGGGTTCACAGAGGA GACCCCAAGACCCTACAC
FOXP3 ATCGTGAGGATGGATGCATTAATA CCACTGGGAAGGTCCCTAGC
HDAC4 CTCAACACAAGCCTCCCAAG GTGAGGGTGTGGGGTGTAG
IFNG AATCCCACCAGAATGGCACAGGTG GAACAATGTGCTGCACCTCCTCTGG
IL13 TGTGGGAGATGCCGTGGG TCTGACTCCCAGAAGTCTGC
RPL32 GGAAGTGCTTGCCTTTTTCC GGATTGCCACGGATTAACAC
SH2B3 TTGAGTGGGTGGGGCTAAAG CCTACCAATCCCGCTAGTCC

at room temperature (RT). Next, the sample was centrifuged
for 5 min at 7,870 g at RT, incubated with 1 ml 0.25% trypsin-
ethylenediaminetetraacetic acid (EDTA; Thermo Fisher Sci-
entific, Waltham, MA, USA) for 1 hour at RT and then again
centrifuged for 5 min at 7,870 g at RT. The supernatant was
discarded, and the tissue components were incubated with
0.1% collagenase (Roche Diagnostics, Mannheim, Germany)
for another hour at RT and then centrifuged again for 5 min
at 7,870 g at RT. To purify cells from tissue remnants and cell
debris, the pellet was then resuspended in 1 ml PBS and run
through a 0.2 𝜇msieve. Next, the cells werewashed twicewith
1 ml PBS. Further steps, including chromatin purification,
chromatin immunoprecipitation (ChIP), and quantitative
assessment of H3 or H4 histone acetylation by polymerase
chain reaction (PCR), were conducted as established and
thoroughly validated before [24]. PCR primers used in the
present study are given in (Table 2).

In brief, three-level strategy of PCR data normalization
was applied. First, percent enrichment to the input control
was calculated for each target locus and a positive control
gene encoding ribosomal protein L32 (RPL32), separately
for mock (IgG), H3, and H4 antibodies. Then, locus-specific
percent enrichment to the input control obtained for IgG was
subtracted from the corresponding values for H3 or H4 anti-
bodies. Such calculated IgG-corrected percent enrichment
was divided for each gene into that of RPL32 resulting in
a relative enrichment value, which was used for subsequent
statistical analyses [24, 25]. Intra- and interassay coefficients
of variation calculated for percent enrichment should not
exceed 10% [24]. All samples were processed according to the
same standardized protocol and analyzed blinded and in a
randomized order.

2.6. Statistical Analyses. Due to the limited number of avail-
able placenta specimens in the anthroposophic group, this
group was merged with the partly anthroposophic group for
the statistical analyses. Demographic data were compared
between the study subgroups either by Fisher’s exact test
(binary variables) or Mann-Whitney-Wilcoxon rank sum test
(continuous variables). Fisher’s exact test was used in the
analyses of placenta histopathology in relation to lifestyle and
sensitization of the children and their sex. The histone acety-
lation levels were presented by their median and interquartile
range in the different lifestyle groups, and Mann-Whitney-
Wilcoxon rank sum test was used to compare groups.

Binary variables indicating sensitization to food- or
aeroallergens were recorded at 6 months, 1, 2, and 5 years
of age. Generalized estimating equations (GEE) were used to
compute odds ratios (ORs) associated with histone acetyla-
tion levels and the corresponding 95% CIs. All regressions
included dummy variables indicating the time, in order
to capture potential nonlinear trends. Additional analyses
were performed by further adjusting for the sensitization
of the parents. OR reflects the change in the odds of
being sensitized associated with a unit increase of the
acetylation levels. An OR greater than 1 indicates that the
associated predictor may be a risk factor for sensitization;
an OR less than 1 suggests that the associated predictor is
protective against sensitization; an OR equal to 1, or not
significantly different from it, does not permit establishing
an association between histone acetylation levels and the
risk of sensitization. The R package gee, version 4.13-19
(https://cran.r-project.org/web/packages/gee/), was used for
the analysis. The analyses were repeated stratifying by gender
and, separately, by lifestyle. A p value < 0.010 was considered
significant. Model-based receiver operating characteristic
(ROC) curves were drawn to test for the ability to predict
sensitization to allergens and the area under the curve (AUC)
was calculated as a measure of performance, using the GEE
logit model described above.

3. Results

3.1. Study Population. Comparison of the lifestyle groups
showed significant differences for the anthroposophic
(anthroposophic + partly anthroposophic) lifestyle charac-
teristics compared with the nonanthroposophic group
regarding a lower prevalence of sensitization, particularly to
food allergens, in the children (Table 1).

3.2. PlacentaHistopathology. Placental histopathology showed
neither significant differences between the two-lifestyle
groups (Table 3(a)) nor any associations with sensitization to
allergens in the children between 6 months up to 5 years of
age (Table 3(b)), irrespective of the child’s sex (Supplementary
Tables 1A and 1B).

