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Interactions between the extracellular matrix (ECM) and integrin receptors trigger structural and functional bonds between the
cell microenvironment and the cytoskeleton. Such connections are essential for adhesion structure integrity and are key players in
regulating transduction of specific intracellular signals, which in turn regulate the organization of the cell microenvironment and,
consequently, cell function. The RGD peptide-dependent integrins represent a key subgroup of ECM receptors involved in the
maintenance of epithelial homeostasis. Here we review recent findings on RGD-dependent ECM-integrin interactions and their
roles in human intestinal epithelial crypt cells.

1. Introduction

Cell contacts with the extracellular matrix (ECM) provide
both cohesive and functional properties in a variety of tis-
sues, such as epithelia, nerves, muscle, and stroma, through
specific interactions with cell membrane receptors [1, 2].
All ECMs are made up of collagen fibrils and/or networks,
proteoglycans as well as specialized glycoproteins such as
fibronectin and laminins that are archetypal of interstitial
ECM and basement membrane (BM), respectively [3, 4].
Cells from multiple origins interact with ECM molecules
using a variety of receptors, most of them being members
of the integrin superfamily [2]. Integrins are noncovalent
transmembrane α/β heterodimers. In mammals, over 24
distinct integrin heterodimers have been characterized to
date, describing the association between 18α and 8β subunits
[5–7]. The fact that integrin-mediated connections between
the ECM and the cytoplasm regulate key cell functions
such as adhesion, migration, proliferation, apoptosis, and
differentiation is well recognized [8–11].

Epithelia express a wide variety of typical integrin recep-
tors such as the α1β1, α2β1, α3β1, and α6β4 integrins
that serve as collagen and/or laminin receptors [12–15].

Although less well documented in epithelia, the RGD-
dependent integrins are another group of receptors that
appears to be involved in epithelial cell homeostasis [15–
17]. RGD-dependent integrins include α5β1-, α8β1-, and
αV-containing integrins and are named as such because
they specifically recognize the RGD motif, a sequence of
three amino acids (Arg-Gly-Asp) found in many ECM
molecules such as fibronectin and osteopontin [5, 12, 14,
15]. Collectively, these interactions are termed the “RGD-
dependent adhesion system” (Figure 1). Interestingly, RGD-
dependent cell interactions represent a key role in hier-
archical assembly and maturation of adhesion structures
including focal complexes (FXs), focal adhesions (FAs), and
fibrillar adhesions (FBs) [1, 2, 18].

Therefore, RGD adhesion can by divided into three
distinct components, the extracellular component (e.g., fi-
bronectin), the membrane receptor (e.g., the α5β1 integrin),
and the intracellular molecule (e.g., vinculin). Moreover,
each component acts in concert with the others to orga-
nize and regulate RGD adhesion dynamics. In this paper,
we will focus on the importance of the RGD-dependent
adhesion system for human intestinal crypt cell homeostasis
(Section 2). We chose to elaborate on recent findings from
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Figure 1: The RGD-dependent integrins. The RGD peptide (Arg-
Gly-Asp) binding integrins represent a subclass of integrin receptors
that specifically interact with the RGD motif found in several ECM
elements. RGD integrins are formed by α8/α5 subunits coupled
with the β1 subunit and the αV subunit coupled with β3/β5/β6/β8
subunits. RGD-dependent α and β heterodimers are connected to
each other with respect to their specific RGD containing ligands.
The major RGD ligands are fibronectin (dark gray), vitronectin
(light gray), osteopontin (black), and nephronectin (white).

our laboratory related to each of the RGD adhesion com-
ponents, the α8β1 integrin (receptor, Section 3), integrin-
linked kinase (ILK) (intracellular molecule, Section 4), and
type VI collagen (ECM, Section 5).

