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Abstract: Ovarian cancer is a fatal gynecological malignancy. Although first-line chemotherapy and
surgical operation are effective treatments for ovarian cancer, its clinical management remains a
challenge owing to intrinsic or acquired drug resistance and relapse at local or distal lesions. Cancer
stem cells (CSCs) are a small subpopulation of cells inside tumor tissues, and they can self-renew
and differentiate. CSCs are responsible for the cancer malignancy involved in relapses as well as
resistance to chemotherapy and radiation. These malignant properties of CSCs are regulated by cell
surface receptors and intracellular pluripotency-associated factors triggered by internal or external
stimuli from the tumor microenvironment. The malignancy of CSCs can be attenuated by individual
or combined restraining of cell surface receptors and intracellular pluripotency-associated factors.
Therefore, targeted therapy against CSCs is a feasible therapeutic tool against ovarian cancer. In
this paper, we review the prominent roles of cell surface receptors and intracellular pluripotency-
associated factors in mediating the stemness and malignancy of ovarian CSCs.
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1. Introduction

Ovarian cancer has the highest mortality rate among gynecological cancers. The World
Cancer Report of the International Agency for Research on Cancer stated that 295,414 women
were diagnosed with ovarian cancer in 2018 [1]. Diagnosis at an early stage has numerous
benefits such as a longer survival rate; however, 80% of ovarian cancer patients are diagnosed
at an advanced stage (III or IV) because they exhibit no symptoms in the early stages, fol-
lowing which the tumor disseminates to the peritoneal cavity [2–4]. Ovarian cancer has high
heterogeneity, which is generated by various factors, including different histopathological
properties, origin, clinical evolution, response to treatment, and genomic alteration, and can
be divided into nine subtypes: serous, endometrioid, clear cell, mucinous, Brenner tumor,
transitional cell, squamous cell, mixed epithelial, and undifferentiated [5]. Standard ovarian
cancer treatment comprises first-line chemotherapy with a carboplatin-paclitaxel regimen and
surgical debulking [4,6]. Although this regimen is initially effective, recurrence is persistent
owing to intrinsic or acquired chemoresistance [7,8]. Most ovarian cancer patients suffer at
least one relapse within 12 to 18 months [9,10] owing to chemoresistance and metastasis [3,11];
hence, 70% of these patients die within five years [1,4,9]. Therefore, ovarian cancer treatment
urgently needs to address challenges such as recurrence, chemoresistance, and metastasis.

Cancer stem cells (CSCs) are highly tumorigenic as tumor-initiating cells and possess
the ability to self-renew, similar to normal stem cells [12,13]. Although CSCs are a rare
population of tumor cells depending on the tumor type and stage [1], they are responsible
for drug resistance, recurrence, and metastasis in response to tumor microenvironmental or
non-microenvironmental stimuli [14–17]. Despite contradictory findings, the upregulated
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CSC pathway is responsible for the poor outcomes of many aggressive tumors [18]. CSC-
related cellular markers comprise cell surface and intracellular markers, which are closely
connected via a complicated pathway that interplays with the tumor microenvironment.
Many reports suggest that the individual or combined inhibition of CSC marker expression
or activity effectively diminishes the growth and dissemination properties of CSCs both
in vitro and in vivo [19,20].

After CSCs were first found in ovarian cancer patient ascites [21], many studies have
investigated the correlation between CSCs and ovarian cancer. Accumulating evidence
indicates that the elimination of CSCs is required to inhibit ovarian cancer growth and
frequent relapse [19,20]. Many studies have shown that there are stem-like epithelial
cells in the ovarian surface [22] and fallopian tube epithelium [23]. Stem cells have been
identified in the coelomic epithelium of mouse ovaries [24] and in a transitional region
known as the hilum [25]. Although there is some evidence to the contrary, ovarian cancer
is considered to originate from both these tissues [20,26]. Moreover, stem cell factors
increase sphere formation and tumor transformation potential by inactivating TP53 and
Rb1 via mutations; two tumor-suppressor genes are frequently mutated in high-grade
serous ovarian cancer [27]. Stem cells play a crucial role in maintaining normal tissues, but
they may be a double-edged sword because dysregulation and transformation through the
mutation of tumor suppressors can cause cancer [28] (Figure 1). In this paper, we review
potential therapeutic or diagnostic biomarkers for CSCs and discuss recent studies on
approaches for targeting ovarian CSCs.
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Figure 1. Origin and initiation of high-grade serous ovarian cancer. High-grade serous ovarian cancer originates from the 
fallopian tube (A) and surface epithelia (B). Both normal epithelia (blue cells) have a small subpopulation of stem-like cells 
(Pink cells), which express ALDH, CD117, CD133, CD24, and CD44. They exhibit stem cell properties, such as self-renewal 
and multi-differentiation potential. A. The stem-like cells in the fallopian tube epithelium acquire p53 mutations owing to 
uncertain reasons. Then, they expand into serous tubal intraepithelial carcinomas (STICs), transform into fallopian tube 
cancer, and migrate to seed the ovarian epithelium or distant metastasis. B. In the case of origin from the ovary surface, 
most researchers believe that the repetitive damages on the ovary surface during ovulation and repair cause accumulated 
mutations and p53 mutations in the stem-like cells of the ovarian surface epithelium. 

