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Serotonergic neurons respond to nutrients
and regulate the timing of steroid hormone
biosynthesis in Drosophila
Yuko Shimada-Niwa1 & Ryusuke Niwa1,2

The temporal transition of development is flexibly coordinated in the context of the nutrient

environment, and this coordination is essential for organisms to increase their survival fitness

and reproductive success. Steroid hormone, a key player of the juvenile-to-adult transition, is

biosynthesized in a nutrient-dependent manner; however, the underlying genetic mechanism

remains unclear. Here we report that the biosynthesis of insect steroid hormone, ecdysteroid,

is regulated by a subset of serotonergic neurons in Drosophila melanogaster. These neurons

directly innervate the prothoracic gland (PG), an ecdysteroid-producing organ and share

tracts with the stomatogastric nervous system. Interestingly, the projecting neurites mor-

phologically respond to nutrient conditions. Moreover, reduced activity of the PG-innervating

neurons or of serotonin signalling in the PG strongly correlates with a delayed developmental

transition. Our results suggest that serotonergic neurons form a link between the external

environment and the internal endocrine system by adaptively tuning the timing of steroid

hormone biosynthesis.
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S
teroid hormones play crucial roles in many aspects of
development, growth and reproduction. They have a
conserved role in controlling the developmental transition

from juvenile-to-adult across animal phyla. For example, human
steroid hormones promote the development of secondary sexual
characteristics at puberty, leading to adult sexual maturation1.
The insect steroid hormone ecdysteroid determines the timing of
moulting and metamorphosis2. Interestingly, the temporal
coordination of steroid hormone biosynthesis during the
juvenile-to-adult transition is tightly coupled to the nutrient
conditions in the juvenile stage, which allows organisms to
increase their survival fitness and reproductive success3. However,
it remains unclear how nutrient information is incorporated to
control the timing of steroid hormone biosynthesis.

The fruit fly Drosophila melanogaster provides a suitable model
for studying the regulatory system of steroid hormone/ecdyster-
oid biosynthesis4,5. During the larval stages, a form of
ecdysteroid, ecdysone (E), is synthesized in a special endocrine
organ called the prothoracic gland (PG; Fig. 1a,b). Studies during
the past decade have successfully identified ecdysteroidogenic
enzyme genes acting in the PG, such as neverland (nvd), shroud
(sro), spookier (spok), phantom (phm), disembodied (dib) and
shadow (sad), which mediate the steps converting cholesterol to E
(ref. 6). Once released into the haemolymph, E is further
converted to an active form of ecdysteroid, 20-hydroxyecdysone
(20E), in peripheral tissues by the action of shade6. The level of
ecdysteroids (E and 20E) is increased and decreased in a stage-
specific manner, controlling a battery of downstream gene
expression profiles7.

The biosynthesis of E and 20E is controlled in response to
several environmental parameters including nutrition, tempera-
ture and light2,3. The environmental information is transduced in
the PG through neuronal inputs or humoral factors. A well-
known example is prothoracicotropic hormone (PTTH)-
producing neurons, which directly innervate the PG and
control E biosynthesis via Torso–ERK signalling8–10. When
PTTH neurons are genetically ablated or Torso–ERK signalling
is impaired in the PG, the timing of ecdysteroid biosynthesis is
delayed in the larva-to-pupa transition (pupariation). As a result,
these animals extend the duration of larval growth, giving rise to
giant-size larvae and pupae8,9. Because PTTH neurons are
connected to clock neurons8,11, PTTH signalling is hypothesized
to respond to light10. Furthermore, ptth expression patterns are
affected by an impairment of imaginal disc growth12–14. Another
example is Drosophila insulin-like peptides, which are produced in
and secreted from the insulin producing cells in a nutrient-
dependent manner. Several lines of evidence indicate that the
insulin/insulin-like growth factor-1 signalling (IIS) pathway and
the target of rapamycin (TOR) pathway in the PG control the
duration of larval growth15–18. The expression levels of both torso
and insulin receptor (inr) are regulated by the transforming growth
factor-b (TGF-b) signalling pathway19, indicating that multiple
signalling pathways are coordinated for a convergence of signalling
output: a time for ecdysteroid biosynthesis in the juvenile-to-adult
transition.

Although PTTH neurons are the only neurons so far known to
directly innervate the PG20, other neurons are known to project
to the PG in lepidopteran species21, implying that
uncharacterized neurons projecting to the PG also exist in
D. melanogaster5. Here, we identified a subset of serotonin (5-
hydroxytryptamine, 5-HT)-producing neurons that directly
innervate the PG. These neurons belong to the stomatogastric
nervous system (SNS) and respond to nutrient conditions. Our
results suggest that three pairs of serotonergic neurons are
responsible for pupariation timing and that serotonin signalling is
a novel regulator for ecdysteroid biosynthesis. Based on these

results, we propose that serotonergic neuronal control mediates
the nutrient-dependent developmental plasticity via modulating
steroid hormone biosynthesis in the juvenile-to-adult transition.

Results
A subset of serotonergic neurons directly innervates the PG. In
the course of studying how neural inputs affect E biosynthesis in
the PG, we focused on a subset of serotonergic neurons that
innervate the ring gland (RG). The RG is a composite endocrine
organ in cyclorrhaphous Diptera, including D. melanogaster,
consisting of the PG, the corpora allata and the corpora cardiaca
(CC; ref. 22). Previous studies report that serotonergic neurons
innervate the CC area of the RG (refs 20,23,24). Using the
phantom (phm)–GAL4#22 driver, which is specifically expressed
in the PG cells, we found that serotonin-immunoreactive neurites
directly innervated the PG cells as well as the CC (Fig. 1c, arrows).
These neurites were also labelled with tryptophan hydroxylase
(TRH)–GAL4, which is highly selective for serotonergic neurons
(Fig. 1d–i)25. n-Synaptobrevin (nSyb)::green fluorescent protein
(GFP) was localized to the neurite termini, indicating that they
are the presynaptic sites (Fig. 1e). Next, we looked for cell bodies
of the PG-innervating serotonergic neurons by tracing backwards
through the axons. Notably, the axons pass through the
oesophagus foramen between the brain hemispheres (Fig. 1c,f,
arrowheads) and extend towards the pharyngeal region (Fig. 1f,g).
At the frontal nerve junction (an inset in Fig. 1g), the axons turn
back to the brain (Fig. 1f,g) and reach the cell bodies at the
tritocerebral compartment on the ventral side (Fig. 1f–i, blue
arrows). The location of the cell bodies seems to correspond to
the ‘SE0’ cluster, where their dendrites extend to the region of the
suboesophageal ganglion (SOG, Fig. 1i)24,26. It should be noted
that the cell bodies of SE0 neurons were faintly immunostained
with anti-serotonin antibody (Fig. 1g), which would explain why
these neurons have not been defined in the classic anatomical
studies20,23. We hypothesize that SE0 neurons extend so far that
serotonin is mostly transported to the terminal region and that
little remains localized in the cell bodies. In our observation, four
pairs of ‘SE0’ neurons project not only to the PG but also to the
feeding apparatuses, such as the pharyngeal muscles (PM) and
proventriculus (insect foregut), suggesting that the ‘SE0’ cluster
neurons belong to the stomatogastric (enteric) nervous system
(Fig. 1g,j)24,26. To discriminate the serotonergic neurons
innervating the PG from other serotonergic neurons in the
‘SE0’ cluster, we denote the serotonergic neurons innervating the
PG as ‘SE0PG neurons’.