2. Cell-Matrix Interactions in
the Human Intestinal Crypt

The small intestinal epithelium is a useful model to inves-
tigate the relationship between cell state and interaction
with the ECM because of the well-defined architecture of
its renewing unit, the crypt-villus axis. Indeed, proliferative
cells, differentiating cells, and mature functional cells are
topologically restricted to distinct compartments: the lower
two-thirds of the crypt, upper third of the crypt, and villus,
respectively. Gene expression in intestinal crypt cells must
therefore be tightly regulated to efficiently control stemness,
proliferation, migration, and differentiation in order to
ensure the right equilibrium for the production of functional
cells destined to renew the villus epithelium [19, 20]. There is
strong evidence that cell-matrix interactions are involved in
the regulation of these cell functions in the crypt [12, 21, 22].
For instance, differential spatial expression of laminins in
the epithelial BM and their epithelial integrin receptors were
observed along the crypt axis while in vitro studies have
revealed functional relationships between laminin-binding

integrins and specific intestinal cell functions such as prolif-
eration, migration, and differentiation [23–30]. A schematic
illustration of the human crypt-villus axis and the spatial
expression of laminins, laminin receptors of the integrin
family, and the two classic RGD components fibronectin
and the α5β1 integrin (as depicted by dark areas) is shown
in Figure 2. Moreover, another example is the transient
expression of the tenascin and osteopontin receptor α9β1
integrin in the lower third of the crypt of the immature small
intestine as well as in proliferative epithelial crypt cells [31]
and its reexpression in colon adenocarcinoma cells [32].

The RGD archetype fibronectin is another ECM com-
ponent that was found strongly expressed in the epithelial
BM of the crypts in both human and small laboratory
animals [33–36]. Synthesis and deposition of fibronectin
by proliferating intestinal epithelial cells was confirmed in
vitro [26, 34]. Furthermore, expression of the fibronectin
receptors, α5β1 and αV-containing integrins, was found to
be associated with intestinal cell proliferation [21, 29, 37].
Taken together, these observations suggest that fibronectin
may significantly contribute to the RGD system regulating
intestinal crypt cell functions.

To investigate this hypothesis, we used a strategy com-
bining expression studies in the intact human intestine and
functional studies using HIEC cells, a human intestinal
epithelial crypt cell model well-characterized for the expres-
sion of typical features of intestinal crypt cells [38–41]. As
summarized in the next sections, this experimental approach
has led to the identification and characterization of new
components of the RGD-dependent adhesion system that
emphasize the importance of this adhesion system in human
intestinal crypt homeostasis.

3. Integrin α8β1 as a Crucial Mediator of
Crypt Cell-Matrix Interaction

3.1. Integrin α8β1 Is a Novel Regulator of Epithelial Cell Adhe-
sion. Initially characterized in the chicken nervous system
[42, 43], integrin α8β1 represents an important RGD-
dependent receptor [44]. Ligand binding to integrin α8β1
was shown to be important for RhoA GTPase activation and
subsequent actin stress fiber assembly in vascular smooth
muscle cells [45–47]. Integrin α8β1 was also recently found
to play an important role in microfilament organization
which was central to RGD-dependent intestinal epithelial
crypt cell adhesion [48]. α8 subunit knockdown experi-
ments, carried out in HIEC cells, showed that this integrin is
important for proper vinculin recruitment to adhesion struc-
tures [48] (Figure 3). Intestinal epithelial crypt cells in which
α8 was knocked down exhibited lower numbers of vinculin-
positive FAs compared to controls, while paxillin localization
was not affected [48]. It is well known that RhoA/ROCK
signalling enhances actin stress fiber assembly and increases
cell adhesion [49–51]. RhoA activity was shown to promote
scaffolding protein recruitment, including vinculin, to the
developing adhesion structures [51, 52]. Thus, the increased
RhoA activity displayed by α8 knockdown cells leads to the
absence or reduced levels of vinculin observed within these
cells [48, 53].
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Figure 2: Distribution of laminins and laminin receptors of the integrin family as well as the RGD components fibronectin and the α5β1
integrin receptor along the crypt-villus axis in the human small intestine. (a) Organization of the crypt-villus epithelial renewing unit. Villi
are lined by functional epithelial cells responsible for digestion and absorption of nutrients. Stem cells located at the bottom of the gland
generate transit amplifying cells that expand in the middle of the gland until they reach the upper gland region where they stop proliferating
and undertake their terminal differentiation program before reaching the base of the villus. (b) Patterns of distribution of laminins at the
epithelial BM as well as laminin receptors of the integrin family revealed differential expression of these molecules along the crypt-villus axis
according to the cell state as shown by dark areas. (c) The RGD components fibronectin and its specific integrin receptor α5β1 were found
mostly confined to the crypt region (dark areas).

