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1  | INTRODUC TION

Lactic acid bacteria have been widely used in food and feed because of 
their good antibacterial activity and safety. The antibacterial substances 
in previous studies were mainly organic acids (Reis, Paula, Casarotti, 
& Penna, 2012), fatty acids (Ogawa et al., 2005), short peptides (Hati, 
Patel, Sakure, & Mandal, 2017; Muhialdin, Zaiton, & Nazamid, 2018), 
and other categories. However, different lactic acid bacteria were 
found to possess specific combinations of antibacterial substances. 
The antibacterial substances of Lactobacillus plantarum LB1 were 

identified as lactic acid, benzene lactic acid, and formic acid (Rizzello, 
Cassone, Coda, & Gobbetti, 2011). It was reported that six organic 
acids, including formic acid, acetic acid, and propionic acid, produced 
by Lactobacillus, inhibited the growth of mold (Corsetti, Gobbetti, Rossi, 
& Damiani, 1998). Numerous studies have found that fatty acids also 
have antibacterial properties, such as antibacterial 3-hydroxy fatty acid 
from L. plantarum MiLAB 14 (Schnürer, Sjögren, Kenne, Magnusson, & 
Broberg, 2003). The 2-hydroxy-4-methyl-n-pentanoic acid in the fer-
mentation broth of L. plantarum and Lactobacillus wiesei played a key 
role in inhibiting mildew (Ndagano, Lamoureux, Dortu, Vandermoten, 
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Abstract
The antimicrobial activity of lactic acid bacteria is closely related to its metabolites. 
Our results showed that Lactobacillus plantarum DY-6 had the highest antibacterial 
activities among the seven bacteria tested in this study. To fully understand the active 
antimicrobial substances in L. plantarum DY-6, the cell-free supernatant (CFS) were 
analyzed. Our data indicated that the antibacterial effect of the CFS was positively 
correlated with the growth of the bacteria, and the main antibacterial substances 
were lactic acid, acetic acid, propionic acid, caprylic acid, and decyl acid. Finally, this 
study demonstrated that the antibacterial active substance produced by the lactic 
acid bacteria could destroy the cell membrane structure of the bacteria, causing bac-
teria to fail to grow and reproduce normally, thereby exerting a bacteriostatic action. 
Taken together, our current findings would provide an effective method for rapid 
screening of antimicrobial substances.
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& Thonart, 2011). And the bacteriocin paracin C produced by L. para-
casei could effectively inhibit Alicyclobacillus (Pei, Yuan, & Yue, 2013). 
Though these substances were found to possess crucial antibacterial 
activity, due to the diverse metabolites of lactic acid bacteria, the spe-
cific antibacterial mechanism of each strain is deserved to discover.

The antimicrobial mechanisms of lactic acid bacteria were com-
plicated. Some researchers have indicated that the organic acids 
produced by the fermentation process could reduce the intracellu-
lar pH by entering the cytoplasm, thus affecting the metabolism of 
pathogenic bacteria (Brul & Coote, 1999). In addition to lowering the 
intracellular pH, researchers also believed that organic acids could 
bind to some components, such as lipopolysaccharides on the cell 
membrane, thereby destroying the stability of the membrane and 
achieving bacteriostatic action (Gong et al., 2016). Moreover, it 
was found that phenyllactic acid could inhibit the protein expres-
sion of filamentous fungi (Ström, Schnürer, & Melin, 2005). The 
fatty acid was found to penetrate the pathogenic cells and bind to 
its plasma membrane, which then changed the permeability of the 
membrane to achieve bacteriostatic action (Bergsson, Arnfinnsson, 
Steingrímsson, & Thormar, 2001). Bacteriocin, isolated from lactic 
acid bacteria, acts as an antibacterial by destroying the integrity of 
the outer membrane of the pathogen (Khalaf et al., 2016).