Three pairs of serotonergic neurons innervate the PG. Because
TRH–GAL4 is expressed in almost all serotonergic neurons25, we
searched for an alternative GAL4 driver that is expressed in a
smaller subset of neurons including SE0PG neurons. In the GAL4
collection of the Janelia FlyLight database27, we found that
R29H01–GAL4, which contains a genomic fragment of gene
CG8742 (Gyc76C), was expressed in SE0PG neurons (yellow
arrows, Fig. 2a–c) and some other non-serotonergic neurons
(Fig. 2a,b, blue arrowheads). In the SE0 cluster, the GAL4-driven
GFP expression was detected in three pairs of cells (insets in
Fig. 2a,b), indicating that R29H01–GAL4 refines serotonergic,
TRH–GAL4-positive neurons innervating the PG. Among these
three pairs of neurons, we failed to narrow down how many
neurons innervate the PG with single-cell clone analysis. Because
R29H01–GAL4-driven GFP was not expressed in the neurites
projecting to the PM (an inset in Fig. 2c), the PM is specifically
innervated by at least one pair of the SE0 cluster neuron that is
R29H01–GAL4 negative and TRH–GAL4 positive (Fig. 1j).
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To confirm that R29H01–GAL4-positive neurons other than
SE0PG neurons are non-serotonergic, we used the Q system in
conjunction with the GAL4 system to generate intersectional
expression patterns28. In our crossing scheme, TRH–QF induces

QUAS–FLP expression, which removes the transcription stop
cassette, allowing for R29H01–GAL4-induced GFP expression
only in the overlapped region where both QF and GAL4 are
expressed. We found that GFP expression was limited to three
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Figure 1 | Serotonergic SE0PG neurons innervate the PG. (a) The third instar larva expressing RFP using phantom–GAL4 (phm4RFP). The anterior side is

at the top. RFP is expressed in the prothoracic gland (PG, arrow). The boxed area is illustrated in b. (b) The pharyngeal muscles (PM), oesophagus (EP),

ring gland (RG), brain (Br), ventral nerve cord (VNC) and proventriculus (PV). The RG contains the PG, the corpora allata (CA) and the corpora cardiaca

(CC). (c) The Br–RG complex from a phm4RFP third instar larva was immunostained for serotonin (green). Serotonergic neurons directly innervate the PG

(arrows). The neurites pass through the oesophagus foramen (arrowhead, outlined circle). (d,e) The PG-projecting neurons were visualized with DsRed

and nSyb::GFP using TRH–GAL4. (f) A TRH4GFP third instar larva was dissected from the lateral side. PG-projecting neurons (green, yellow arrow) passed

through the oesophagus foramen (arrowhead, see also c), extending towards the frontal nerve junction (FJ). The blue arrow indicates the ‘SE0’ cluster in

the ventral side of the brain. Magenta is used as a background colour to show the shapes of the tissues. (g) A TRH4GFP third instar larva was dissected

from the dorsal side and immunostained for serotonin (magenta) and GFP (green). The SE0 neurons (blue arrows) innervated the PG as well as the PM and

the PV (yellow arrows). The boxed area is magnified in the inset. At the FJ, the neural tracts bifurcated to PM and PG (green and orange). (h) Four pairs of

SE0 cells (circles). The boxed area is shown in i. (i) The TRH4GFP third instar larva was immunostained for GFP (green) and a suboesophageal ganglion

(SOG) marker PBAN (magenta). The SE0 neurons (arrows) are located anterior to the SOG cells (bracket). The inset is a single-cell clone of SE0 neurons.

(j) The anterior half of a larva and the tracts of SE0 neurons (green lines) are illustrated. The scale bar depicted in i corresponds to 481 mm (a), 18.7mm (c),

20.0mm (d,e), 32.7mm (f), 50mm (g), 28.4 mm (g, inset), 28.1mm (i) and 24.4mm (i, inset).
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pairs of cells in the SE0 cluster (Fig. 2d,e). This observation
indicates that the expression patterns of R29H01–GAL4 and
TRH–GAL4 share only three pairs of SE0 neurons.

The SE0 cluster neurons are located just anterior to the SOG
(Fig. 1i), implying that SE0 neurons may have synaptic contacts
with SOG neurons. The SOG is proposed to act as a feeding
control centre in insects29, expressing a neuropeptide called
Hugin30,31. To test this idea, we employed an enhanced variant of
GFP reconstitution across synaptic partners (GRASP)32 in which
UAS–spGFP1-10::Neurexin is expressed under the control of
hugS3–GAL4, and LexAop–spGFP11::CD4 is expressed under the
control of TRH–LexA33. SpGFP1-10::Neurexin is targeted to
synapses of SOG neurons, whereas spGFP11::CD4 permits cell-
surface expression on SE0 neurons. Reconstituted GFP signals
were detected in the region between SOG and the SE0 cluster
(Fig. 2f,g), whereas negative controls did not give GFP signals

(Fig. 2h,i). This result supports the idea that SE0 neurons receive
some signals from SOG neurons.

The projection of SE0PG neurons responds to nutrient. The
prominent anatomical features of SE0PG neurons described above
prompt us to think that the innervation of SE0PG neurons is
related to nutrient signals or feeding behaviours. Indeed, the
timing of ecdysteroid biosynthesis depends on nutrient condi-
tions16, making SE0PG neurons candidates for transmitting
nutrient signals to the PG. To test our hypothesis that the
serotonergic neurons respond to nutrient conditions, we
examined the morphology of their neurites under various food
conditions. When the first instar larvae were raised on standard
agar–cornmeal food containing varying amounts of yeast, the
timing of pupariation varied (Fig. 3a). On our regular food
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condition (1.0� yeast¼ 2.0 g of yeast per 50 ml), almost all larvae
became pupae in 96–120 hours after hatching (hAH) at 25 �C
(black line in Fig. 3b). In contrast, the timing of pupariation was
delayed by 4–5 days under the yeast-poor condition (0.2� yeast,
blue line in Fig. 3b) compared with the yeast-rich condition
(2.5� yeast, red line in Fig. 3b). In the yeast-rich condition,
SE0PG neurons projected well to the PG at the early third instar
stage (0–6 hours after L2–L3 moulting (hA3L); Fig. 3c), as well as
the prepupal stage (Fig. 3e). In contrast, SE0PG neurons barely
projected to the PG under the yeast-poor condition (Fig. 3d,f).

Both serotonin signals and the membrane-associated mCD8::GFP
signals in the neurites were affected (Supplementary Fig. 1a–f),
indicating that the axon terminal morphology changed under the
yeast-poor condition. The total length of SE0PG neurons
innervating the PG was significantly decreased under the yeast-
poor condition (Fig. 3g,h). This difference may be specific to
SE0PG neurons because the projection of PTTH neurons was not
affected under the yeast-poor condition (Fig. 3c–f and h). We
would like to emphasize that we carefully dissected the larvae (see
the Methods section) and observed both SE0PG and PTTH
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neurons simultaneously in the same, not different, samples.
Therefore, it is unlikely that the differences in the neurite
projection length were due to an artifact of dissection. Taken
together, these results support the idea that SE0PG neurons
respond to food-related signals.

To examine the plasticity of the neurites of SE0PG neurons, we
switched the food condition from yeast poor to yeast rich and vice
versa during the third instar larval stage. We confirmed that
SE0PG neurons innervated the PG in the first instar stage before
food uptake (Supplementary Fig. 1g–i). When the first instar
larvae were raised on yeast-poor food and then transferred to
yeast-rich food in the third instar stage, the projection of SE0PG

neurons recovered 2 days after the transfer (Fig. 3i–m).
Correspondingly, the delayed timing of pupariation was also
recovered (Supplementary Fig. 1j). Conversely, when larvae were
transferred from regular food (1� yeast) to yeast-free food (0�
yeast) in the early third instar stage (0–6 hA3L), SE0PG neurons
hardly projected to the PG (Fig. 3k–n). In this case, the timing of
pupariation was delayed, and the PG cells decreased in size
(Fig. 3l and Supplementary Fig. 1j). These results suggest that
SE0PG neurons respond reversibly to nutrient signals and adjust
the timing of pupariation to the nutritional conditions.