Based on the scheme of adhesion structures hierarchical
assembly, vinculin recruitment occurs at later stages of FX
formation, while paxillin is recruited at early stages [54].
Thus, observations made in intestinal epithelial crypt cells
suggest that integrin α8β1 is essential, at this particular stage
of FX maturation into FA, via its role in RhoA activation [48]
(Figure 3(a)). A similar function could also be predicted for
the collagen-binding integrin α2β1, considering the expres-
sion of this receptor in undifferentiated intestinal epithelium
cells and its participation in RhoA activation [44, 55, 56].

Interestingly, ectopic expression of the enterocytic dif-
ferentiation associated factor GATA-4 in intestinal epithelial
crypt cells caused a depletion of α8 subunit expression
[39, 48]. In these same cells, reduced levels of α8β1 were
associated with a decrease in cell growth, marked by Cyclin
D1 inhibition and accumulation of cells in the G1 phase
[48]. Similarly, decreased RhoA activity was observed in
differentiated and nonproliferative HT29 cells compared to
their undifferentiated and proliferative counterparts [55].
Together with the role of integrin α8β1 in RGD-dependent
adhesion, these findings support the concept that cell-ECM
interactions are crucial to maintaining a proliferative state
in epithelial cells, which is anchorage and cell position
dependent, reflecting its exclusive localization in the lower
crypt of the intact intestine.

3.2. Integrin α8β1 Regulates Crypt Cell Migration. Due to
the role of integrin α8β1 in RGD-dependent cell adhesion
and RhoA GTPase activity, this receptor was shown to
exert a critical influence on intestinal epithelial crypt cell
motility [48]. Alteration of RhoA activity was found to
modulate migration in different systems [49, 57]. We recently
reported that loss of RGD-α8β1 interactions in intestinal

epithelial cells caused increased cell migration [48]. From
a physiological perspective, proliferating intestinal epithelial
cells must be restricted to the lower two-thirds of the crypt
to avoid premature terminal differentiation and loss of
proliferative capacity [38, 40]. Therefore, without necessarily
affecting the expression of differentiation master regulator
genes, RGD-dependent adhesion plays a major role in
regulating cell migration, which in turn is crucial for wound
healing, cell differentiation, and tissue integrity [24, 58, 59].

3.3. Integrin α8β1 RGD-Dependent Interactions Act as a Check
Point in the Intestinal Crypt Epithelium. Cell survival is
tightly regulated by RGD-dependent ECM-integrin interac-
tions [11]. Indeed, integrin receptors, such as α5β1 and αV
integrins, play a central role in controlling anoikis or apop-
tosis by loss of attachment [10, 11, 60]. Specifically, engage-
ment of β1 integrins was found to be essential to intestinal
epithelial cell survival through FAK signalling [60, 61].

As mentioned above, integrin α8β1 is involved in efficient
vinculin recruitment to developing adhesion structures [48,
53]. The presence of vinculin in cell-ECM adhesion struc-
tures affects cell survival signal transduction. As previously
described, HIEC cells share a number of features with
intestinal epithelial stem cells, including a proliferative and
undifferentiated state as well as the expression of several
putative stem cell markers [39]. Interestingly, silencing of
vinculin expression in F9 embryonic teratocarcinoma cells,
another cell model closely related to stem cells [62], has
shown increased resistance to anoikis, while ectopic reexpres-
sion of vinculin restored sensitivity to anchorage-dependent
survival [63]. A similar phenomenon was observed in
nonadherent α8 knockdown intestinal epithelial crypt cells
[53]. In both studies, elevated levels of FAK phosphorylation
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Figure 3: RGD-dependent adhesion influences anoikis sensitivity in undifferentiated epithelial cells. (a) Schematic representation of the
proposed mechanism by which integrin α8β1 and RGD-dependent adhesion regulates anoikis sensitivity, through differential interactions
between vinculin, paxillin, and FAK in intestinal epithelial crypt cells. As described in Section 3, α8β1 is essential to vinculin recruitment
within maturing adhesion structures, while paxillin localization is not affected by α8 subunit silencing. (b) Following α8 subunit silencing,
the absence of vinculin, combined with the presence of paxillin in the adhesion complexes, leads to an anchorage-independent activation of
FAK and, consequently, anoikis resistance.

