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Abstract

Given small sample sizes, loss of animals in preclinical experiments can dramatically alter
results. However, effects of attrition on distortion of results are unknown. We used a simula-
tion study to analyze the effects of random and biased attrition. As expected, random loss of
samples decreased statistical power, but biased removal, including that of outliers, dramati-
cally increased probability of false positive results. Next, we performed a meta-analysis of
animal reporting and attrition in stroke and cancer. Most papers did not adequately report
attrition, and extrapolating from the results of the simulation data, we suggest that their
effect sizes were likely overestimated.

Where have all the rodents gone?
Ooh ooh, ooh ooh, ooh
To non-random attrition, every one
When will they ever learn?
—with apologies to Pete Seeger, 1955

Introduction

Research systems worldwide spend billions of dollars every year on developing new drugs [1],
yet failure to translate laboratory findings into clinical applications has driven many to ques-
tion the robustness and predictive value of preclinical research [2,3]. Much of this criticism
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Reporting of In Vivo Experiments; CAMARADES,
Collaborative Approach to Meta-Analysis and Review
of Animal Data from Experimental Studies;
CONSORT, Consolidated Standards of Reporting
Trials; Hy hypothesis, alternative hypothesis; IQR,
interquartile range; STREAM, Studies of Translation,
Ethics and Medicine; STROBE, Strengthening the
Reporting of Observational Studies in Epidemiology.

centers on selection of animal models, internal validity [4,5], statistical power [6-8], reporting,
and publication bias [3].

An essential element of the reporting of any preclinical study is the number of samples.
These numbers are essential for assessing the statistical power and robustness of results, as well
as for including the studies in systematic reviews [9,10]. If done properly, the reporting of ani-
mal numbers provides a full account of all animals lost during the experiment. Attrition not
only diminishes statistical power but may also represent a nexus for other forms as bias. For
example, non-blinded allocation or outcome assessment allows unwanted data to be identified
and excluded via reporting bias. Furthermore, in some studies, attrition from the treatment
group may be indicative of side effects or toxicity of new treatments. Unreported loss of these
animals, therefore, is a potentially harmful form of selection bias.

In clinical research, several meta-analyses show that patient attrition can introduce a form
of selection bias that favors positive outcomes [11-13]. To understand the effects of this bias,
full disclosure of missing data is needed. Reporting standards, such as the Consolidated Stan-
dards of Reporting Trials (CONSORT) and Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines, require reporting of all dropouts over the
course of a study [14,15]. While there are many ongoing attempts to align preclinical research
with clinical reporting standards [16-18], compliance with these guidelines is poor [19].
Despite the probable effect of attrition on power in small animal studies [20], its extent and the
consequences of attrition in animal research have not, to our knowledge, been studied.

In this study, we set out to demonstrate the consequences and prevalence of attrition in pre-
clinical research. First, we used simulated data and compared the results with and without ani-
mal loss. We focused on two kinds of attrition: random loss and biased removal. Here, we
investigated the potential impact of animal attrition on detection of clinical promise by exam-
ining the probability of false positives and negatives and whether effect size became inflated.
Second, we used meta-analytic methods on a sample of preclinical stroke and cancer studies to
assess the prevalence of attrition reporting and to determine whether attrition was associated
with reported effect size.

Results
Simulation Studies

To explore the effects of attrition in preclinical studies, we simulated data for a two-armed trial
(e.g., treatment versus control) beginning with a sample size of eight animals per group, a typi-
cal size reported in preclinical research [21,22]. We used scenarios with different true standard-
ized effect sizes: d = 0 (no true difference between groups), d = 0.875 (a common preclinical
reported effect size, [22]) and d = 1.5 (a strong effect for which 8 versus 8 is adequately pow-
ered). We simulated two forms of attrition: random loss (i.e., elimination of animals irrespec-
tive of group or outcome value) and biased removal (i.e., elimination of animal data points that
undermine the expected effect). Biased removal of samples maximized the difference between
experimental groups, irrespective of group membership (treatment versus control). Figs 1 and
2 show the probability of declaring statistically significant differences between simulation
group means. The level of attrition in both treatment groups is stated as “8 + 8” without attri-
tion and “7 + 8” to “6 + 7” as the total number of animals used decreases from left to right.