SE0PG neurons modulate the timing of E biosynthesis. To
inhibit the function of serotonergic SE0PG neurons, we expressed
tetanus toxin light chain (TeTxLC), a neuron-specific toxin that
prevents the presynaptic release of synaptic vesicles34, using
R29H01–GAL4 or TRH–GAL4. The timing of pupariation was
delayed by 1–2 days in R29H014TeTxLC as well as
TRH4TeTxLC larvae (Fig. 4a and Supplementary Fig. 2b). As
a result, TeTxLC-expressing larvae became giant in size, which is
a typical phenotype of ecdysteroid deficiency (Fig. 4b)8. This
phenotype was not observed when the inactive forms of TeTxLC
were expressed (Supplementary Fig. 2a). Next, we measured the
ecdysteroid titres in R29H014TeTxLC and control larvae
(Fig. 4c). In control larvae, the ecdysteroid titres increase from
the late third instar stage (96 hAH) to the prepupal stage
(96–120 hAH). The substantial increase of the ecdysteroid titres is
associated with pupariation, a transition of development35. In
contrast, the ecdysteroid levels were not significantly elevated in
R29H014TeTxLC larvae, suggesting that the ecdysteroid peak is
absent in these animals. Consistent with this, the expression levels
of ecdysteroidogenic genes were significantly reduced in the late
third instar stage (Fig. 4e). Moreover, we found that the timing of
pupariation was restored when R29H014TeTxLC larvae were fed
with food containing 20E (Fig. 4a). These results suggest that the
phenotype for delay in the pupariation timing is due to the
impairment of E biosynthesis.

To reduce the possibility that neurons other than SE0PG

neurons are involved in the pupariation timing, we genetically
manipulated the expression of TeTxLC only in three pairs of SE0
neurons by using the Q system in conjunction with the GAL4
system (Fig. 4d). The pupariation timing of these larvae showed a
delay, similar to that in R29H014TeTxLC or TRH4TeTxLC
larvae, although GFP-expressing control larvae also showed a
milder delay at 96 hAH. This result strengthens the hypothesis
that SE0PG neurons are responsible for the proper timing of E
biosynthesis at pupariation.

We also examined whether TeTxLC expression in SE0PG

neurons caused a delayed pupariation timing under the yeast-
poor condition. Because SE0PG neurons hardly innervate the PG
cells on yeast-poor food, TeTxLC expression would not further
affect on the delayed timing of pupariation. As we expected,
control and R29H014TeTxLC larvae became pupae at the similar
time course of 144–216 hAH in the yeast-poor condition
(Supplementary Fig. 4a). Furthermore, TeTxLC expression
reduced, but did not eliminate, the effect of poor food on
pupariation timing (Supplementary Fig. 4a,b). These results
suggest that nutrient-dependent control of pupariation timing is
partially, but not fully, mediated by SE0PG neurons.

As an alternative approach to manipulating neuronal activities
in a small group of cells, we utilized mosaic analysis with a
repressible cell marker (MARCM)36 to express genes selectively
in a subpopulation of serotonergic neurons that included SE0PG

neurons. We used the cell death gene reaper (rpr) to inhibit the
function of SE0PG neurons. After inducing mitotic clones through
heat shock, a group of larvae expressing both GFP and rpr had a
prolonged larval stage compared with the control. When we
dissected those larvae that exhibited a delayed pupariation (at
120 hAH), some SE0PG neurons were labelled with GFP (yellow
arrows in Fig. 4g,j, and m), indicating that rpr did not always
eliminate cells under our experimental condition. Other cells were
not clearly labelled with GFP (blue arrows in Fig. 4g,j), possibly
because they were eliminated by rpr or did not make mitotic
clones. Nevertheless, the serotonin signal was severely decreased
in all of the SE0PG axons that we observed at 120 hAH (Table 1;
blue circles in Fig. 4h,k and n). In contrast, when the wandering
larvae expressing both GFP and rpr were dissected at 96 hAH,
only 40% of the animals showed a decreased serotonin signal
(Table 1). These data suggest that the reduction of serotonin in
SE0PG neurons strongly correlates with a prolonged larval stage,
which reflects the timing of delayed E biosynthesis.

Serotonin regulates the timing of E biosynthesis in the PG.
Finally, we examined whether the serotonin signal was trans-
mitted to the PG. The D. melanogaster genome encodes five

Figure 4 | Inhibition of SE0PG neurons is coupled to delayed pupariation. (a) The pupariation ratio after hatching. When newly hatched larvae were

raised at 29 �C, control larvae pupariate at 72–96 hAH. In contrast, TeTxLC-expressing larvae delayed pupariation by 1–2 days, and the delay was rescued by

feeding with 20E. The number of animals: R29H014TeTxLC (n¼ 201, EtOH; n¼ 251, 20E), w4TeTxLC (n¼ 142, EtOH; n¼ 172, 20E). (b) The prolonged

larval growth period resulted in an increased pupal size. The pupal size (double-headed arrow) was compared between control (n¼46) and

R29H014TeTxLC (n¼48). (c) The levels of ecdysteroids in w4TeTxLC and R29H014TeTxLC animals at 96–144 hAH. At 120 hAH, prepupae were collected

from the control. (d) The pupariation timing was delayed after TeTxLC was expressed in three pairs of SE0 neurons (black, n¼ 193). mCD8::GFP was

expressed in these neurons of control (grey, n¼ 381). (e) The expression of ecdysteroidogenic genes decreased in the RG of R29H014TeTxLC larvae at

96 hAH. The fold changes compared with control larvae (w4TeTxLC) were calculated. (1) nvd, (2) spok, (3) sro, (4) phm, (5) dib, (6) sad. (f–n) Three

examples of the third instar Br–RG complex containing MARCM clones that express GFP and rpr in SE0PG neurons. Those larvae that exhibited a delayed

pupariation were dissected at 120 hAH and immunostained for GFP (green) and serotonin (magenta). In our experimental condition, some cells were

eliminated by rpr but others were not. The presence of the cell bodies and the PG projections are indicated with yellow arrows and circles, while the

absence of them are indicated with blue ones. In the example 1 (f–h), the right side of SE0PG cell bodies and the PG projection were lost (blue arrow and

circle). In the examples 2 and 3 (i–n), the PG projections remained (yellow circles) but serotonin signals significantly decreased in these PG projections