2.2. CD117 
CD117, generally known as c-kit, is a receptor tyrosine kinase that is involved in var-

ious signaling pathways responsible for the survival, proliferation, migration, tumor pro-
gression, and stemness [19,43] of CSCs, and it is a common marker of hematopoietic stem 
cells, mesenchymal stem cells (MSCs), and embryonic stem cells [44]. CD117, in combina-
tion with CD44, has been used to identify CSCs [30]. CD117+ ovarian cancer cells overex-
press SOX2, octamer-binding transcription factor 4 (OCT4), and NANOG, which are CSC 
markers involved in stemness and chemoresistance [45]. CD117 overexpression in ovarian 
CSCs elevates tumor-initiating capacity and chemoresistance against cisplatin/paclitaxel 
via the induction of the Wnt/beta-catenin-ATP–Binding Cassette Subfamily G Member 2 
(ABCG2) axis [46]. In contrast, miRNA-26b is under-regulated in human CD117+CD44+ 
ovarian CSCs. miRNA-26b overexpression inhibits cell proliferation and promotes cell 
apoptosis [47]. According to a meta-analysis, CD117 expression significantly correlates 

Figure 1. Origin and initiation of high-grade serous ovarian cancer. High-grade serous ovarian cancer originates from the
fallopian tube (A) and surface epithelia (B). Both normal epithelia (blue cells) have a small subpopulation of stem-like cells
(Pink cells), which express ALDH, CD117, CD133, CD24, and CD44. They exhibit stem cell properties, such as self-renewal
and multi-differentiation potential. (A) The stem-like cells in the fallopian tube epithelium acquire p53 mutations owing to
uncertain reasons. Then, they expand into serous tubal intraepithelial carcinomas (STICs), transform into fallopian tube
cancer, and migrate to seed the ovarian epithelium or distant metastasis. (B) In the case of origin from the ovary surface,
most researchers believe that the repetitive damages on the ovary surface during ovulation and repair cause accumulated
mutations and p53 mutations in the stem-like cells of the ovarian surface epithelium.

2. Cell Surface Markers of Ovarian CSCs
2.1. CD44

CD44 is a surface transmembrane glycoprotein that acts as a receptor, participating in
various physiological processes such as cell–cell interaction, cell migration, and cell–matrix
adhesion [29]. CD44 is one of the most common CSC markers, which is used individually
or in combination with other potential markers to verify CSCs [30–32], and it is highly
expressed in several tumors such as those of the ovary, breast, and pancreas [33–35]. CD44+
cells have been identified in primary tissues, metastatic tissues, and malignant ascites
of ovarian cancer [36]; one hundred CD44+/CD117+ cells are sufficient to propagate
the original tumor, but CD44-/CD117- cells are not [30]. CD44 increases invasion and
migration activity in non-malignant ovarian cancer cells via exosome transfer [37]. CD44
elevates chemoresistance and invasion activity through a signal transducer and activator
of transcription 3 (STAT3)-dependent mechanism, and it influences angiogenesis and
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immunosuppression in the tumor microenvironment via the secretion of various angiogenic
factors and cytokines, including vascular endothelial growth factor and interleukin 6 [38].
Despite the function of CD44 as a stem cell biomarker, contradictory findings suggest that
CD44 fails to function as a prognostic factor in ovarian cancer [39,40]. Nevertheless, CD44
can be utilized as an outstanding prognostic marker in combination with other putative
biomarkers [41,42].