3.3. Associations between Demographic Data and Placental
Histone Acetylation. Theage of the mother, parity or parental

https://cran.r-project.org/web/packages/gee/
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Figure 1: The association between placental tissue histone acetylation levels at promoter regions of (a) IFNG (H3), (b) HDAC4 (H4),
and (c) SH2B3 (H3) genes and the risk of sensitization to food allergens in children. For the methodology of statistical calculations,
please, see Methods. Anth + Part-anth denotes a combined anthroposophic and partly anthroposophic lifestyle group and Non-anth the
nonanthroposophic lifestyle. OR denotes odds ratio; 95% CI, confidence interval.

sensitization to aeroallergens showed no significant associa-
tions with histone acetylation levels in the placentas, nor did
the child’s sex, birth weight, or the gestational age at delivery
(data not shown). In addition, there was no significant
effect of the lifestyle on the placental histone acetylation
levels and also none when prestratified for the child’s sex
(Supplementary Table 2).

3.4. Placental Histone Acetylation and Reduced Risk of Allergic
Sensitization in the Child. Placental histone acetylation levels
at the promoter regions of 3 genes, IFNG, HDAC4, and

SH2B3, turned out to be predictive for the development of
allergic sensitization in the children followed longitudinally
from 6 months up to 5 years of age. Decreased risk of
sensitization to food allergens was associated with higher
H3 acetylation levels in placentas at the IFNG loci in male
offspring and to a higher H4 acetylation at the HDAC4 pro-
moter in female offspring (Figures 1(a) and 1(b)). In addition,
higher H3 acetylation at the SH2B3 locus was associated with
a decreased risk of sensitization to food allergens in children
born in nonanthroposophic families (Figure 1(c)). Regarding
sensitization to aeroallergens, a higher H4 acetylation level at
the HDAC4 promoter decreased the risk of sensitization in
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Figure 2: The association between placental tissue histone H4 acetylation levels at promoter region of the HDAC4 gene and the risk of
sensitization to aeroallergens in children. For the methodology of statistical calculations, please, see Methods. For abbreviations, see Figure 1.
∗Calculated with logistic regression since the number of observations in the group of boys precluded the estimations of OR and CI with the
GEE model.

female offspring (Figure 2). All these associations remained
significant after adjustment to either maternal or paternal
allergic sensitization.Wedid not observe any significant asso-
ciations between histone acetylation levels at the CD14, IL13,
and FOXP3 promoters and the development of sensitization
to allergens (data not shown).

Next, we computed model-based ROC curves to see how
well the used regression models can predict sensitization to
allergens and computed AUC as a measure of performance.
On the left panels in Figure 3, we report the following ROC
curves: H3 acetylation at the IFNG promoter versus sensiti-
zation to food allergens in boys (Figure 3(a)), H4 acetylation
at the HDAC4 promoter in girls versus sensitization to food
allergens in girls (Figure 3(b)), H3 acetylation at the SH2B3
locus versus sensitization to food allergens in nonanthro-
posophic children (Figure 3(c)), and H4 acetylation at the
HDAC4 promoter versus sensitization to aeroallergens in
girls (Figure 3(d)).The ROC curves and the AUC suggest that
the predictive power of the models is rather limited with the
highest AUC level of 0.777 (Figure 3(d)). In the right panels
in Figure 3, the ROC curves obtained with the GEE logistic
model are further adjusted for the other histone acetylation
variables showing any significant associations with sensitiza-
tion to allergens (see Figures 1 or 2, respectively). Results show
that multiple adjustment does not significantly improve the
predictive power.

The dataset for this study including demographic data,
sensitization to allergens, and histone acetylation levels can
be found in the Supplementary data table.

4. Discussion

This is the first study linking the development of sensitization
to allergens early in life with defined changes in the histone

acetylation of important immunoregulatory genes in the pla-
centa. We have discovered significant associations between
histone acetylation levels in 3 of the 6 allergy candidate genes
examined in placentas with the development of sensitization
to allergens.