In the first set of simulations (Fig 1, row 1), we assumed there was no real effect (Cohen’s
effect size d = 0, top row). Under these conditions, random attrition (first column) did not alter
the false discovery rate of 5%. The effects of non-random attrition are reflected in the second
column. Here, with removal of three samples disfavoring an expected effect (third column,
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Fig 1. Simulation results for random and non-random attrition. Column 1 + 2: rows represent the results of a different effect size (Cohen’s d) scenario,
indicated left. The level of attrition in either treatment group is stated (left to right) as “8 + 8” without attrition and “7 + 8” to “6 + 7” with the total number of
missing animals increasing from one to three. Column 1 + 2: probability of positive trials after random loss (first column) or non-random attrition of extremes
that are not in favor of the effect (second column) for different effect sizes (rows 1-3). Colors represent the proportion of trials out of 10,000 simulations that
are significant (1) independent of attrition (orange) or significant (2) only in the case of attrition (red), non-significant (1) independent of attrition (cyan), or non-
significant (2) only in the case of attrition (dark blue). Column 3: ratio of type 1 error rates (falsely accepting the alternative (H,) hypothesis if there is no true
effect, first row) or type 2 error rates (falsely failing to reject the null hypothesis if there is a true effect, second and third row), respectively, for different levels
of attrition relative to the rates acquired with the full sample (“8 + 8”). Ratios for random attrition are colored in black, and ratios for non-random attrition are
colored in red, in arbitrary units (a.u.). Fourth column: effect size estimated from positive trials only. Mean estimated effect sizes are displayed in black (+) for
random attrition and in red (x) for non-random attrition.

doi:10.1371/journal.pbio.1002331.g001

attrition scenario “6 + 77), the proportion of trials declaring statistically significant trials
increased from 5% to 23%.

Though no true effect was present (d = 0), we also examined the impact of attrition on effect
size estimates from statistically significant results. For significant experiments, (fourth column,
first row), we observed a small increase in estimated effect size when three animals were ran-
domly excluded d. <. = 0.09 (SE: 0.64). For non-random attrition, the estimated effect sizes
were strikingly larger (e.g., dest 647, = 1.67 [SE: 0.66]).

In our second set of simulations (Fig 1, row 2), we simulated a preclinical study with a com-
monly observed effect size of Cohen’s d = 0.875 [21,22]. Here we see that with random loss of
animals the risk for type 2 error decreased from 63% to 20%. However, this apparent advantage
is offset by the loss in power and corresponding increase in false negative rate (from 63% with-
out attrition to 73% for a loss of three animals, attrition scenario “6 + 7”). Biased removal of
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Fig 2. Simulation results for attrition of outliers. Column 1 + 2: rows represent the results of a different effect size (d) scenario, indicated left. The level of
attrition in either treatment group is stated as “8 + 8” without attrition and “7 + 8” and “7 + 7” with the number of missing animals increasing from left to right.
Probability of positive trials before and after attrition of outliers in the samples that are not in favor (first column) or in favor (second column) of the expected
effect. Colors represent the proportion of trials out of 10,000 simulations that are significant (1) independent of attrition (orange) or significant (2) only in the
case of attrition (red), non-significant (1) independent of attrition (cyan), or non-significant (2) only in the case of attrition (dark blue). Column 3: ratio of type 1
error rates (falsely accepting the Hq hypothesis if there is no true effect, first row) or type 2 error rates (falsely failing to reject the null hypothesis if there is a
true effect, second and third row), respectively, with increasing attrition relative to the rates acquired with the full sample (“8 + 8”). Ratios for attrition of outliers
that are in favor of the effect are colored in black, and ratios for attrition of outlier that are not in favor of the effect are colored in red, in arbitrary units (a.u.).

doi:10.1371/journal.pbio.1002331.g002

animals led to an artificial increase in the true positive rate from 37% without attrition to about
80% in the last scenario (“6 + 7”). Even with a true effect size of 0.875, the mean estimated
effect size of significant trials was degyg.g» = 1.52 (SE: 0.57), an inflation of 175%. With attrition,
this further increased to desps. = 1.73 (SE: 0.66) with random attrition and to degpesr = 2.17
(SE: 0.71) with non-random attrition of three samples, corresponding to a striking 197% and

248% increase of the true effect size, respectively. These results follow from an increase in false
negative rates due to the loss in power, in which only large effects can be detected. More infor-
mation on the overestimation of effect size estimates for all attrition scenarios may be found in
S1 Fig of the supporting information.