on tyrosine 397 were noted in nonadherent cell cultures.
The absence of vinculin combined with the presence of
paxillin in primitive adhesion structures prior to loss of
adhesion could explain such a phenomenon (Figure 3). At
the molecular level, it has been shown that paxillin exhibits
partially overlapping binding sites for FAK and vinculin
[64]. Thus, the vinculin tail domain appears to compete
with FAK for paxillin binding. In the presence of vinculin,
FAK activation would depend on ECM-integrin binding.
However, absence of vinculin leads to a conformational
change in adhesion structures which results in constitutive
activation of FAK when bound to paxillin [63] where
FAK activity no longer relies on ECM-integrin interactions
[53, 63]. Additionally, nonadherent α8β1-depleted intestinal
epithelial cells showed increased activity of the PI3 K/Akt sig-
nalling pathway compared to nonadherent controls [53]. A
summary of integrin α8β1 contribution to anoikis regulation
in epithelial intestinal crypt cells is presented in Figure 3.

Considering the proliferative and highly adaptive capac-
ities of crypt cells, such as stem and transit amplifying cells,
RGD-dependent α8β1 interactions with ECM are suggested
to act as a security switch that keeps the detachment of
undifferentiated epithelial cells in check. It is worth noting
that none of the five human colorectal cancer cell lines tested
were found to express the integrin α8 subunit and that
ectopic expression of this RGD-dependent receptor restored
sensitivity of malignant cells to anoikis [53]. The mechanism
by which colon cancer cells repress α8 expression to bypass
this checkpoint remains unknown. However, in normal cells,
this security step mediated by α8β1 occupancy is potentially
important to support homeostasis in the human intestinal
crypt. New evidence from the literature has shown that
colon cancer may originate from defective crypt stem cells
[65]. Therefore, in light of the expression of α8β1 in the
region associated with intestinal stem cells, combined with
its role in sensitizing epithelial cells to anoikis [53], it could
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Figure 4: Regulation of the dynamic assembly of fibronectin by ILK. Schematic representation of the proposed mechanism by which
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actin cytoskeleton-α5β1 linkage and focal adhesions cannot mature. Consequently, loss of the IPP complex reduces FN deposition and
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be speculated that α8 integrin silencing represents a key
step in cancer initiation, in order to escape apoptosis upon
modification of the malignant stem cell niche or location.
In this context, α8β1 could promote defective progenitor
cell elimination, and consequently prevent the onset of ecto-
cryptal proliferative structures. Such specific involvement
of RGD-dependent integrins is not without precedent since
altered expression of other heterodimers has been reported
in colon cancer. For instance, integrin αVβ3 expression has
been found to be specifically decreased in anoikis-resistant
Caco-2 cells [66].

4. Integrin-Linked Kinase (ILK) as an
Integrator of Cell-Fibronectin Interaction

The intestinal epithelial cell mediates RGD interactions
through expression of specific integrin receptors, as observed
with α8β1, as well as through the production and deposition
of RGD ligands, such as fibronectin. The efficient deposition
of fibronectin into the BM relies upon its recognition by
RGD-dependent integrins, which mediate its unfolding to
expose specific fibronectin structural domains, which in turn
mediates the formation of insoluble fibronectin fibrils [67].
Fibronectin deposition is characterized by the formation of
specialized cell-matrix contact structures containing inte-
grins, cytosolic proteins, and actin referred to as fibrillar
adhesion (FB) points [67].

The integrin-linked kinase (ILK) is a constituent of inte-
grin containing adhesion sites where it mediates multiple
cellular processes. ILK is a pseudokinase and scaffolding pro-
tein ubiquitously expressed in mammalian cells forming
a trimeric complex with PINCH and parvins named the
IPP complex [68–70]. ILK interacts with the cytoplasmic
domain of integrin β1 and β3 subunits to create a physical
link between integrins and the actin cytoskeleton [68,
71]. Interestingly, it has been suggested that ILK regulates
fibronectin expression/deposition [72–74] and other studies

have placed IPP complex members within FA points [75,
76]. In vivo, fibronectin expression is restricted to the BM
underlying epithelial crypt cells and HIEC cells produce
copious amount of fibronectin and generate numerous well-
defined adhesion structures. The expression and roles of ILK
were therefore investigated in human intestinal crypt cells.