(blue circles in k,n). For statistical analysis, Student’s t-test was performed in b,c,e. *Po0.05. The average values of triplicate data sets are shown with

s.e.m.. Bars: (b) 1.0 mm; (f–n) 50mm. Each experiment was conducted independently at least three times.
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serotonin receptors: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B and
5-HT7 (ref. 37). Utilizing transgenic RNA interference (RNAi)
lines targeting these receptor genes, we found that the PG-specific
knockdown of one receptor gene, 5-HT7, caused a developmental
delay and an increased size (Fig. 5a,b; Supplementary Fig. 3;
Supplementary Tables 1 and 2). 5-HT7 expression in the PG cells
was confirmed by the observation that two independent 5-HT7–
GAL4 transgenic lines were active in the PG (Supplementary
Fig. 3a–c)37,38. The developmental delay phenotype was caused
by either of the two independent RNAi lines that target different
regions (Supplementary Fig. 3d–g; Supplementary Table 1),
suggesting that the effect of the RNAi was specific to 5-HT7
and was not an off-target effect. It has previously been
demonstrated that the forced expression of 5-HT7 raises the
levels of the second messenger cyclic AMP (cAMP)39. To
measure the levels of cAMP in the PG of control and 5-HT7–
RNAi larvae, we used a fluorescence resonance energy transfer
(FRET) biosensor, Epac1-camps40. Briefly, a high level of the
FRET ratio indicates a low level of cAMP. The FRET ratio is
higher in the third instar stage of 5-HT7–RNAi larvae than that of
control larvae, indicating that cAMP levels are downregulated in
the PG of 5-HT7–RNAi larvae (Fig. 5c). The developmental delay
phenotype was rescued by oral administration of 20E in food
(Fig. 5b), suggesting that 5-HT7–RNAi causes ecdysteroid
deficiency. To further test this possibility, we compared the
ecdysteroid titres between control and 5-HT7–RNAi animals
(Fig. 5d). As in R29H014TeTxLC larvae, 5-HT7–RNAi animals
had lower ecdysteroid levels during the third instar stage.
Consistent with this phenotype, the expression levels of
ecdysteroidogenic genes were significantly reduced in 5-HT7–
RNAi animals (Fig. 5e). Taken together, these results suggest that
serotonin signalling plays an important role in ecdysteroid
biosynthesis in the PG.

Discussion
The timing of the developmental transition from the juvenile
stage to adulthood is closely linked to nutrient conditions. In
D. melanogaster, the larval stage is a feeding period for growth,
and once the larvae gain sufficient weight for metamorphosis,
they stop feeding and wander away from food. Therefore,
nutrient signals activate the behavioural changes accompanied
with ecdysteroid biosynthesis at pupariation, that is, the period of
the juvenile-to-adult transition.

In this study, we provide a novel insight into the mechanism
controlling pupariation timing in a nutrient-dependent context.
Our results strongly suggest that a subset of serotonergic (SE0PG)

neurons directly innervate the PG, regulating the timing of
ecdysteroid biosynthesis. Strikingly, the projection of SE0PG

neurons is affected by nutrient conditions and is correlated with
the timing of pupariation. Furthermore, serotonin signalling
mediates ecdysteroid biosynthesis in the PG. Our results are novel
and significant particularly in the following two aspects. First, as
far as we know, this study is the first report showing that biogenic
amines act on the PG in vivo, in contrast to a number of previous
studies focusing on neuropeptides acting on the PG (ref. 21).
Second, our study suggests that nutrient conditions affect
ecdysteroid biosynthesis via the direct neuronal projections to
the PG from the insect feeding centre SOG. Given that serotonin
modulates neuronal activities in response to food stimuli41, our
result sheds light on a novel role for serotonin in linking nutrient
conditions to steroid hormone biosynthesis, underlying the
progression of development in concert with nutrient availability.

Although it has been reported that serotonin-positive neurites
innervate the CC in the RG (refs 20,23), our careful microscopic
observation has revealed that a few serotonergic neurites of SE0PG

neurons directly project to the PG, the ecdysteroid-producing
organ (Fig. 1c). The projection pattern of SE0PG neurons is
distinct from that of PTTH neurons, which cover the entire
region of the PG. Currently it is unclear whether serotonin
signalling is transduced equally to all the PG cells. However, it
should be noted that serotonergic neurotransmission can best be
described as volume transmission, in which the majority of
uptake sites appear to be located beyond synaptic junctions42.
Thus, we hypothesize that serotonin is released into the
extracellular space of the PG and is allowed to diffuse sufficient
distances to activate serotonin receptors on all cells of the PG.
Alternatively, it is also possible that only a few PG cells might
receive serotonin signals that are then propagated by the
secondary signals to the neighbouring PG cells. For example,
Ca2þ influx is detected downstream of PTTH signalling in the
lepidopteran species43–45. Such a mechanism would allow PG
cells to synchronize the timing of ecdysteroid biosynthesis at
one time.

Through anatomical studies, we have revealed that SE0PG

neurons belong to the stomatogastric nervous system, which
controls the movements of the foregut and pharynx associated
with feeding behaviours (Fig. 1g)46. Our GFP reconstitution
across synaptic partners analysis strongly suggests that SE0PG

neurons have synaptic contact with hug-expressing SOG neurons,
but this must be verified through ultrastructural analysis (Fig. 2g).
Considering that the activation of hug-expressing neurons
reduces feeding behaviour and increases wandering-like
behaviours47, one attractive scenario is that hug neurons and
SE0 neurons are involved in a switch of post-feeding behaviours
by promoting ecdysteroid biosynthesis in the late third instar
stage. Both hug and SE0 neurons have several distinct target
regions including the RG, so there should be a functional
subdivision or a specific connection between the feeding circuit
and neuroendocrine system. To address this question,
identification of SE0PG cell bodies in the SE0 cluster will be
required so that their activity can be monitored in the context of
developmental transitions. Although our trial of generating
single-cell clones failed to determine the exact number of SE0PG

neurons, alternative sets of GAL4 drivers could successfully
narrow down the numbers of candidate cells (Fig. 2a–e).

The phenotype obtained after the suppression of serotonin
signalling is a developmental delay and a increased body size
(Fig. 5a,b), which is typical for ecdysteroid deficiency and
remarkably similar to the phenotype after IIS/TOR pathway
inhibition in the PG (refs 15–18). It is feasible to think that
serotonin signalling would cooperatively regulate the timing of
ecdysteroid biosynthesis with the IIS/TOR pathway. It has been

Table 1 | The percentage of larvae that showed lower
serotonin signals in SE0PG neurons.

GFP Serotonin 96 hAH 120 hAH

� � 30 (n¼9) 17.9 (n¼ 5)
þ � 10 (n¼ 3) 82.1 (n¼ 23)
þ þ 60 (n¼ 18) 0 (n¼0)

% 100 100

GFP, green fluorescent protein; hAH, hours after hatching; MARCM, mosaic analysis with a
repressible cell marker; PG, prothoracic gland; rpr, reaper.
The ‘GFP[–] and serotonin[� ]’ group indicates that SE0PG neurons were lost by rpr. The
‘GFP[þ ] and serotonin[� ]’ group indicates that SE0PG neurons were present but the serotonin
signal decreased. The ‘GFP[þ ] and serotonin[þ ]’ group indicates that SE0PG neurons and the
serotonin signal were detected on the PG. When the MARCM clone-induced larvae were
dissected at 96 hAH (the wandering stage), 40% of these animals showed decreased level of
serotonin in SE0PG neurons. In contrast, when the larvae delayed for pupariation were dissected
at 120 hAH, all animals decreased serotonin signals in SE0PG neurons. Thus, the inhibition of
SE0PG neurons leads to decreased level of serotonin, which correlates with the delayed timing of
pupariation.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6778

8 NATURE COMMUNICATIONS | 5:5778 | DOI: 10.1038/ncomms6778 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


0

20

40

60

80

100

0 24 48 72 96 120 144 168 192 216

5-HT7-i + EtOH (n=228)
5-HT7-i  + 20E (n=254)

Control + EtOH (n=86)
Control + 20E (n=83)

*

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

72 hAH 96 hAH 120 hAH
(prepupa)

Control

5-HT7-i

*

*

*

0

0.5

1.0

1.5 *
*

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

0.5

1.0

1.5

*
*

*
*

0

1.0

3.0

2.0

4.0
*

P
up

a 
si

ze
 (

m
m

)
96 hAH 120 hAH 168 hAH

Con
tro

l

5-
HT7-

i

Con
tro

l
5-

HT7-
i

Con
tro

l

5-
HT7-

i

Control 5-HT7-i

C
on

tr
ol

(n
=

27
)