The third set of simulations (Fig 1, row 3) showed similar effects of attrition when we
assumed a large true effect size (Cohen’s d = 1.5). Again, random loss decreased power and
increased the false negative rate, accompanied by an inflated average effect size estimate among
the significant experiments (desrs+7 = 1.97, SE: 0.69). Biased removal artificially increased the

PLOS Biology | DOI:10.1371/journal.pbio.1002331
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true positive rate from 79% to 98% when three samples were selectively dropped, with a corre-
sponding decrease in type 2 error from 21% to 2%. The mean estimated effect size from signifi-
cant trials was desps; 7 = 2.79 (SE: 0.80), which corresponded to 186% of the effect size in the
total body of simulated studies.

In addition to attrition due to reasons such as illness or data loss, researchers often exclude
measurements with extreme values (outliers). We therefore simulated the effects of removing
outliers with random loss or biased removal. As expected, the impact of excluding outliers
depended on whether the removed outliers were supportive of the expected effect (Fig 2, sec-
ond column) or not (Fig 2, first column). When no effect is present (row 1), removal of outliers
resulted in changes in effect sizes, especially when a low extreme value was removed from one
group, and a high extreme from the other. Here, the false positive rate rose from 4.7% to 46%.
In addition to striking type 1 error, estimated effect sizes from trials where d = 0 (no effect)
were as much as degy747 = 1.85 (SE: 0.66). If a true effect was present (Fig 2, second and third
row), attrition of outliers that opposed the effect simultaneously increased the true positive rate
and decreased the risk for type 2 error from 63% to 5% and from 21% to almost 0% for an effect
size of 0.875 or 1.5, respectively. The estimation of these effect sizes for positive trials inflated
to despy47 = 2.88 (SE: 0.79) and dege74» = 3.98 (SE: 0.96), respectively. In contrast, attrition of
outliers that formerly supported an effect decreased the true positive rate from 36% to 30% or
from 79% to 69% for an underlying effect size of 0.875 or 1.5, respectively. Type 2 error also
increased from 64% to 70% and from 21% to 31% (a risk ratio of 1.1 and 1.5).

Finally, we also simulated the effects of attrition on groups with larger sample sizes of 12,

16, 20, 24, and 30 animals (for details, see S1 Text). First, we explored the effects of losing three
animals (or most severe scenario, above) in a random or targeted fashion in these larger groups.
Here, the proportion of falsely significant trials decreased as sample sizes increased (S2 and S3
Figs), following from an increase in power. However, when a constant proportion (20%) of ani-
mals was removed from each comparison, larger group sizes could not protect against overesti-
mation of effect size (54 and S5 Figs).

By and large, the results of our simulation not only show that random exclusion of animals
decreases the sample size and thus statistical power but also demonstrate that the exclusion of
animals a targeted fashion, including removal of outliers, can have extreme consequences with
regard to false positives and skewed interpretation.

Meta-analysis of Preclinical Studies

To complement the results from our simulation study, we estimated the frequency and impact
of attrition in a series of recent preclinical studies in cancer and stroke. Our meta-analyses
employed two pre-existing datasets that have been described in detail elsewhere: Collaborative
Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMAR-
ADES) [21,22] and Studies of Translation, Ethics and Medicine (STREAM) (S2 Text). Our
search returned 100 papers on the topic of stroke and cancer, containing 316 experiments on
infarct volume and 206 experiments on tumor shrinkage, respectively. To assess the presence
of attrition, we compared reported numbers of animals in the methods and results section for
each experiment. Experiments for which these numbers were reported as identical were coded
as “Matched” (although unreported losses or exclusions cannot be completely ruled out), and
experiments for which these numbers differed were coded as “Attrition.” Experiments for
which this comparison was not possible were coded as “Unclear” (for more details, please see
S1 Text).

In both indication areas, animal numbers in more than half of the experiments had
“Unclear” animal numbers, followed by those categorized as “Matched” and a small number
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with reported “Attrition” (see Fig 3). Within the category of “Attrition,” we differentiated
between explained (exact numbers of animals lost and reasons given) and unexplained forms
of animal loss. Among studies with documented attrition, numbers of missing animals were
only explained in a small proportion of experiments (1/15 in cancer and 13/38 in stroke). To
test whether papers with detected attrition were not exceptionally detailed reports, we checked
all publications against a simple rubric of reporting quality concerning blinding practices.
There was a significant difference between types of animal flow reporting and presence of
blinding practices, indicated by a larger proportion of blinding reporting in the “Attrition” cat-
egory, as well as a larger proportion without reporting of blinding in the “Unclear” group (Fish-
er’s exact: p < 0.001, S6 Fig).