Recently, technological breakthroughs in metabolomics have al-
lowed for progress in the research of metabolic pathways of lactic acid 
bacteria, as well as the monitoring and optimization of the fermenta-
tion processes. GC-MS was used to evaluate the changes of flavor sub-
stances in Lactobacillus plant during the fermentation of kimchi, and the 
quality of kimchi could be controlled effectively (Park et al., 2016). The 
1H-NMR technique was used to analyze metabolites in fermented soy-
bean milk prepared by Bifidobacterium and Streptococcus, the factors 
influencing free radical scavenging activity of fermented soybean milk 
were expounded (Yang et al., 2009). Lactobacillus plantarum DY-6 was 
found to have strong antibacterial activity; however, its antibacterial 
mechanism is not clear. Therefore, the antibacterial substances were 
evaluated and predicted by metabolomics, and the mechanism of anti-
microbial substances was also explored in this study. We used GC-MS 
and statistical methods to seek potential antibacterial substances and 
found that the antibacterial substances of L. plantarum DY-6 were 
mainly organic acids and fatty acids, among which lactic acid and acetic 
acid showed excellent bacteriostatic activity. We also found that the 
antibacterial substances inhibited the growth of bacteria by destroying 
the stability of the cell membrane of pathogenic bacteria. The antibac-
terial substances could be quickly predicted by analyzing the metabo-
lites produced by lactic acid bacteria and statistical analysis.

2  | MATERIAL S AND METHODS

2.1 | Strains and media

Lactobacillus plantarum DY-6 (CCTCC2017138), L. casei DY2 
(CCTCC2017303), L. rhamnose DY4 (CCTCC2017279) and 
Pediococcus acidilactici DY5 (CCTCC2017280) were obtained from 

the China Center for Type Culture Collection. L. rhamnose DY3, 
L. plantarum DY1 and L. plantarum DY7 were preserved in our labora-
tory. All strains of lactic acid bacteria were cultured in deMan Rogosa 
Sharpe broth (Khalaf et al., 2016) at 37°C for 48 hr. The Escherichia 
coli ATCC25922, Staphylococcus aureus ATCC25923 and Salmonella 
typhimurium ATCC14028 were cultured in LB broth at 37°C for 24 hr.

2.2 | Preparation of CFS

Lactobacillus plantarum DY-6 was firstly incubated in MRS broth 
at 37°C for 24 hr. Bacterial culture broth was then centrifuged at 
10,000 g for 15 min. CFS was filtered before use. Concentration of 
the supernatant was achieved by freeze-drying.

2.3 | The determination of antibacterial ability

Petri dishes, Oxford cups, and other materials were sterilized in an au-
toclave before use. Firstly, the bacterial suspension (108 cfu/ml) was 
coated evenly on Luria-Bertani agar medium prepared in a Petri dish. 
Then, oxford cups were placed on the surfaces of the cultures, and 
CFS was added by dripping. Finally, the Petri dishes with the Oxford 
cups were incubated at 37°C for 18 hr, and the diameter of the bacte-
ria inhibiting loop was evaluated to indicate the antibacterial activity 
of the different samples (Wang, Zheng, Li, Wu, & Xiao, 2017).

2.4 | Effects of temperature, pH, and enzyme on 
antibacterial activity

The antibacterial activities of CFS after the treatment of tempera-
ture, pH, and enzymes were determined by the Oxford cup method. 
CFS was treated for 30 min at temperatures of −20, 4, 30, 60, 80, 
100, and 121°C, respectively. The change of antibacterial activity 
of CFS was tested. The pH value of CFS was adjusted to 2.0, 3.0, 
4.0, 5.0, 6.0, 7.0, and 8.0 with 1 M HCl and 1 M NaOH and adjusted 
back to the initial pH of CFS after maintaining the pH for 1 hr. The 
antibacterial activity of CFS was then detected.

Separate CFS samples were treated with trypsin, pepsin, or pro-
teinase K. The enzyme solution was adjusted to a concentration of 
1 g/L and adjusted to the optimum pH for the enzyme: pepsin (2.0), 
trypsin (7.0), and proteinase K (7.5). The enzyme solution and the 
supernatant were mixed in equal volumes, and the antibacterial ac-
tivity was measured. Before evaluating the antibacterial activity, the 
pH value of CFS was readjusted to the initial pH. The CFS without 
enzyme treatment was served as a control.