We first focused on the localization of ILK-related
components in the small intestine. As previously observed
for fibronectin and integrin α5β1 in the intact intestine
[21, 29, 33], ILK, PINCH-1 α-parvin, and β-parvin were
found to be predominantly expressed by the proliferative
epithelial cells of the crypts [58]. In HIEC cells, ILK, PINCH-
1, α-parvin, and β-parvin were all closely associated with FA
points (Figure 4(a)). A siRNA strategy was used to knock
down ILK expression in HIEC cells in order to further
investigate the role of ILK in intestinal crypt cells [58].
Interestingly, ILK knockdown in HIEC was accompanied
by severe disruption of the IPP complex including the
loss of PINCH-1 and parvins as well as major alterations
in fibronectin synthesis and functional matrix deposition
(Figure 4(b)). Overexpression of ILK was previously shown
to increase fibronectin deposition in rat intestinal cells [76]
while ILK knockdown decreases fibronectin expression in
mice and human colon cancer cells. Indeed, the fibronectin
gene promoter contains response elements that have been
shown to be potentially regulated by ILK-mediated signalling
[68, 77]. However, in HIEC cells, although a reduction
of fibronectin was observed at the transcript level, ILK
knockdown had no net effect on fibronectin protein amounts
found in the culture medium suggesting that it was mainly
the ability to process and deposit soluble fibronectin that
was altered by the loss of the IPP complex [58]. The exact
mechanism by which ILK knockdown impairs fibronectin
deposition remains to be elucidated. Expression levels of the
fibronectin integrin receptors were not altered in HIEC ILK
knockdown cells suggesting that the required receptors for
fibrillogenesis [67] remain available for binding. However,
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Figure 5: Regulation of dynamic assembly of fibronectin by type VI collagen. Schematic representation of the proposed mechanism by
which collagen VI regulates FN fibrillogenesis. In HIEC, collagen VI is deposited into the ECM and interferes with fibronectin assembly by
three distinct mechanisms. (a) First, in HIEC collagen VI competes with fibronectin for β1 integrin binding in focal adhesions. (b) Second,
collagen VI limits cellular accessibility of fibronectin through a direct interaction with FN preventing fibronectin association with other
fibronectin molecules, a step required for the extensive formation of the fibronectin matrix. (c) The third mechanism involves the regulation
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and mediates fibrillar actin contractility that allows the recruitment of tensin to FBs generating extensive fibrillogenesis. The increase in
fibronectin deposition followed the depletion of collagen VI is accompanied by an increase in migration.

because of the important scaffolding role of ILK and IPP
complexes, the decrease of fibronectin deposition in these
ILK-deficient cells may reflect a reduction in the cytoskeletal
tension necessary for fibrillogenesis [78, 79]. Alternatively,
alteration in signalization pathways may also be involved.
Indeed, key signalling molecules such as Src, PI3 K, and
ERK have been shown to modulate fibronectin deposition in
various cell models [80–82] and ILK and the IPP complexes
can regulate these signalling molecules [83–85].

In addition to an alteration in fibronectin deposition, ILK
knockdown severely affected basic intestinal crypt cell func-
tions such as cell spreading, migration restitution abilities as
well as cell proliferation [58]. Alterations in these functions
in ILK-knockdown HIEC cells were not surprising since
these functions can be stimulated by fibronectin in intestinal
epithelial cells [86–89]. Interestingly, exogenously deposited
fibronectin was found to fully rescue the ILK-knockdown
HIEC phenotype with regard to cell proliferation, spreading
and migration [58].

Taken together, as summarized in Figure 4, these data
reveal that ILK and, by extension, the IPP complexes, per-
form crucial roles in the control of human intestinal crypt
cell homeostasis, especially as key mediator of fibronectin
deposition in the BM, which in turn regulates cell prolifer-
ation, migration, and restitution.