To see whether differences in reporting were associated with experimental effect size, we
compared effect sizes across experiments coded as “Unclear,” “Matched,” and “Attrition.” In
our sample, the vast majority of studies (152/206 in cancer, 276/316 in stroke) reported a
“desired” effect, i.e., a better outcome for animals in the treatment group. All effect sizes,
regardless of direction, were used in comparison between groups. In both stroke and cancer,
“Matched” experiments displayed the highest median effect sizes (cancer: median d = 0.84,
stroke: median d = 1.42 see Fig 4). Experiments coded as “Attrition” produced medium effect
sizes in cancer (median d = 0.82) and the lowest median effect sizes in stroke (median
d = 1.10). Finally, papers that were coded as “Unclear” reported the lowest median effect size in
cancer (median d = 0.39) and an intermediate value in stroke (median d = 1.19). We identified
a significant association between effect size and category of experimental reporting for cancer
(X*(df =2, n=206) = 7.62, p = 0.022) but not for stroke (X*(df=2,n=316) = 2.70, p = 0.259).
Within experiments that contained attrition, those with unexplained attrition had higher
median effect sizes (median d = 0.97 interquartile range [IQR] [0.33-1.73]) than experiments
in which the attrition was accounted for in the text (median d = 0.67 IQR [0.05-1.25]). This
difference, however, was not significant in our data sample pooled across cancer and stroke
(p = 0.343).

To check if our simulation study used realistic scenarios of animal loss (1/16-3/16 animals,
i.e., 6.25%-18.75% loss), we examined what proportion of animals were lost experiments with
detectable attrition. Almost half (47.1%, or 25/53) of experiments with attrition reported 25%
animal loss or more. This is equivalent to or greater than the proportion of animals in our
“worst case” attrition scenario (i.e., 3/16 animals, or 18.75% loss, see Figs 1 and 2, S1 Table). As
may be seen in Fig 1, this can lead to effect sizes inflated by 25% to 175% amongst experiments
with statistically significant results.

Next, we looked for markers that could be indicative of unreported missing animals in our
sample. Here, we examined the symmetry of group sizes, i.e., whether there are the same num-
ber of animals in control and treatment groups. Since an equal number of animals in the differ-
ent groups is the most efficient use in order to optimize power, any difference in group size can
be regarded as a proxy for attrition (either random or biased) or even as a post-hoc addition of
animals to grow statistical power or significance. In total, 219 experiments or 42.0% of our
datasets had uneven group sizes, with a higher proportion of experiments with smaller sample
size in the treatment groups (58%) compared to control groups (95% CI: 52%-65%). When
attrition was fully reported, 64.1% of experiments appear to have lost animals in the treatment

group.

Discussion

Through statistical modelling and meta-analysis, we have shown that the loss of a few animals,
as may often occur in preclinical studies, can distort true effects. Random loss of animals
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Is there information about sample size in methods?

\ 4
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\ 4
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l ‘ Cancer = 43/206, 20.8%
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Stroke=25/316, 7.9%
Cancer= 14/206, 6.8% Cancer=1/206, 0.5%

Stroke =13/316, 4.1%

Fig 3. Procedure from meta-analysis for classifying papers based on type of animal reporting employed. All experiments were compared using the
numbers of animals reported in the methods and results section. If this comparison was impossible, experiments were coded as “Unclear.” If these numbers
were identical, experiments were coded as “Matched.” If there was a discrepancy between these numbers, then experiments were coded as “Attrition,” which
could either be explained (via information in text or figure legends of the paper) or unexplained.

doi:10.1371/journal.pbio.1002331.g003

increases the occurrence of false negatives due to a decrease in sample size and statistical power
(Fig 1), already a problem in small sample studies [8]. However, biased removal (Fig 1), which
can occur because of subconscious bias, leads to an even greater probability of false positive
results, particularly in settings in which real effect sizes are subtle to nil (Fig 1) [12]. Here, the
negative effects of loss of power are exacerbated by potential for selection and other biases,
severely undermining statistical inference. Increasing group sizes, therefore, helped to diminish
these effects (S2 Fig). Dropping outliers, a common practice in many laboratories, can also
have substantial effects (Fig 2). Though the impact of outlier attrition on average effect of all
experiments might be minimal (since only ~5% of normally distributed values have outliers),
its effect on this group is disproportionally large. Results of attrition in all scenarios may be fur-
ther compounded by the fact that many studies show a preponderance of preclinical publica-
tions reporting statistically significant effects [7,21]. This may reflect publication bias, whereby
studies failing to show statistical significance are not published. Thus, publication of predomi-
nantly positive experiments with biased attrition magnifies the distortion of treatment effects
even more.