2.5 | Determination of organic acids

Organic acids were detected using a Hitachi High-Performance 
Liquid Chromatograph equipped with a UV absorption detector 
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column. Ion chromatography was performed using an organic acid 
column. The mobile phase was 5 mM sulfuric acid solution at a flow 
rate of 0.6 ml/min and a column temperature of 50°C. The content of 
various organic acids was calculated according to the peak time and 
peak area (Zhao et al., 2018).

2.6 | GC-MS analysis of the metabolites

Cultures of L. plantarum DY-6 were harvested during the platform pe-
riod and centrifuged at 14,000 g for 15 min. The CFS was extracted 
with ethyl acetate. The extraction phase was dried by a nitrogen 
blower and derivatized at 85°C in 5 μl pyridine and 50 μl of N,O-bis 
trimethylsilyl trifluoroacetamide for 20 min (Park et al., 2016).

One microliter of the derivatized sample was injected into a se-
ries 8000 GC on a TG-5 column (30 m × 0.25 mm × 0.25 μm) with a 
split injection of 1:5. Helium was used as the carrier gas with a flow 
rate of 1 ml/min. The initial column temperature was 40°C, which 
was maintained for 2 min. The temperature was then increased from 
40 to 280°C at a rate of 10°C/min. The source temperature was set 
to 280°C and the interface temperature was 300°C. Electron impact 
(EI) spectra were obtained at 70 eV.

2.7 | Multivariate statistical analysis

All GC-selected peaks were searched and identified using the NIST 
Mass Spectral Library (Tao & Zhang, 2010), and the peak area normali-
zation method was used to calculate the relative percentage of each 
component. The collected data were processed using Simca14.1 soft-
ware for principal component analysis (PCA) to observe the total meta-
bolic differences (Becerra, Odermatt, & Nopens, 2013; Xu et al., 2016).

2.8 | Effect of CFS on the growth curve of 
indicator bacterium

Two milliliters of E. coli suspension was added to 100 ml LB medium, 
and 2 ml sterile water was added as a control group at the initial 
stage of the culture. To the test group, 2 ml CFS was added, which 

was concentrated by 15 times at the initial stage of the culture. 
Other experimental groups had 2 ml of CFS added to the samples, 
which was concentrated 15 times after E. coli was cultured for 2, 4, 
6, and 8 hr. A growth curve was produced for E. coli after treatment 
with CFS.

2.9 | Effect of CFS on the content of soluble total 
sugar in indicator bacterial liquid

The content of total soluble sugar in the indicator bacterial solution 
was determined following the anthrone method (John, Barnett, & 
Miller, 2010). A suspension of E. coli was added in 1 g/L glucose solu-
tion, and CFS with a volume fraction of 2%, which was concentrated 
10 times, was added to the experimental group. An equal amount of 
sterile water was added as a blank control. After treatment at 37°C 
for 0, 2, 4, 6, 8, 10, and 12 hr, the solution was centrifuged for 5 min 
at 5,000 g to obtain supernatant. The total soluble sugar of the su-
pernatant was detected.

3  | RESULTS

3.1 | Comparison of the antibacterial activities of 
different lactic acid bacteria

The antibacterial abilities of seven lactic acid bacteria were deter-
mined (Table 1). According to the bacteriostasis of each strain on 
E. coli, S. aureus and S. typhimurium, among the seven bacteria in-
dicated in Table 1, L. plantarum DY-6 has the highest antibacterial 
activities; thus, it was selected for the next round of experiments. 
Besides, the results also indicated that all the three L. plantarum 
strains had excellent antibacterial activities (Table 1).