5-
H

T
7-

i
(n

=
21

)

C
on

tr
ol

(n
=

22
)

5-
H

T
7-

i
(n

=
22

)

Control 5-HT7-i Control 5-HT7-i Control 5-HT7-i Control 5-HT7-i Control 5-HT7-i

F
ol

d 
ch

an
ge

(1) nvd (2) spok (3) sro (4) phm (5) dib (6) sad *P<0.05

N
or

m
al

iz
ed

 Y
F

P
/C

F
P

 r
at

io
of

 E
pa

c1
-c

am
ps

pg
 o

f e
cd

ys
te

ro
id

s/
m

g 
la

rv
al

 b
od

y 
w

ei
gh

t

Hours after hatching (hAH)

T
he

 n
or

m
al

iz
ed

 p
up

ar
ia

tio
n 

ra
tio

 (
%

)

Control: w > 5-HT7-RNAi
5-HT7-i: phm> 5-HT7-RNAi, dicer2

Figure 5 | Serotonin signalling promotes ecdysteroid biosynthesis. (a) Representative examples of control (w45-HT7–RNAi) and the PG-specific 5-HT7–

RNAi animals, indicated as 5-HT7-i in the Figures (phm45-HT7–RNAi, dicer2). Samples were collected at 96, 120 and 168 hAH. 5-HT7-i animals gave rise to

an increased size of larvae and pupae. The graph shows the average values of pupa size (mm) in control and 5-HT7–RNAi animals (n¼ 22) and standard

errors (s.e.). (b) The pupariation ratio after hatching. When newly hatched larvae were raised at 25 �C, control larvae pupariated at 96–120 hAH. The timing

of pupariation was delayed in 5-HT7-i larvae by 1–2 days (120–144 hAH; see also Supplementary Fig. 3). This developmental delay was rescued by oral

administration of 0.1 mg of 20E per gram of fly food. The number of animals: control (n¼ 86, EtOH; n¼83, 20E) and 5-HT7-i (n¼ 228, EtOH; n¼ 254,

20E). (c) The measurement of cAMP levels with the Epac1–camps FRET probe. The PGs expressing Epac1–camps were collected in the third instar stage of

control and 5-HT7-i larvae. The normalized YFP/CFP ratio increased in 5-HT7-i animals, indicating that cAMP levels decreased. The average values of 420

individual samples are shown with s.e.m. (d) The levels of ecdysteroids in control and 5-HT7-i larvae at 72, 96 and 120 hAH. At 120 hAH, prepupae were

collected from the control. The ecdysteroid titre did not increase in 5-HT7-i larvae. (e) Quantitative reverse transcription–PCR analysis revealed that the

expression of ecdysteroidogenic genes decreased in the RG of 5-HT7-i larvae in the late third instar stage (96 hAH). The fold changes compared with

control larvae (w45-HT7–RNAi) were calculated. (1) nvd, (2) spok, (3) sro, (4) phm, (5) dib, (6) sad. For statistical analysis, the average values of triplicate

data sets are shown with s.e.m. in d,e. One-way analysis of variance test was used for c, *Po0.01. Student’s t-test was used for a,d,e. *Po0.05. Bar, 1 mm.

Each experiment was conducted independently at least three times.
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reported the elevated level of serotonin suppresses the systemic
IIS pathway, resulting in a developmental delay and a reduced
body size48. This previous result suggests that serotonin plays a
negative role in promoting developmental timing. In contrast, we
argue that this mechanism appears to be distinct from the
function of SE0PG neurons, as SE0PG neurons positively regulate
developmental timing via ecdysteroid biosynthesis (Fig. 4).
Therefore, it is likely that another set of serotonergic neurons
regulates body size and developmental timing via the systemic IIS
pathway. There are more than 100 serotonergic neurons in the
larval brain23, and the local and systemic actions of signalling
affect on body size and developmental timing in different ways.
Thus, the balance of serotonin signalling might contribute to the
proper timing of development.

One of the important questions that remain to be elucidated is
how the neurite extension and retraction of SE0PG neurons are
regulated in response to nutrients at the molecular and cellular
levels. Recent studies have focused on the morphological
plasticity of neurons or tracheas under the variation of
environmental challenges. For example, in the visual system,
variation of the sensory inputs induced substantial morphological
plasticity in the dendritic arbours of the postsynaptic neurons49.
On the other hand, nutrient-dependent plasticity of the tracheal
branching is directly regulated by nutrient-responsive neurons50.
In this study, we found that the projection of SE0PG neurons was
affected by yeast concentration in food (Fig. 3). Yeast contains
amino acids as well as ergosterol, which is the major yeast sterol
that is utilized for ecdysteroid biosynthesis in Drosophila51–53.
One possibility is that SE0PG neurons directly sense the level of
amino acids and/or ergosterol in haemolymph, and thus change
their neurite morphology (Fig. 6). Alternatively, amino acids
and/or ergosterol may be sensed by some gustatory receptor

neurons (GRNs) because GRNs are known to project to SOG
(ref. 54). In this case, the activated GRNs would modulate the
hug-expressing SOG neurons and then transmit the nutrient
signal to SE0PG neurons. A previous study reports that the
biogenic amine dopamine modulates the projection patterns of
serotonergic neurons in the feeding circuit41, suggesting that
neuronal inputs from other neurons can also induce structural
plasticity in the neuroendocrine circuit. It will be interesting to
examine whether the IIS/TOR pathway, a nutrient-sensing
mechanism, is associated with cytoskeletal reorganizations in
SE0PG neurons.

Based on our observation, we propose that SE0PG neurons and
serotonin signalling accelerate ecdysteroid biosynthesis at pupar-
iation in response to nutrition. In the regular or rich food
condition, SE0PG neurons innervate the PG and activate
serotonin signalling in the PG (Fig. 6a). Serotonin signalling
upregulates cAMP level, promoting ecdysteroid biosynthesis in
the late third instar stage. This signalling is important for
ensuring a drastic increase of ecdysteroids in the nutrient-
dependent manner. Among developmental transitions in Droso-
phila, the larva-to-pupa transition, that is, ‘pupariation’, is
particular sensitive for nutrient3, whereby serotonin signalling is
activated. Once the function of SE0PG neurons or serotonin
receptor is disrupted, serotonin signalling does not accelerate
ecdysteroid biosynthesis. The low ecdysteroids titre results in a
delay of pupariation by 1–2 days. As TeTxLC expression or
5-HT7–RNAi did not impair pupariation itself, serotonin
signalling is essential for the timing, but not the progression of
developmental transition. It is likely that other signalling
pathways including PTTH pathway, IIS/TOR pathway or
TGF-b pathway compensate serotonin signalling. On the other
hand, in the yeast-poor condition, SE0PG neurons barely project

Pupariation
at 96-120 hAH

Yeast-rich food

SOG

PG
5-HT7
serotonin signalling

Ecdysteroid 
biosynthesis

Yeast-poor food

SOG

PG
5-HT7
serotonin signalling

Ecdysteroid 
biosynthesis

Pupariation
at 120-168 hAH

Figure 6 | A model of serotonergic SE0PG neuron signalling in response to nutrition. (a) On yeast-rich (or regular) food, SE0PG neurons innervate the PG

and activate serotonin signalling in the PG. Serotonin signalling accelerates ecdysteroid biosynthesis by upregulating the expressions of ecdysteroidogenic

genes in the late third instar stage. This leads to the larva-to-pupa transition (pupariation) at 96–120 hAH. (b) On yeast-poor food, SE0PG neurons barely

project to the PG so that serotonin signalling is not activated. In this case, the timing of pupariation is delayed to 120–168 hAH.
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to the PG so that serotonin signalling is not activated (Fig. 6b). As
a result, the timing of ecdysteroid biosynthesis is delayed. It is
worth reminding that the delayed pupariation timing in the yeast-
poor condition was partially suppressed by inhibiting SE0PG

neuronal activity (Supplementary Fig. 4). This result strengthens
our hypothesis that SE0PG neurons mediate nutrient signal for the
timing of ecdysteroid biosynthesis. However, dietary restriction
still retards developmental timing with disrupted SE0PG neurons,
implying that SE0PG neurons are not the only mechanism that
links nutrition to developmental timing. Larvae on poor food are
able to pupariate independently of signalling through SE0PG

neurons, so that other nutrient-sensitive mechanisms could
regulate ecdysteroid biosynthesis.