Although not unexpected, the finding that non-random attrition can decrease the number
of false negatives is also of interest (Fig 1). Our simulations showed that non-random attrition
can artificially overestimate detected effects sizes, which leads to an artificial increase in power
by effectively testing a bigger but biased effect and thus results in a decrease of false negatives.
This decrease in type 2 errors might be perceived as a positive benefit, but it is just due to bias
caused by non-random attrition. Because of the typical, low sample sizes in experimental
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Fig 4. Effect sizes in experiments with different forms of animal reporting in stroke (left) and cancer (right). Boxes represent second to third quartiles,
and red lines in the middle are the median. Whiskers represent first and fourth quartiles.

doi:10.1371/journal.pbio.1002331.g004

research, most studies are highly underpowered even without attrition, and scientists are even
more at serious risk of missing smaller, more subtle effects when attrition is present [6-8].

Ultimately, the impact of attrition is dependent on the total sample size of the experiment at
hand. In our simulation, our starting point was a sample size of 8 + 8, which is representative
of many published experiments [21,22]. We would like to stress that although an increase in
sample size does help to counteract the impact of attrition to some extent (S2-S5 Figs), it is not
a safeguard to this phenomenon, especially when the attrition is done in a biased fashion.

When attrition was reported in experiments in our meta-analysis, the loss was often more
than 25% of subjects. Yet, as shown in our simulations, even more moderate loss can have seri-
ous consequences that are not significantly diminished when group sizes are larger (Figs 1 and
2, S3 and 54 Figs). For example, animals in the treatment group may die because of drug toxic-
ity, especially if they are weakened because of a strong experimental intervention. Since these
animals cannot be considered “treatment successes” in any form, this guarantees bias unless
there is some way of adjusting data for toxicity-induced loss. An example of this phenomenon
from the field of neurovascular medicine may be found in [23]. Indeed, more attrition in our
sample occurred in treatment groups compared to control groups, and treatment groups were
also unexpectedly smaller when animal use was “Matched” or “Unclear.”
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The latter finding is worrisome but underlies a limitation in our data: verifiable presence of
attrition was impossible to judge in roughly 50% and 75% of “Unclear” experiments in cancer
and stroke, respectively (see Fig 3). Detection of attrition using comparison of reported num-
bers from methods and results is only effective when group sizes are reported completely (i.e.,
numbers instead of ranges) and when the methods section is not altered after an experiment is
completed. Our criteria for declaring non-attrition were permissive: we cannot rule out the
possibility that even in cases of “Matched” animal reporting, attrition may have occurred but
the prospectively intended group sizes were never reported. Hidden attrition in “Matched”
experiments could be one reason why median effect sizes were highest in this category (Fig 4).

Notwithstanding the limitations of our data, we can use the results of our simulations to
extrapolate on the effects detected in our meta-analysis. Within our sample, 235 experiments
in stroke and cancer, or 44.9% of the total, reported uneven group sizes suggestive of attrition.
Median effect size in these experiments was 1.2 (IQR: 0.3-1.8). If we assume that there was a
distortion of results due to attrition in half of these experiments (with effect sizes > 0, n = 199)
resulting in an overestimation of effect sizes of 80%, the median of the true effect sizes of all
235 experiments would be 0.7 (IQR: 0.3-1.5) instead of 1.2.

Despite preliminary exploration of uneven group sizes in our sample, our conclusions about
effects of attrition in published literature must remain limited. Without access to initial proto-
cols and the ability to view deviations from them, using group asymmetries to uncover attrition
remains strictly speculative. Therefore, the true burden of attrition in preclinical research
remains unknown, and our results here are most likely an underestimation. Until transparent
reporting becomes the rule, rather than the exception, we must instead focus on productive
ways to deal with animal loss.