2.2. CD117

CD117, generally known as c-kit, is a receptor tyrosine kinase that is involved in
various signaling pathways responsible for the survival, proliferation, migration, tumor
progression, and stemness [19,43] of CSCs, and it is a common marker of hematopoietic
stem cells, mesenchymal stem cells (MSCs), and embryonic stem cells [44]. CD117, in
combination with CD44, has been used to identify CSCs [30]. CD117+ ovarian cancer
cells overexpress SOX2, octamer-binding transcription factor 4 (OCT4), and NANOG,
which are CSC markers involved in stemness and chemoresistance [45]. CD117 overex-
pression in ovarian CSCs elevates tumor-initiating capacity and chemoresistance against
cisplatin/paclitaxel via the induction of the Wnt/beta-catenin-ATP–Binding Cassette Sub-
family G Member 2 (ABCG2) axis [46]. In contrast, miRNA-26b is under-regulated in
human CD117+CD44+ ovarian CSCs. miRNA-26b overexpression inhibits cell prolifera-
tion and promotes cell apoptosis [47]. According to a meta-analysis, CD117 expression
significantly correlates with patient age, tumor differentiation grade, advanced stage, and
histological type, and CD117 overexpression is associated with poor overall survival in
ovarian cancer [48].

2.3. CD24

CD24, which encodes a glycosylphosphatidylinositol-linked cell surface ligand for
P-selectin, is closely associated with serous ovarian cancer [49]. CD24 has been identified
as one of the most important CSC markers in several cancers, including ovarian and
colorectal cancers [50,51]. CD24+ cells from ovarian tumor specimens regulate proliferation,
self-renewal and differentiation, chemoresistance, and tumorigenicity, which are CSC
characteristics [50]. CD24+ cells could recapitulate the development of the original tumor
in a mouse model of ovarian cancer with the conditional deletion of Apc, Pten, and
cellular tumor antigen p53 (Trp53; Mus musculus), which was confirmed through JAK2–
STAT3 signaling [52]. CD24 regulates epithelial-to-mesenchymal transition (EMT) by
modulating the PI3K/AKT/MAPK signaling pathway [53]. The overexpression of CD24
has been reported in ovarian cancer patients, and it is a metastatic prognosis marker
for poor survival [53,54]. Triple-positive (CD24+/CD44+/EpCAM+) cells isolated from
ovarian cancer patients exhibit clonogenic potential and chemoresistance to cisplatin
and doxorubicin [55]. However, the CD44+/CD24- phenotype in ovarian cancer cells
determines the CSC properties of newly propagated and invasive tumors, and ovarian
cancer patients with this phenotype exhibit enhanced recurrence and shorter progression-
free survival [56]. Therefore, CD24 should be used in combination with other stem cell
markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), for the isolation of
ovarian CSCs.

2.4. CD133

There is evidence that CD133, a glycosylated transmembrane protein, helps maintain
cancer stemness and is associated with tumor metastasis [57]. CD133 has been reported as
a prognostic marker and regulator of cancer metastasis in several cancers, such as ovarian
cancer, glioblastoma, and prostate cancer [58–60]. Primary cancer tissues comprise 0.1% to
3% CD133+ cells; however, the proportion of CD133+ cells increases upon chemotherapy
with cisplatin or paclitaxel [61]. The expression level of CD133 is elevated in sphere-forming
and drug-resistant populations of ovarian cancer cells, which exhibit chemoresistance and
tumorigenesis in vivo and increased levels of stemness markers such as OCT4, SOX2, and
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NANOG [62]. CD133+ cells promote non-stem cancer cell metastasis by inducing EMT
via the CCL5–NF-κB axis [63]. Moreover, CD133 expression significantly correlates with a
low survival rate in ovarian cancer [64]. Based on the aforementioned results, CD133 is a
promising prognosis marker and therapeutic target for ovarian CSCs.