The biogenic amines are ancient, evolutionarily conserved
molecules that function in many physiological contexts in both
vertebrates and invertebrates. In light of our Drosophila findings,
it will be interesting to explore the serotonergic neuronal control
of steroid hormone biosynthesis in other species. In the silkworm
Bombyx mori, the PGs are also innervated by several nerves
starting from the SOG (ref. 21). Although it remains to be
determined whether any of the B. mori SOG neurons are
serotonergic, these data raise the possibility of a common feeding
neural circuit mechanism affecting E biosynthesis in insects. In
mammals, serotonergic neurons are thought to be involved in
brain glucose sensing, satiety response or cessation of feeding
after food intake55,56. Taken together, serotonin signalling may
constitute a link between the external nutrient conditions and the
internal endocrine systems, affecting developmental plasticity by
modulating the timing of developmental transition.

Methods
Fly strains and culture. Drosophila melanogaster flies were raised on standard
agar–cornmeal medium at 25 �C under a 12:12 h light/dark cycle. w1118 was used as
the wild type. Heterozygous controls were obtained by crossing GAL4 driver or
UAS effector to w1118. The following transgenic and mutant flies were used:
phm–GAL4#22, ptth–HA (gifts from M.B. O’Connor, University of Minnesota)8,10,
TRH–GAL4 (a gift from O. Alekseyenko, Harvard University)25, 5-HT7Gal4 (a gift
from R. Yao, Peking University School of Life Sciences)37, 5-HT7Dro–GAL4 (a gift
from C.D. Nichols, Louisiana State University Health Sciences Centre)38, hugS3–
GAL4 (a gift from M. Pankratz, University of Bonn)30, LexO–spGFP11::CD4;
UAS–spGFP1-10::Nrx (a gift from N. Shah, University of California, San
Francisco)33, UAS–turboRFP/TM6b (a gift from A. Koto and M. Miura, The
University of Tokyo), UAS–ECFP (a gift from T. Uemura, Kyoto University),
UAS–TrpA1; UAS–TrpA1/TM3 (a gift from T. Kiya, Kanazawa University), UAS–
rpr (a gift from T. Igaki, Kyoto University)57 and UAS–GFP; UAS–mCD8::GFP and
UAS–DsRed; UAS–nSyb::GFP (gifts from K. Ito, The University of Tokyo)58.
R29H01–GAL4 (#47343), UAS–dicer2 (#24650), tubP–GAL4 (#5138), UAS–5-HT7–
RNAiJF02576 (#27273), UAS–Epac–camps (#25408), UAS–TeTxLC (#28837,
#28838), UAS–TeTxLC(inactive) (#28839, #28840, #28841), UAS–(FRTstop)–
TeTxLC (#28842), UAS–(FRTstop)–mCD8::GFP (#30125), QUAS–DSCP–FLPo.2G
(#30008), trh–QF (#52251) and trh–lexA::p65 (#52248) were obtained from the
Bloomington Drosophila Stock Centre (Indiana University, Bloomington, IN,
USA). yw, hs–flp;FRTG13UAS–mCD8::GFP (#108062) and w; FRTG13 tubP–
GAL80 (#108073) were obtained from the Kyoto Drosophila Genetic Resource
Centre (Kyoto Institute of Technology, Kyoto, Japan). UAS–5-HT7–RNAiKK10804

was obtained from the Vienna Drosophila RNAi Centre (Vienna, Austria). The
target region is in the 30 untranslated region, which is distinct from that of UAS–5-
HT7–RNAiJF02576.

Animals shown in figures are the following genotypes:
(Fig. 1a,c) w; phm–GAL4/UAS–RFP
(Fig. 1d,e) TRH–GAL4/UAS–DsRed; TRH–GAL4/UAS–nSyb::GFP
(Fig. 1f–i) w; TRH–GAL4/UAS–GFP; TRH–GAL4/UAS–mCD8::GFP
(Fig. 2a–c) w; UAS–GFP/þ ; R29H01–GAL4/UAS–mCD8::GFP
(Fig. 2d,e) w; trh–QF/UAS–(FRT–stop–FRT)–mCD8::GFP;R29H01–GAL4/
QUAS–Flp
(Fig. 2f,g) TRH–lexA/lexAop–spGFP11::CD4; hugS3–GAL4/UAS–spGFP1-
10::Nrx.
(Fig. 2h,i) TRH–lexA/þ ; hugS3–GAL4/þ
(Fig. 3a,b) w1118

(Fig. 3c–h) yw; ptth–HA-50
(Fig. 3i–n) TRH–GAL4/UAS–GFP; TRH–GAL4/UAS–mCD8::GFP
(Fig. 4a–c and e) R29H01–GAL4/UAS–TeTxLC, þ /UAS–TeTxLC
(Fig. 4d) TRH–QF/UAS–(FRTstop)–TeTxLC; R29H01–GAL4/QUAS–Flp,
TRH–QF/UAS–(FRTstop)–mCD8::GFP; R29H01–GAL4/QUAS–Flp

(Fig. 4f–o) yw, hs–flp/UAS–rpr; FRTG13 UAS–mCD8::GFP/FRTG13 tubP–
GAL80; TRH–GAL4/þ
(Fig. 5a,b,d and e) w; UAS–5-HT7–RNAiKK10804/UAS–dicer2; phm–GAL4/þ ,
UAS–5-HT7–RNAiKK10804/þ
(Fig. 5c) w; UAS–5-HT7–RNAiKK10804/UAS–dicer2; phm–GAL4/UAS–Epac1–
camps,
w; þ /UAS–dicer2; phm–GAL4/UAS–Epac1–camps.

Nutrient condition assay. Our standard fly food contains 0.5 g agar, 5.0 g glucose,
4.5 g of cornmeal, 2.0 g yeast extract and 150ml propionic acid in 50 ml water. To
change the nutrient conditions, we increased or decreased the amount of yeast
extract: 5.0 g (2.5� 2.0 g) for the yeast-rich condition and 0.4 g (0.2� 2.0 g) for the
yeast-poor condition. No yeast paste was added in the fly tubes. Approximately
22 h after egg laying, newly hatched larvae were raised on food with various
amounts of yeast.

Developmental timing analysis. Embryos were collected on grape-juice agar
plates at 25 �C. Newly hatched larvae were transferred to small vials and raised on
ground fly food. At the appropriate time point (hAH), staged larvae were dissected
for fixation or mounted for live imaging. To determine the duration of the third
instar larval stage in hours, we collected L2 larvae at 48 hAH and allowed them to
be moulted in 2–6 h intervals. L3 larvae were collected within 6 h after third instar
moulting (0–6 hA3L).