Attrition is also a problem in clinical trials [11,13]. However, one major difference from pre-
clinical work is the presence of well-established standards for reporting patient flow (i.e., [14])
and imputing missing data points [24,25]. Neither are routinely practiced in preclinical
research, although interest in strategies for dealing with missing data is growing [18,26,27].
Animal Research: Reporting of In Vivo Experiments (ARRIVE) reporting guidelines for animal
research, for example, mandate monitoring animal flow over the course of an experiment.

Attrition of animals is often unforeseen and does not reflect willful bias. However, there are
several simple steps that the scientific community can use to diminish inferential threats due to
animal attrition. First, we recommend that authors prespecify inclusion and exclusion criteria,
as well as reasons for exclusion of animals. For example, the use of flowcharts to track animals
from initial allocation until analysis, with attrition noted, improves the transparency of preclin-
ical reporting. An added benefit of this approach lies in the ability to track systemic issues with
experimental design or harmful side effects of treatment. Journal referees can also encourage
such practices by demanding them in study reports. Finally, many simple statistical tools used
in medicine could be adopted to properly impute (and report) missing data [27,28]. Overall,
compliance with ARRIVE guidelines will aid in most, if not all, of the issues inherent to missing
data in preclinical research and help structure a better standard for animal use and reporting.

Supporting Information

S1 Fig. Change of effect size with attrition estimated from significant trials only. Left col-
umn: mean estimated effect sizes for random (black) and non-random attrition (red). Right
column: overestimation in percent compared to the simulated “true” effect size d = 0.875 and
d = 1.5 (corresponding to 100%), respectively.

(TIFF)

PLOS Biology | DOI:10.1371/journal.pbio.1002331 January 4, 2016 9/12


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pbio.1002331.s001

@’PLOS | BIOLOGY

Attrition in Experimental Biomedical Research

S2 Fig. Simulation results for random and non-random attrition of three samples (one
from control group, two from treatment group) in dependence of increasing sample size.
Rows represents the results of a different effect size (d) scenario as indicated on the left. The
number of samples after attrition in either treatment group is given on the bottom (e.g., “6
+77), with the total number of samples before attrition given in brackets (e.g., “(8 + 8)”). Col-
umn 1 + 2: probability of positive trials after random attrition (first column) or non-random
attrition of extremes that are not in favor of the effect (second column) for different effect sizes
(rows 1-3). Colors represent the proportion of trials out of 10,000 simulations that are signifi-
cant (1) independent of attrition (orange) or significant (2) only in the case of attrition (red),
non-significant (1) independent of attrition (cyan), or non-significant (2) only in the case of
attrition (dark blue).

(TIFF)

S3 Fig. Effect size estimated from positive trials only. Mean estimated effect sizes are dis-
played in black (+) for random attrition and in red (x) for non-random attrition, in arbitrary
units (a.u.).

(TIFF)

S4 Fig. Simulation results for random and non-random attrition of 20% of samples (about
12.5% in the control group and about 25% in the treatment group) in dependence of
increasing sample size. Each row represents the results of a different effect size (d) scenario as
indicated on the left. The number of samples after attrition in either treatment group is given
on the bottom (e.g., “6 + 7”), with the total number of samples before attrition given in brackets
(e.g., “(8 +8)”). Column 1 + 2: probability of positive trials after random attrition (first col-
umn) or non-random attrition of extremes that are not in favor of the effect (second column)
for different effect sizes (row 1-3). Colors represent the proportion of trials out of 10,000 simu-
lations that are significant (1) independent of attrition (orange) or significant (2) only in the
case of attrition (red), non-significant (1) independent of attrition (cyan), or non-significant
(2) only in the case of attrition (dark blue).

(TIFF)

S5 Fig. Effect size estimated from positive trials only. Mean estimated effect sizes are dis-
played in black (+) for random attrition and in red (x) for non-random attrition, in arbitrary
units (a.u.).

(TIFF)

S6 Fig. Proportion of experiments with different animal flow reporting noted as employing
different blinding practices. Fisher’s exact X” test revealed a significant difference between
types of animal flow reporting and presence of blinding practices X*(df = 4 n = 522) = 19.935,
p < 0.001.

(TIFF)

S1 Table. Simulation scenarios.
(DOCX)

S1 Text. Materials and methods.
(DOCX)

S2 Text. Structure of STREAM Preclinical Cancer Database.
(DOCX)
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