2.5. CD166/ALCAM

CD166, also known as activated leukocyte cell adhesion molecule (ALCAM), is a trans-
membrane glycoprotein of the immunoglobulin superfamily [65] and is expressed mainly
at the cell membrane [66]. CD166 is overexpressed in various cancers, including thyroid,
head and neck, lung, and liver cancers [67]. A high level of CD166 is associated with a poor
prognosis in malignant melanoma, the metastasis of prostate cancer, the invasion activity of
cholangiocarcinoma, and the anti-apoptotic function of breast cancer [67–70]. Cells express-
ing high levels of CD44/CD166 exhibit enhanced CSC-like properties and tumorigenicity.
CD166 is overexpressed in tissues from recurrent tumors and is associated with poor
prognosis in head and neck squamous cell carcinoma [71]. In addition, CD166 regulates the
expression of CSC markers and mediates the EGFR/ERK1/2 pathway in nasopharyngeal
carcinoma [72]. CD166 has been reported to play a pro-carcinogenic role in liver cancer cells
by promoting the expression and activation of RAC-alpha serine/threonine-protein kinase
(AKT) and yes-associated protein (YAP), which is a coactivator of Hippo signaling [73,74].
Our previous study showed that CD166 exhibits CSC-like properties in primary epithelial
ovarian cancer cells. CD166 induced the expression of CSC markers such as OCT4, SOX2,
and aldehyde dehydrogenase 1 A1 (ALDH1A1), and ABC transporters in both A2780-
derived sphere-forming cells and primary ovarian CSCs, thus promoting CSC-like proper-
ties and chemoresistance [75]. A recent report indicated that CD133+/CD166+ cells are
strongly stem-like cancer cells in human gastric adenocarcinoma, and that CD133+/CD166-
cells exhibit self-renewal properties, colony formation capacity, and substantial migration
activity [76]. These results suggest that CD166 may be a potential therapeutic target for
CSCs, including ovarian CSCs.

3. Intracellular Markers of Ovarian CSCs
3.1. Aldehyde dehydrogenase 1

Aldehyde dehydrogenase (ALDH) is an enzyme that catalyzes aldehydes, which
detoxify endogenous and exogenous reactive aldehydes [77]. ALDH comprises three
classes: class 1 (cytosolic), class 2 (mitochondrial), and class 3 [78]. ALDH1 consists
of three isozymes (ALDH1A1, ALDH1A2, and ALDH1A3); ALDH1A1 predominantly
serves as a CSC marker. ALDH1 expression in ovarian cancer cells has been demonstrated
in several studies [79,80]. Our previous study and others suggest that spheroid cells
derived from ovarian cancer cell lines and primary ovarian cancer tissues are enriched
with CSC-like cells exhibiting high ALDH activity, elevated stem-cell marker expression,
self-renewal, high proliferation, and differentiation potential [81–83]. The ALDH1A1
subpopulation is associated with an invasive phenotype, clonogenicity, drug resistance,
and worse progression-free survival in ovarian cancer patients [84,85]. Accumulating
evidence suggests that ALDH1A1 regulates the maintenance of ovarian CSCs, ALDH+
ovarian cancer cells exhibit stem cell-like properties, and knock-down of ALDH1A1 in
ovarian cancer cells diminishes clonogenic ability [85].

3.2. Autotaxin

Autotaxin (ATX), which belongs to the ectonucleotide pyrophosphatase/phosphodiester
ase family, is a tumor cell motility-stimulating factor that stimulates cell motility and cell
proliferation of cancer cell lines [86]. ATX exhibits lysophospholipase D activity, and it
affects tumor motility and growth by producing lysophosphatidic acid (LPA) [86,87]. Several
studies have shown that ATX is expressed in several tissues such as the ovary, small intestine,
placenta, platelets, and adipose tissue, and body fluids such as cerebrospinal fluid [88,89]. A
high expression of ATX has been detected in breast cancer, glioblastoma multiforme, prostate



Int. J. Mol. Sci. 2021, 22, 5059 6 of 17

cancer, hepatocellular carcinoma, and melanoma [90–94]. ATX overexpression in these cancers
promotes tumor motility and invasiveness, enhances metastatic potential, and correlates
with poor outcomes in cancer patients [95]. It has been reported that ATX is responsible
for maintaining ovarian CSCs via the LPA–LPAR axis. ATX-induced LPA production in
A2780 sphere-forming cells enhances migration, sphere formation, and the expression of
CSC markers, such as OCT4, SOX2, Kruppel-like factor 4 (KLF4), and ALDH1. Conversely,
silencing ATX expression in A2780-derived spheroid cells reduces the level of stemness-
related transcription factors such as OCT4, SOX2, and KLF4 [83]. Therefore, the ATX–LPA
signaling axis may be a prominent target for the development of combination therapies for
ovarian CSCs.