3.2 | Effects of temperature, pH, and enzyme on 
antibacterial activity of L. plantarum DY-6

The effects of temperature, pH and enzymes addition on antibacte-
rial activity of L. plantarum DY-6 supernatant were determined using 

Strain number

Indicator organism

Escherichia coli Salmonella Staphylococcus aureus

L. plantarum DY1 12.89 ± 0.21 15.93 ± 0.22 15.70 ± 0.41

L. casei DY2 10.25 ± 0.23 10.72 ± 0.37 12.10 ± 0.29

L. rhamnose DY3 13.43 ± 0.39 11.57 ± 0.26 13.83 ± 0.35

L. rhamnose DY4 13.22 ± 0.14 12.20 ± 0.30 13.55 ± 0.38

P. acidilactici DY5 12.81 ± 0.22 11.60 ± 0.34 13.77 ± 0.22

L. plantarum DY6 15.32 ± 0.28 13.18 ± 0.19 16.08 ± 0.31

L. plantarum DY7 13.79 ± 0.33 12.40 ± 0.48 14.21 ± 0.17

aData are presented as the mean value ± standard deviation of three measurements. 

TA B L E  1   Bacteriostatic effect 
of different lactic acid bacteria on 
pathogenic bacteriaa
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E. coli as an indicator strain. The data indicated that the temperature 
below 100°C had no significant effect on the antibacterial ability, 
while it was notably decreased when the temperature reached up to 
121°C (Figure S1A). The supernatant only had antibacterial activity 
under acidic conditions, and it was gradually reduced from pH 2.0, 
(Figure S1B). In the present study, pepsin, trypsin, and proteinase K 

enzymes were used to treat the supernatant, and it was found that 
these enzymes had little effect on the antibacterial activity, indicat-
ing that the protein in the supernatant had little effect on antibacte-
rial activity (Table 2).

3.3 | Differential metabolite analysis in CFS

Lactobacillus plantarum DY-6 entered the logarithmic growth phase 
from 4 hr, and its growth began to plateau after 24 hr. During this 
process, the antibacterial activity of CFS was enhanced with the time 
increase (Figure 1). At the initial stage (0–4 hr), CFS showed no ob-
vious antibacterial activity, and then, it was significantly improved. 
The antibacterial activity tended to be stable after 24 hr (Figure 1), 
indicating that the antibacterial effect of the CFS was positively cor-
related with the growth of the bacteria.

A PCA was used to analyze the sample data of different fer-
mentation times. In this study, the entire fermentation process 
was divided into eight time periods according to their distance, 

TA B L E  2   Effects of various proteinase on antibacterial activity 
after enzyme treatmenta

Enzyme
Inhibition 
zone (mm)

Controlb  14.10 ± 0.21

Trypsin 13.82 ± 0.26

Pepsin 13.71 ± 0.38

Proteinase K 13.90 ± 0.50

aData are presented as the mean value ± standard deviation of three 
measurements. 
bFermentation supernatant without enzyme treatment. 

F I G U R E  1   Growth curve of 
Lactobacillus plantarum DY-6 and 
changes in antibacterial activity during 
fermentation

F I G U R E  2   PCA scores and loadings 
biplot of the metabolites of CFS at 
different fermentation times. The symbols 
in the figure represent metabolites. 
The hexagonal patterns represent the 
fermentation time; from left to right, the 
times are 0, 4, 8, 12, 16, 36, 24, and 48 hr
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and the farther apart, and the higher the degree of separation. 
Throughout the model, it was found that different time periods 
had a certain separation trend (Figure 2). Three groups of sig-
nificantly different samples (0 and 8 hr; 8 and 16 hr; and 16 and 

48 hr) were selected for analysis in combination with the antibac-
terial activity of different time periods (Figure 1) and the sepa-
ration of each stage under this model (Figure 3a–c). Among the 
three selected groups, the two time periods in each group had a 

F I G U R E  3   OPLS-DA diagram of 
different fermentation time. a: 0 and 8 hr; 
b: 8 and 16 hr; c: 16 and 48 hr. The larger 
the distance between the two times, 
the greater the difference between the 
metabolites in their CFS
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good separation trend and showed a large inhibition of bacterio-
static activity.