5. BM Collagen VI as a Regulator of
Crypt-Cell-Fibronectin Interaction

Type VI collagen is a ubiquitously expressed ECM compo-
nent [90]. In interstitial ECM, collagen VI acts as an anchor-
ing meshwork bridging collagen fibers to the surrounding
matrix [91, 92]. Collagen VI has also been shown to directly

interact with the BM-specific type IV collagen [93] support-
ing a key role for this collagen in connecting BM to ECM
[94, 95]. However, we recently identified collagen VI as a
bona fide component of the basal lamina in the intestinal
BM and found that it is synthesized in significant amounts
by crypt epithelial cells [59].

To investigate the function of type VI collagen in the
intestinal epithelial crypt cell, we used a similar knockdown
strategy with HIEC cells as described in the previous sections
for integrin the α8 subunit and ILK. Surprisingly, abolition
of collagen VI expression resulted in a striking increase in
cell size and spreading accompanied by a significant increase
in the number of stress fibers and tensin recruitment at the
FB points [59]. The observations that removal of collagen
VI emphasized features normally associated with fibronectin
suggested that collagen VI regulates fibronectin assembly
in epithelial cells. Interactions between collagen VI and
fibronectin have been previously reported [93, 96]. Further
investigation in collagen-VI-depleted HIEC cells revealed
that fibronectin was increased at both protein and transcript
levels and was subjected to extracellular rearrangement into
long, parallel fibrils. Importantly, exogenous collagen VI, but
not collagen I or IV, was able to fully rescue the knockdown
phenotype indicating that the effect is specific for type VI
collagen [59]. Considering that exposure of fibronectin-
binding sites is critical for both cell binding and fibrillo-
genesis [67, 97], one may hypothesize that, under normal
conditions, collagen VI acts by limiting cellular accessibility
to fibronectin through competition for integrin receptors
(Figure 5(a)) or by a direct interaction with fibronectin
in the ECM (Figure 5(b)). Consistent with this possibility,
collagen VI has been reported to be recognized by the RGD-
binding α5β1 and αV integrins [98–100]. Furthermore,
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HIEC binding to collagen VI is integrin β1 dependent and
it was the FB complexes, specifically enriched in tensin and
α5β1 integrin [6, 54, 67], that were enhanced in collagen-VI-
depleted HIEC [59].

To further investigate the mechanism underlying the gen-
eration of FB complexes in collagen-VI-depleted intestinal
crypt cells, the regulation of actomyosin forces was analyzed.
Actin contractility depends on the phosphorylation of the
myosin light chain (MLC), which is mainly mediated by the
kinases MLC (MLCK) and Rho (ROCK) acting on MLC and
myosin phosphatase, respectively [101–104]. Interestingly,
MLCK-dependent activation of MLC phosphorylation was
observed in poor collagen VI/rich fibronectin ECM envi-
ronments consistent with the observed generation of higher
numbers of tensin-enriched FB complexes and extensive
fibronectin fibrillar deposition [59] (Figure 5(c)).

As summarized in Figure 5, these data identified collagen
VI as a major regulator of fibronectin synthesis and fibril-
logenesis and suggest that collagen VI influences intestinal
epithelial crypt cell behaviour by restraining cell-fibronectin
interactions and their downstream events.

6. Conclusions

Described as a predominant epithelial BM component in
the intestinal crypt more than 3 decades ago [33–36],
fibronectin has been confirmed to play an important role
in the RGD system regulating crypt epithelial cell functions.
The recent findings summarized herein further emphasize
the crucial importance of this RGD-adhesion system and
its regulatory mechanisms. Indeed, intestinal epithelial cells
can regulate RGD interactions through expression of specific
integrin receptors, as exemplified by α8β1, which exerts
major regulatory influences on key cell functions such as
cell proliferation, migration, and survival [48, 53]. Regu-
lation of RGD interactions can also be accomplished by
regulating production and deposition of their ligands, such
as fibronectin, as illustrated by the finding that ILK/IPP
complexes are key mediators of fibronectin deposition into
the BM, which in turn regulates cell proliferation, migration,
and restitution [58]. Finally, regulation of RGD-dependent
cell interactions can also be achieved by interaction with
other ECM molecules as shown with type VI collagen, a
basement membrane component that regulates epithelial
cell-fibronectin interactions. Taken together, these studies
define new molecular elements and shed new light on the
relative complexity of specific cell-matrix interactions in a
well-defined environment such as the intestinal crypt and the
critical impact these interactions have on cell function.
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