3.3. Pluripotency-Associated Factors

The pluripotent properties of CSCs, such as long-term self-renewal, multi-differentiation
potential, and asymmetric division [12,96], have been attributed to common stem-related
transcription factors [97]. They are derived from the embryonic transcription factors OCT4,
SOX2, and NANOG, whose genes are considered stem cell signature genes [97]. These
gene signatures with c-MYC (myc proto-oncogene protein) are frequently overexpressed in
poorly differentiated tumors and then well differentiated in breast cancer, glioblastoma,
and bladder carcinomas. The expression signatures of OCT4, SOX2, and NANOG are
associated with poor clinical outcomes in breast cancer [98]. Green fluorescent protein
(GFP)-labeled ovarian CSCs utilize the NANOG promoter system to overexpress OCT4,
SOX2, and NANOG compared with the GFP-negative ovarian cancer cells, and the GFP-
positive cells also exhibit greater cisplatin resistance and tumor initiation properties. In
addition, low-dose cisplatin treatment induces stemness in ovarian cancer cells [99]. OCT4,
SOX2, and NANOG are significantly overexpressed in high-grade serous ovarian cancer
cell lines cultured under 3D culture conditions, and CD117+ or ALDH+/CD133+ cells
exhibit elevated expression of stemness genes [45]. SOX2, but not OCT4 or NANOG,
has been implicated in early tumor initiation and plays a more substantial role in tumor
relapse in ovarian cancer patients. SOX2 expression is upregulated in several types of
CSCs, including those of breast, gastric, lung, and ovarian cancers [100]. SOX2 with ALDH
and ABC transporters is overexpressed under hypoxic conditions via neurogenic locus
notch homolog protein 1 (NOTCH1) in ovarian CSC spheroid culture. A knockdown of
SOX2 expression inhibits ovarian CSC survival and disturbs spheroid formation [101].
However, the precise regulatory mechanism of these pluripotent factors in ovarian CSCs is
not understood.

3.4. Hypoxia-inducible Factor 1-alpha (HIF-1α)

Hypoxia refers to a state of insufficient oxygen supply caused by various factors,
including physiological and physical states, epigenetic environments, and gene alter-
ations [102,103]. Hypoxia is an essential hallmark of cancer cells and their microenvi-
ronment, and it confers an advantage to cancer cells during their growth, survival, and
metastasis [103]. Therefore, it is important to control the hypoxic microenvironment to
inhibit the malignant properties of cancer. HIF-1α, one of the master regulators of hypoxia
adaptation, is associated with angiogenesis, glucose metabolism, cell proliferation, and
drug resistance [104]. HIF-1α can induce pluripotent stem cell inducers, such as OCT4,
NANOG, SOX2, KLF4, c-MYC, and microRNA-302, in 11 cancer cell lines (derived from
prostate, brain, kidney, cervix, lung, colon, liver, and breast cancers) [105]. Hypoxia plays
an essential role in maintaining CSC characteristics, such as colony and sphere formation,
and the expression of CD133 and CD44 in ovarian CSCs [106]. CD166+ lung adenocarci-
noma A549 cells showed robust drug resistance and stemness owing to HIF-1α-induced
ABCG2 under chemically induced hypoxia conditions [107]. Our previous study showed
that hypoxia-induced NOTCH and HIF-1α elevated SOX2 expression to promote sphere
formation and drug resistance by increasing ALDH1, ATP-Binding Cassette Subfamily B
Member 1 (ABCB1), and ABCG2 expression in ovarian cancer cells. In contrast, silencing
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of SOX2 in A2780-derived ovarian CSCs significantly reduced stem cell marker expression
and decreased resistance to chemotherapy drugs such as doxorubicin or paclitaxel, as in
ovarian cancer patient-derived sphere cells [101]. These reports suggest that controlling
hypoxia signaling may be novel options to eliminate CSCs in ovarian cancer. The summary
of ovarian stem cell markers and their features as mentioned above was compiled on
Table 1 with the references.

Table 1. The ovarian cancer stem cell markers and their features.

Protein Names Features References

Cell surface markers of ovarian CSCs

CD44
CD44 is the most common CSC marker in the ovary, breast, and pancreas.
CD44+ cells have been found in primary, metastatic, and malignant ascites
of ovarian carcinoma.