The OPLS-DA model was used to screen metabolites with 
significant changes between samples. Each dot in the figure 

represented a metabolite. The further the point in the figure from 
the center was, the more significant the change in this metabolites 
was. Differential variables were initially identified by selecting a 
variable with a VIP value >1 (marked in red in the Figure 4a–c). 

F I G U R E  4   S-plot diagram of different 
fermentation time. a: 0 and 8 hr; b: 8 and 
16 hr; c: 16 and 48 hr. Each point in the 
diagram represents a metabolite. The 
farther the point in the figure is from the 
center, the more significant the change in 
metabolites
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By analyzing the three groups of samples, thirteen types of me-
tabolites which might have antibacterial activities were obtained, 
among which acid substances accounted for the vast majority (a 
total of nine types) (Figure 5). The other four substances were 
aroma substances from the fermentation process, but the con-
tent of these substances was low. Therefore, it was speculated 
that acidic substances played a major role on antibacterial activity 
in CFS.

In Figure 5, the contents of lactic acid, acetic acid, propionic 
acid, decanoic acid, and octanoic acid were relatively higher than 
that of other acidic substance, and they all showed antibacterial 
activity against E. coli, among which lactic acid and acetic acid 
showed superior bacteriostatic activity. Then, the above five an-
tibacterial substances were compounded, and the antibacterial 
activity of the mixture was found to be similar with that of CFS, 
suggesting that these five substances were the main antibacterial 
substances in CFS.

3.4 | Effect of CFS on the growth of 
indicator bacteria

The growth of E. coli was significantly affected, even did not grow, when 
CFS was added around 0–4 hr (Figure 6). However, the concentration 
of the cells differed little from that of the control group when CFS was 
added around 6–8 hr (Figure 6). The reason for the inhibition around 
0–4 hr might be that the acidic growth environment derived from the 
addition of CFS, thus affecting the normal growth. And adding CFS had 
little effect when E. coli entered the late logarithmic phase after 6 hr.

3.5 | Effect of CFS on total sugar content in 
indicator bacteria

Carbohydrates were the primary carbon source of microorganisms. 
When the membrane structure was destroyed, the cell contents 

F I G U R E  5   Antibacterial activity 
of acidic substances in CFS. 108 cfu/
ml bacterial suspension and CFS were 
incubated at 37°C for 18 hr, and the 
diameter of the bacteria inhibiting loop 
was evaluated to indicate the antibacterial 
activity of the different samples (see 
Section 2)

F I G U R E  6   Effect of CFS on the growth 
curve of E. coli. CFS. A 2 ml CFS was 
concentrated 15 times and was added 
at 0, 2, 4, 6, or 8 hr; the black arrow 
represents the time when CFS was added 
(A: 0 hr, B: 2 hr, C: 4 hr, D: 6 hr, E: 8 hr, F: 
control)
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will be leaked (Júnior et al., 2018). The structural integrity of the 
cell membrane can be judged by measuring the change in the sugar 
concentration (Yao, Li, Bi, & Jiang, 2015).

The results showed that the total sugar content in the E. coli 
solution increased first after the addition of CFS, then kept almost 
steady, indicating that the cell membrane structure was destroyed, 
and the intracellular carbohydrates were extravasated. While the 
sugar content of the control group continually decreased because 
of the carbohydrates utilization, indicating that CFS could interfere 
with the normal growth and metabolism of the cells (Figure 7).

4  | DISCUSSION

In this study, we compared the antibacterial activity of lactic acid 
bacteria from different sample sources and found that L. plantarum 
DY-6 had excellent antibacterial activity. Lactobacillus plantarum 
DY-6 had a broad spectrum of inhibition, which could effectively 
inhibit E. coli, S. aureus, and Salmonella. The antibacterial properties 
of the fermentation supernatant were also investigated. The anti-
bacterial substance had good thermal stability and antibacterial ac-
tivity under acidic conditions. In addition, after the treatment with 
proteinase K, pepsin, and trypsin, the antibacterial activity did not 
change significantly, indicating that the protein substance played a 
limited role of antibacterial activity in CFS.