Measurement of neurite projections to the PG. To quantify the projection of
neurons to the PG, we used ImageJ to measure the lengths of individual neurites
extending on the PG area. The PG area was defined by immunostaining of Shroud
(Sro). The total length of neurites was calculated both for SE0PG neurons and for
PTTH neurons. To avoid effects of mounting on the slide, we carefully chose
samples of the Brain–RG complex that were in a proper positional relation. We
also dissected samples in a fillet to maintain the relative positions of the Brain and
RG. In the data collection, we took series of confocal images to trace the entire
neurite projection patterns and these confocal images were flattened along the
z-axis to single planes. The neurite length along the z-axis was not considered.

Antibodies against ecdysteroid biosynthesis enzymes. Antibodies against Sro
(ref. 59) was raised in guinea pig. A synthetic peptide (NH2–LTVRFCAMPTYEST
NRQEKI–COOH) corresponding to the C-terminal residues (316–335) of Sro
amino acid sequence (GenBank accession number AB361435) were used for
immunization.

Immunohistochemistry. Larvae were dissected at the appropriate developmental
stage and fixed with 3.7% formaldehyde with 0.05% Triton X-100 for 20 min at
room temperature. The following primary antibodies were used: anti-serotonin
(rabbit, 1:500, Sigma), anti-Sro (guinea pig, 1:1,000), anti-Pheromone biosynthesis
activating neuropeptide (PBAN; rabbit, 1:200; a gift from K. Shiomi, Shinshu
University)60 and anti–GFP (rabbit, 1:500, Molecular Probes; mouse, 1:100, Wako).
The secondary antibodies used were Alexa Fluor 488/555/633 (1:200, Molecular
Probes). Samples were visualized on a LSM 700 confocal microscope (Carl Zeiss).
Images were processed using Adobe Photoshop CS4 or Image J version 1.43 m
(ref. 61).

Feeding experiments with 20E. The 20E was purchased from ENZO Life
Sciences and Sigma. Newly hatched larvae were transferred to small vials and raised
on standard fly food or semi-defined medium (FlyBase) with 0.3 mg ml� 1 20E
or 2% ethanol (vehicle only as a control). The developmental stages were scored
twice daily.

Ecdysteroid titre measurements. Ecdysteroid titres were quantified by ELISA
essentially62. 20E (Sigma) and 20E-acetylcholinesterase (Cayman Chemicals) were
used as the standard and enzymatic tracers, respectively. Absorbance was read at
415 nm using a microplate reader Model 680 (Bio-Rad). The ecdysteroid antiserum
has the same affinity for E and 20E (ref. 63), but because the standard curve was
obtained with the latter compound, the results are expressed as 20E equivalents.
For sample preparation, 10–30 staged larvae were weighed and homogenized in
100 ml of methanol three times. After centrifugation at 14,000 r.p.m. for 5 min,
supernatants were transferred to new tubes and dried with centrifugal evaporator.
Samples were resuspended in 50 ml of EIA buffer (0.1 M phosphate solution
containing 0.1% BSA, 0.4 M NaCl, 1 mM EDTA and 0.01% NaN3) and incubated
at 4 �C overnight.

Quantitative reverse transcription–PCR. Total RNA was extracted from the RGs
using NucleoSpin RNA II (Takara Bio Inc.). RNA was reverse transcribed using
ReverTra Ace qPCR RT Master Mix with gDNA remover (TOYOBO) and the
generated complementary DNA was used as a template for quantitative PCR
(qPCR) using ThunderBird SYBR qPCR mix (TOYOBO) on a Thermal Cycler
Dice Real Time System (Takara Bio Inc.). The amount of target RNA was

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6778 ARTICLE

NATURE COMMUNICATIONS | 5:5778 | DOI: 10.1038/ncomms6778 | www.nature.com/naturecommunications 11

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


normalized to an endogenous control ribosomal protein 49 (rp49), and the relative
fold change was calculated. The primer sets used are shown in Supplementary
Table 3. The primers for quantifying nvd, spok, sro, phm, dib and sad were used in
the previous studies8,59.

MARCM analysis. For generating mitotic clones in SE0PG neurons, embryos were
collected for 2 h of egg laying and incubated at 25 �C for 6 h. Then 6–8 h after egg
laying, embryos were heat-shocked at 38 �C for 1 h. We tried to generate a single-
cell clone expressing GFP. However, we could not find a heat-shock condition to
induce mitotic clones at a single-cell level.

FRET imaging. For live imaging, larvae were anesthetized with ether and placed on
the glass slide with 100% glycerol. Images were obtained with a � 40 objective lens
(oil-immersion) using a Zeiss LSM 700 confocal microscope. Cyan Fluorescent
Protein (CFP) was excited with a 405 nm laser and its emission was detected with a
band-pass filter of 465–505 nm. Yellow Fluorescent Protein–FRET (YFP–FRET)
emission was detected with a long-pass filter of 525 nm. The efficiency of FRET was
estimated by acceptor bleach (B20%). The ratio of YFP/CFP emissions was
determined after subtracting CFP spillover into the YFP channel from the YFP
intensity40,64. To determine the CFP spillover in our imaging system, we used
larvae expressing only ECFP and obtained images through CFP/YFP-emission
channels. Furthermore, the YFP/CFP ratio values were normalized to the values of
the second instar stage, for which there was no statistically significant difference
between the values of the control and 5-HT7–RNAi animals. The values in each
stage were compared by a single-factor analysis of variance test between control
and RNAi animals.

Statistical analysis. Statistical analysis was performed with Excel (Microsoft) and
an add-in software for statistics (Excel Toukei 2011; Social Survey Research
Information). The mean values were calculated with standard errors. For analyzing
the values of neurite length, qPCR and ecdysteroid titres, Student’s t-test was
applied. For FRET imaging analysis, one-way analysis of variance was applied.
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coordinates Drosophila tissue growth with developmental timing. Science 336,
582–585 (2012).

15. Colombani, J. et al. Antagonistic actions of ecdysone and insulins determine
final size in Drosophila. Science 310, 667–670 (2005).

16. Layalle, S., Arquier, N. & Leopold, P. The TOR pathway couples nutrition and
developmental timing in Drosophila. Dev. Cell 15, 568–577 (2008).

17. Mirth, C., Truman, J. W. & Riddiford, L. M. The role of the prothoracic gland
in determining critical weight for metamorphosis in Drosophila melanogaster.
Curr. Biol. 15, 1796–1807 (2005).

18. Koyama, T., Rodrigues, M. A., Athanasiadis, A., Shingleton, A. W. & Mirth, C.
K. Nutritional control of body size plasticity through foxo-ultraspiracle
mediated ecdysone biosynthesis. eLife doi:10.7554/eLife.03091 (2014).

19. Gibbens, Y. Y., Warren, J. T., Gilbert, L. I. & O’Connor, M. B. Neuroendocrine
regulation of Drosophila metamorphosis requires TGFb/Activin signaling.
Development 138, 2693–2703 (2011).

20. Siegmund, T. & Korge, G. Innervation of the ring gland of Drosophila
melanogaster. J. Comp. Neurol. 431, 481–491 (2001).

21. Tanaka, Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis
by the prothoracic glands in insects. Front. Endocrinol 2, 107 (2011).

22. Dai, J. & Gilbert, L. I. Metamorphosis of the corpus allatum and degeneration
of the prothoracic glands during the larval-pupal-adult transformation of
Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev.
Biol. 144, 309–326 (1991).

23. Valles, A. M., White, K. & Vallés, A. M. Serotonin-containing neurons in
Drosophila melanogaster: development and distribution. J. Comp. Neurol. 268,
414–428 (1988).