[29,33–36]

CD117

CD117 has been known as c-kit. CD117 is a receptor tyrosine kinase related
to survival, proliferation, migration, tumor progression, and stemness.
CD117 is expressed in hematopoietic, mesenchymal, embryonic stem cells.
CD117 is involved in stemness and chemoresistance in ovarian cancer.

[19,43–45]

CD24

CD24 has been verified as a critical CSC marker in several cancers
involving ovarian and colorectal cancers. CD24 is known as the regulation
of proliferation, self-renewal, and chemoresistance in ovarian cancer. CD24
positive expressed ovarian cancer patients is poor survival.

[50,51,54–57]

CD133

CD133 is a glycosylated transmembrane protein and associated with
maintaining cancer stemness and tumor metastasis. CD133 has been
identified as a prognostic marker in several cancers such as ovarian,
glioblastoma, and prostate cancer. CD133 also is correlated with
chemoresistance and poor prognosis in ovarian cancer.

[58–62,65]

CD166/ALCAM

CD166 is a transmembrane glycoprotein of the immunoglobulin
superfamily. CD166 is overexpressed and is associated with a poor
prognosis in various cancers. CD166 induced intracellular cancer stem
markers such as OCT4, SOX2, and ALDH1A1. CD166 also is associated
with maintaining CSC properties and chemoresistance.

[66–71,76]

Intracellular markers of ovarian CSCs

ALDH1

ALDH1 is an enzyme to detoxify reactive aldehydes. ALDH composes
three classes. ALDH1 consists of three isozymes; ALDH1A1 is
predominantly a CSC marker. ALDH elevated stem-cell marker expression,
self-renewal, proliferation, and differentiation potential. ALDH is also
associated with invasion, drug resistance, and worse progression-free
survival in ovarian cancer.

[78–86]

Autotaxin

Autotaxin possesses lysophospholipase D activity and produces
lysophosphatidic acid (LPA). Autotaxin is expressed in several tissues,
including body fluid, and it is highly expressed in the breast, glioblastoma,
prostate, hepatocellular carcinoma, and melanoma. Autotaxin enhances
migration, sphere formation, and cancer stemness markers.

[87–95]

Pluripotency-
associated
factors

OCT4, SOX2, and NANOG are the most common intracellular cancer stem
markers in normal and cancer stem cells. Among these factors, SOX2 plays
a more substantial role in early tumor initiation and tumor relapse in
ovarian cancer, including breast, gastric, and lung. The knock-down SOX2
inhibits ovarian CSC survival and spheroid formation.

[12,97,98,101,102]

HIF-1α

Hif1a is one of the hypoxia-inducible factors and master regulators of
hypoxia. Hif1a is correlated with growth, survival, and metastasis during
hypoxia conditions. Hif1a can elevate the expression of pluripotent stem
markers and plays an essential role in maintaining CSC properties.

[102–105,107]



Int. J. Mol. Sci. 2021, 22, 5059 8 of 17

4. Therapeutic Strategies Using CSC Markers
4.1. Standard and Targeted Therapies for Ovarian Cancer

Ovarian cancer patients show a high response rate to front-line chemotherapy based
on platinum-based drugs with surgical debulking [6], but they eventually relapse within
several months [9,10]. Platinum resistance is defined as the development of recurrence
within six months following first-line chemotherapy [2]. Platinum-resistant patients have
been administered combined chemotherapy with or without doxorubicin, paclitaxel, gemc-
itabine, or targeted therapies such as the administration of bevacizumab or poly-ADP ribose
polymerase (PARP) inhibitors [108]. In 2018, a phase 3 clinical trial showed that olaparib, a
potent PARP inhibitor, dramatically improved the disease-free survival of ovarian cancer
patients carrying the breast cancer type susceptibility protein 1/2 (BRCA1/2) mutation by
70% (3 years) compared with the placebo [109,110]. However, BRCA wild-type ovarian
cancer patients showed a lower response rate to PARP inhibitors [109,111]. PARP inhibitor
resistance and recurrence have been reported in ovarian [112] and breast cancers [113].
Combined therapy with other targeted therapeutic drugs, including PI3K, cyclin-dependent
kinase 1 (Cdk1), and hepatocyte growth factor receptor (c-MET) inhibitors, was attempted
to overcome PARP inhibitor resistance [1]. PARP inhibitor treatment induced cell apoptosis
in non-ovarian CSCs but enriched CD133+ and CD117+ ovarian CSCs by increasing DNA
repair ability in a BRCA mutation-independent manner [114], suggesting that ovarian
CSCs may exhibit intrinsic or acquired resistance against PARP inhibitor treatment, leading
to relapse. Therefore, it is essential to eliminate ovarian CSCs from ovarian cancer patients.