It was found that the antibacterial activity was closely related 
to the growth of the L. plantarum DY-6. Thirteen different metab-
olites were found in CFS using GC-MS combined with multivari-
ate statistics. Among them, lactic acid, acetic acid, propionic acid, 
caprylic acid, and decyl acid exhibited good antibacterial activity. 
The antibacterial activity of CFS mainly came from these five 

substances. Others metabolites, such as phenyllactic acid and cit-
ric acid, have previously been shown to have antibacterial activity 
(Ning et al., 2017; Su et al., 2010), but their content in CFS was too 
low to achieve antimicrobial effect. Next, the effect of antibacte-
rial substances on the growth of E. coli was explored. Antibacterial 
substances have an obvious inhibitory effect on the growth of 
E. coli and destroyed the stability of the membrane, causing the 
leakage of its cell contents, thus affecting the normal growth of 
bacteria.

The bacteriostatic action of lactic acid bacteria involves vari-
ous metabolites. For example, acetic acid, formic acid, propionic 
acid, and butyric acid produced from lactic acid bacteria had a 
synergistic effect on molds (Su et al., 2010), and phenyllactic acid 
derived from the culture of L. plantarum IMAU10014 was found to 
have bacteriostasis effects (Wang et al., 2012). Other antibacterial 
substances isolated from L. plantarum, such as 3-hydroxydecanoic 
acid and decanoic acid, had good antibacterial activity on fungi 
(Guo et al., 2012). Several antibacterial bacteriocins have also 
been previously isolated and extracted (Camargo, Todorov, Chihib, 
Drider, & Nero, 2018; Kaškonienė et al., 2017; Langa, Arqués, 
Medina, & Landete, 2017). In addition, hydrogen peroxide and 
other substances produced during the fermentation process were 
also shown to have antibacterial activity (Atanasova, Moncheva, & 
Ivanova, 2014; Castillo et al., 2002).

The antibacterial mechanisms of organic acids in metabolites 
were extensively studied. The common mechanism was to in-
hibit the stability of the membrane or reduce the intracellular pH, 
thereby affecting the metabolic activities of pathogenic bacteria, 
achieving inhibition. The bacteriostatic mechanism of fatty acids 
produced during fermentation was similar to that of organic acids. 
The bacteriocin activity could increase the permeability of cell 
membranes, causing leakage of various ions in the cells and con-
sumption of energy substances, and finally resulting in the death 
of pathogenic bacteria. Recently, Piewngam et al. (2018) found 
that lipopeptides produced by Bacillus could affect the quorum 
sensing system of the antigen body and then interfere with their 
colonization to achieve bacteriostatic action, which also provided 
a new perspective to study the bacteriostatic action of lactic acid 
bacteria.

To summarize, the bacteriostatic action of lactic acid bacteria 
was closely related to its metabolites, and the metabolites of dif-
ferent lactic acid bacteria are different. We could infer the possible 
bacteriostatic substances by analyzing the total metabolites of lactic 
acid bacteria. We were able to accurately identify the antibacterial 
products, which provided a good foundation to study the antibacte-
rial effect of lactic acid bacteria.

5  | CONCLUSIONS

A strain of L. plantarum DY-6 with excellent antibacterial activ-
ity was studied. The antimicrobial activity of L. plantarum DY-6 
is closely related to its metabolites. The main antibacterial 

F I G U R E  7   Effect of CFS on total soluble sugar in E. coli 
suspension. CFS with a volume fraction of 2% was concentrated 
for 10 times and then was added to the experimental group. After 
treatment at 37°C for 0, 2, 4, 6, 8, 10, and 12 hr, the solution was 
centrifuged for 5 min at 5,000 g to obtain their supernatants. The 
total sugar content of E. coli was determined at the indicated time
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substances were found to be lactic acid, acetic acid, propionic acid, 
caprylic acid, and decyl acid. The active antibacterial substances 
produced by the lactic acid bacteria destroyed the cell membrane 
structure of the bacteria, causing bacteria to fail to grow and re-
produce normally, thereby exerting bacteriostatic action. This 
study provides an effective method for rapid screening of antimi-
crobial substances.
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