Higher placental histone acetylation levels were asso-
ciated with decreased risk of allergic sensitization to food
allergens in children. This involved H3 acetylation in the
IFNG gene, H4 acetylation in HDAC4, and H3 acetylation
in SH2B3. Furthermore, H4 acetylation in HDAC4 was also
associated with a decreased risk of allergic sensitization to
aeroallergens. These findings revealed HDAC4 and SH2B3 as
two new candidates implicated in the susceptibility to allergic
sensitization. The protein encoded by HDAC4 possesses
histone deacetylase activity and represses transcription when
tethered to a promoter [26, 27]. This protein does not bind
to DNA directly, but through transcription factors MEF2C
and MEF2D and it seems to interact in a multiprotein
complex with HDAC3 and RB binding protein 4 (RBBP4),
a molecule which may target histone deacetylases to their
histone substrates [26]. HDAC4 is of great interest in B
cell biology since forced expression of HDAC4 impairs the
inflammatory effects of miRNA-155 in this cell [28] and
because B cell functions seems to be particularly sensitive
to HDAC inhibitors [29]. HDAC4 also provides deacetylase
activity for nonhistone proteins in the cytoplasm including
signal transducer and activator of transcription 1 (STAT1), a
protein that promotes interferon signaling pathways [30]. We
speculate that increased H4 acetylation of HDAC4 detected
in this study may lead to changes in HDAC4 expression
in placenta and by genome-wide deacetylase effects alter
the expression of other immune genes and/or transcription
factors involved in Th1-skewing which in turns facilitates
early immune polarization and could confer protection from
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Figure 3: Continued.
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Figure 3: Receiver operating characteristic (ROC) curves and area under the curve (AUC) obtained from different logistic regressionmodels
implemented throughGEE to predict the development of sensitization to allergens. Left panel: (a)H3 acetylation (H3ac) at the IFNG promoter
versus sensitization to food allergens in boys, (b) H4 acetylation (H4ac) at theHDAC4 promoter in girls versus sensitization to food allergens
in girls, (c)H3 acetylation (H3ac) at the SH2B3 locus versus sensitization to food allergens in nonanthroposophic children (non-anth), and (d)
H4 acetylation (H4ac) at theHDAC4 promoter versus sensitization to aeroallergens in girls. Right panel: (a-d), analogous prediction obtained
when the GEE logistic model is further adjusted for the other histone acetylation variables showing significant associations with sensitization
to allergens, as indicated (see also Figures 1 and 2).

IgE sensitization in the offspring. HDAC4 is an age-modified
locus [26] and has shown to be susceptible to epigenetic
modification by environmental exposures including supple-
mentation with n-3 PUFAs [31].

SH2B3 encodes a member of the SH2B adaptor family of
proteins that acts as a key negative regulator of cytokine sig-
naling. It plays a critical role in lymphohematopoiesis, inflam-
mation [32], and IL7R signaling in B cell progenitors [33].
It also regulates granulocyte-macrophage colony-stimulating
factor (GM-CSF) and interleukin 15 (IL-15) signals in mature
dendritic cells (DCs) and affects their ability to prime naive
CD4+ T cells towards IFNG production [34]. Our results
support significant association of acetylation differences in
the IFNG gene in placenta and the decreased risk of allergic
sensitization, particularly to food allergens (Figure 1(a)).
Immune-homeostasis after birth depends on a rapid devel-
opment of strong T helper type 1 (Th1) responses. These are
needed to combat extracellular and intracellular pathogens
and help to keep the development of pathogenic Th2 immune
responses down. It has previously been shown [33, 35, 36]
that children protected from the development of (respiratory)
allergy have already, at birth, high levels/production of
Th1 related cytokines, including IFNG. We are now able
to extend these observations and show for the first time
that already during pregnancy such a response seems to
develop at least at the late stage of gestation in the placental
tissue.

Several of our observations were gender-specific; for
instance, H4 acetylation differences were only significant for

girls, in agreement with accumulating evidence on gender-
specific effects of environmental exposures in placenta. Sex-
specific epigenetic effects have been also reported in the con-
text of allergies by others, but a functional and mechanistic
explanation for these findings is still missing [37, 38].

A limitation in this study is that only 25 anthroposophic
families could be included due to the amount of available snap
frozen placenta specimens in this life style group (Table 1).
We therefore fused the anthroposophic group with the partly
anthroposophic group for the statistical analyses that is why
separate life style analyses was hampered. Another limitation
is the use of placenta tissue, where the cell heterogeneity
in the samples does not allow any interpretation to which
particular cells the epigenetic profiles of H4 and H3 acety-
lation could be ascribed. We performed, however, careful
placenta histopathology examinations to address any bias due
to inflammation and could exclude any significant differences
in the presence and distribution of leukocytes between the
lifestyle groups or any associations to sensitization to aller-
gens in the children (see Tables 3(a) and 3(b)). Furthermore,
since we analyzed global H3 and H4 acetylation levels in
each of the genes it is not possible to discriminate specific
marks, which underlie the associations detected in this study.
The combinations of genes and histone acetylation marks
analyzed in this study demonstrated rather moderate predic-
tive value for the development of sensitization to allergens.
Deeper and fine-tuned mapping of histone marks as well as
whole genome sequencing is needed to delineate the exact
predictive effect of different genes.
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5. Conclusions

Our results indicate that histone acetylation levels in allergy-
related immune regulatory genes in placenta might have
a potential to predict the development of sensitization to
allergens in the child within the first 5 years after birth. The
epigenetic profiles shown here for the acetylation in the H3
and H4 histones may open new preventive avenues and lay
the foundation for further prospective studies.
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