CSC surface markers are more accessible to therapeutic antibodies and small molecules
than other CSC markers; thus, it is a feasible target that can be utilized to treat various
cancers [115]. Moreover, considering the function of CSC markers in maintaining CSC
properties, it is straightforward to isolate specific CSCs and use the diagnostic markers for
predicting patient survival. Although there are several debates on the isolation and target-
ing of CSC surface markers, many researchers believe that eliminating specific CSCs can
eradicate whole cancer tissues [14,116,117]. Numerous studies have shown that targeting
CSC surface markers using specific antibodies and small molecules effectively abrogates
cancer growth [118]. Targeting not only the surface markers but also intracellular CSC
markers, such as ALDH1, Autotaxin, Oct4, Sox2, Nanog, and Hif1a, has been shown
many feasibilities to alleviate ovarian CSCs growth and maintenance via small molecule
inhibitors or gene knock-down [45,84,86,102,106]. However, many CSC markers have vari-
ous obstacles to apply on the clinical side due to the limitation of selection and targeting
for CSCs.

Targeting CSCs of ovarian cancer has two challenges in clinical application. First, CSC
markers cannot explicitly distinguish CSCs from normal stem cells, such as embryonic,
hematopoietic, neural, and mesenchymal stem cells. Approximately 73% of currently
known CSC surface markers are present on embryonic or adult stem cells [115]. CSC
properties, including self-renewal and multi-differentiation potential, are very similar to
those of normal stem cells [28,115]. Therefore, these CSC markers are known to origi-
nate from cell surface markers of embryonic and adult stem cells [14,116,117,119,120]. In
addition, CSCs can arise from the accumulation of epigenetic and genetic alterations in
normal stem cells [28]. Some CSC markers have also been detected in normal cells or
tissues. Although CD133 is a marker that can be used to distinguish CSCs from various
cancer tissues, such as breast, brain, lung, pancreas, liver, prostate, ovary, colon, and head
and neck cancers [58], it has also been detected on the surface of differentiated epithelial
cells [115]. CD24 has been identified as a CSC marker in a wide range of cancers and
has been detected in B cell precursors, neutrophils, neuronal cells, and various epithelial
cells [121]. CD117 expression is 24% positive in human embryonic stem cells [122,123].
CD166 is a surface marker in colorectal CSCs and non-small cell lung cancer [124,125];
however, it is also found in many epithelial cells, and it is a marker of human mesenchymal
stem cells and intestinal stem cells [126,127]. CD44 is a marker that has been isolated from
various solid tumors [128,129], and it is found in human hematopoietic stem cells, MSCs,
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and adipose-derived stem cells [130–132]. Moreover, most intracellular CSC markers, such
as Wnt, Notch, Sonic hedgehog, fibroblast growth factor, NANOG, OCT4, SOX2, and
MYC, have been detected in normal stem cells. These markers play an essential role in
maintaining stem cell properties [98,133–135]. CSC markers, such as CD117, CD133, CD24,
CD44, OCT4, stage-specific embryonic antigen 4 (SSEA4), leucine-rich repeat-containing
G-protein coupled receptor 5 (LGR5), and ALDH1/2 with Ki-67 expression, have been
identified in ovarian epithelial cells and cortex regions, although the expression of the
markers differed slightly between them [136]. Therefore, the utilization of stem cell markers
expressed in normal stem cells or tissues as therapeutic targets against CSCs can lead to the
eradication of normal stem cells and disturb normal tissue regeneration or reorganization.