24. Schoofs, A., Hückesfeld, S., Surendran, S. & Pankratz, M. J. Serotonergic pathways
in the Drosophila larval enteric nervous system. J. Insect Physiol. 69, 118–125
(2014).

25. Alekseyenko, O. V., Lee, C. & Kravitz, E. A. Targeted manipulation of
serotonergic neurotransmission affects the escalation of aggression in adult
male Drosophila melanogaster. PLoS ONE 5, e10806 (2010).

26. Huser, A. et al. The serotonergic central nervous system of the Drosophila larva:
anatomy and behavioral function. PLoS ONE 7, e47518 (2012).

27. Li, H.-H. et al. A GAL4 driver resource for developmental and behavioral
studies on the larval CNS of Drosophila. Cell Rep. 8, 897–908 (2014).

28. Potter, C. J. & Luo, L. Using the Q system in Drosophila melanogaster. Nat.
Protoc. 6, 1105–1120 (2011).

29. Singh, R. N. Neurobiology of the gustatory systems of Drosophila and some
terrestrial insects. Microsc. Res. Tech. 39, 547–563 (1997).

30. Melcher, C. & Pankratz, M. J. Candidate gustatory interneurons modulating
feeding behavior in the Drosophila brain. PLoS Biol. 3, e305 (2005).

31. Meng, X. et al. The Drosophila hugin gene codes for myostimulatory and
ecdysis-modifying neuropeptides. Mech. Dev. 117, 5–13 (2002).

32. Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP)
defines cell contacts and synapses in living nervous systems. Neuron 57,
353–363 (2008).

33. Fan, P. et al. Genetic and neural mechanisms that inhibit Drosophila from
mating with other species. Cell 154, 89–102 (2013).

34. Keller, A., Sweeney, S. T., Zars, T., O’Kane, C. J. & Heisenberg, M. Targeted
expression of tetanus neurotoxin interferes with behavioral responses to
sensory input in Drosophila. J. Neurobiol. 50, 221–233 (2002).

35. Warren, J. T. et al. Discrete pulses of molting hormone, 20-hydroxyecdysone,
during late larval development of Drosophila melanogaster: correlations with
changes in gene activity. Dev. Dyn. 235, 315–326 (2006).

36. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of
gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

37. Gasque, G., Conway, S., Huang, J., Rao, Y. & Vosshall, L. B. Small molecule
drug screening in Drosophila identifies the 5HT2A receptor as a feeding
modulation target. Sci. Rep. 3, srep02120 (2013).

38. Becnel, J., Johnson, O., Luo, J., Nassel, D. R. & Nichols, C. D. The serotonin
5–HT7Dro receptor is expressed in the brain of Drosophila, and is essential for
normal courtship and mating. PLoS ONE 6, e20800 (2011).

39. Saudou, F., Boschert, U., Amlaiky, N., Plassat, J. L. & Hen, R. A family of
Drosophila serotonin receptors with distinct intracellular signalling properties
and expression patterns. EMBO J. 11, 7–17 (1992).

40. Shafer, O. T. et al. Widespread receptivity to neuropeptide PDF throughout the
neuronal circadian clock network of Drosophila revealed by real-time cyclic
AMP imaging. Neuron 58, 223–237 (2008).

41. Neckameyer, W. S. A trophic role for serotonin in the development of a simple
feeding circuit. Dev. Neurosci. 32, 217–237 (2010).

42. Trueta, C. & De-Miguel, F. F. Extrasynaptic exocytosis and its mechanisms:
a source of molecules mediating volume transmission in the nervous system.
Front. Physiol. 3, 319 (2012).

43. Gu, S.-H., Lin, J.-L. & Lin, P.-L. PTTH-stimulated ERK phosphorylation in
prothoracic glands of the silkworm, Bombyx mori: Role of Ca2þ /calmodulin
and receptor tyrosine kinase. J. Insect Physiol. 56, 93–101 (2010).

44. Fellner, S. K., Rybczynski, R. & Gilbert, L. I. Ca2þ signaling in
prothoracicotropic hormone-stimulated prothoracic gland cells of Manduca
sexta: evidence for mobilization and entry mechanisms. Insect Biochem. Mol.
Biol. 35, 263–275 (2005).

45. Birkenbeil, H. & Dedos, S. G. Ca2þ as second messenger in PTTH-stimulated
prothoracic glands of the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 32,
1625–1634 (2002).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6778

12 NATURE COMMUNICATIONS | 5:5778 | DOI: 10.1038/ncomms6778 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://dx.doi.org/10.7554/eLife.03091
http://www.nature.com/naturecommunications


46. Spiess, R., Schoofs, A. & Heinzel, H. G. Anatomy of the stomatogastric nervous
system associated with the foregut in Drosophila melanogaster and Calliphora
vicina third instar larvae. J. Morphol. 269, 272–282 (2008).

47. Schoofs, A. et al. Selection of motor programs for suppressing food intake and
inducing locomotion in the Drosophila brain. PLoS Biol. 12, e1001893 (2014).

48. Kaplan, D. D., Zimmermann, G., Suyama, K., Meyer, T. & Scott, M. P. A
nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate
insulin signaling and control body size. Genes Dev. 22, 1877–1893 (2008).

49. Yuan, Q. et al. Light-induced structural and functional plasticity in Drosophila
larval visual system. Science 333, 1458–1462 (2011).

50. Linneweber, G. A. et al. Neuronal control of metabolism through nutrient-
dependent modulation of tracheal branching. Cell 156, 69–83 (2014).

51. Bos, M., Burnet, B., Farrow, R. & Woods, R. A. Development of Drosophila on
sterol mutants of the yeast Saccharomyces cerevisiae. Genet. Res. 28, 163–176
(1976).

52. Parkin, C. A. & Burnet, B. Growth arrest of Drosophila melanogaster on erg-2
and erg-6 sterol mutant strains of Saccharomyces cerevisiae. J. Insect Physiol. 32,
463–471 (1986).

53. Carvalho, M. et al. Survival strategies of a sterol auxotroph. Development 137,
3675–3685 (2010).

54. Colomb, J., Grillenzoni, N., Ramaekers, A. & Stocker, R. F. Architecture of the
primary taste center of Drosophila melanogaster larvae. J. Comp. Neurol. 502,
834–847 (2007).

55. Maekawa, F. et al. Localization of glucokinase-like immunoreactivity in the rat
lower brain stem: for possible location of brain glucose-sensing mechanisms.
Endocrinology 141, 375–384 (2000).

56. Moriyama, R. et al. In vitro increase in intracellular calcium concentrations
induced by low or high extracellular glucose levels in ependymocytes and
serotonergic neurons of the rat lower brainstem. Endocrinology 145, 2507–2515
(2004).

57. Zhou, L. et al. Cooperative functions of the reaper and head involution
defective genes in the programmed cell death of Drosophila central nervous
system midline cells. Proc. Natl Acad. Sci. USA 94, 5131–5136 (1997).

58. Ito, K. et al. The organization of extrinsic neurons and their implications in the
functional roles of the mushroom bodies in Drosophila melanogaster Meigen.
Learn. Mem. 5, 52–77 (1998).

59. Niwa, R. et al. Non-molting glossy/shroud encodes a short-chain dehydrogenase/
reductase that functions in the ‘‘Black Box’’ of the ecdysteroid biosynthesis
pathway. Development 137, 1991–1999 (2010).

60. Uehara, H., Senoh, Y., Yoneda, K., Kato, Y. & Shiomi, K. An FXPRLamide
neuropeptide induces seasonal reproductive polyphenism underlying a life-
history tradeoff in the tussock moth. PLoS ONE 6, e24213 (2011).
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