The other challenge is that there is no universal consensus CSC marker to isolate and
target all types of CSCs simultaneously. There are multiple types of ovarian CSCs due
to intratumoral heterogeneity [137]. The expression of CSC markers, which are already
known as potent CSC markers, might be affected according to the differentiation status
of CSC and be influenced by splicing variant expression [136,138,139]. For instance, the
CD44+/CD24- ovarian cancer cells have CSC-like properties such as tumor-initiating
ability and invasion [56]. The CD133+/CD166- ovarian cancer cells possess CSC traits
including self-renewal, colony formation, and migration activity [76]. Furthermore, CD133
is expressed on both CSC and differentiated tumor cells but is probably differentially
folded as a result of differential glycosylation to mask specific epitopes [140]. CD44-
specific variants (v8-v10 isoform) have been reported as a CSC-specific marker in gastric
cancer [139,141]. The results suggest that targeting specific surface markers is not enough
to eradicate ovarian CSCs due to the heterogeneity of CSCs. Therefore, it is necessary to
isolate and verify more CSC-specific functional markers to distinguish CSCs from normal
adult stem cells.

4.2. Future Directions of CSC-Targeting Therapy

Many researchers have chosen to eradicate CSCs in cancer tissues because these cells
are the main factor in building the cancer microenvironment, and they have strongly
focused on studying more specific CSC surface markers to distinguish them from those
of other cancer or stem cells. However, the application prospect of CSC surface markers
is debatable. It is challenging to target a particular CSC surface marker to completely
eradicate ovarian CSCs. Therefore, the aforementioned alternative therapy entailed the
targeting of at least two CSC markers. For example, CD133 and CD44 aptamer-conjugated
dual-targeted nanomicelles loaded with gefitinib, an epidermal growth factor receptor
(EGFR) inhibitor, more effectively eradicated CD133/CD44 double-positive lung cancer-
initiating cells compared with the single-targeted or non-targeted nanomicelles [142].
Anti-CD24/anti-mesothelin dual-chimeric antigen receptor–natural killer cell (CAR-NK)
therapy significantly increased the drug response rate compared with therapy using single-
target NK cells. This dual-target strategy was applicable because mesothelin was detected
in 42% of ovarian cancer patients [143]. Although the single-target CSC surface marker
strategy is sufficient to eliminate ovarian CSCs both in vitro and in vivo, dual marker
targeting is more effective in increasing the drug response rate and eradicating ovarian
CSCs, including CSCs expressing a single marker. Therefore, dual marker targeting to
eliminate CSCs may be a more promising therapeutic method. However, there are many
challenges in establishing a therapeutic method and undertaking clinical trials.

Ovarian CSCs are not only involved in the formation of ovarian cancer but constantly
interact with the microenvironment around them, including other cells and extracellular
components. Notably, cancer-associated fibroblasts, stromal cells, and MSCs in tumor
tissues play pivotal roles in cancer malignancy, including cancer growth, invasion, and
metastasis. These interactions appear to have positive cross-reactivity through auto- and
paracrine signaling. Hence, breaking off the communication between CSCs and the microen-
vironment, including cancer-associated cells, is essential to eradicate CSCs. The biomarkers
that are differentially expressed in normal tissue and cancer-associated cells need to be
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discovered, and their connection with these interactions should be elucidated. When both
cancer cells and adult MSCs were co-inoculated into an immunodeficient mouse model,
adult MSCs differentiated into cancer-associated fibroblasts owing to auto- and paracrine
factors from cancer cells, and these cells increased the growth and invasion of the cancer
cells [144,145]. The ATX–LPA–LPAR1 axis plays an important role in such interactions
with cancer cells and adult stem cells in cancer tissues. The inhibition of ATX or LPAR1
using siRNA or small molecules disturbs the differentiation of MSC-derived fibroblasts,
and it reduces the metastasis, migration, and cell proliferation of cancer cells [146–149].
Cancer-associated MSCs induce chemoresistance in ovarian CSCs via platelet-derived
growth factor (PDGF) signaling. Combined therapy with sonidegib, a PDGF receptor
(PDGFR) inhibitor, and carboplatin broke up the connection between MSCs and ovarian
CSCs. The inhibition of PDGFR signaling via sonidegib increased the sensitivity of ovarian
CSCs to carboplatin [150]. Therefore, it is likely that the inhibition of both ovarian CSCs
and cancer-associated MSCs in the microenvironment is a feasible therapeutic strategy for
ovarian cancer (Figure 2).
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Figure 2. Microenvironment between cancer stem cells and cancer-associated cells in tumor tissue. Cancer stem cells have
several surface markers that can be isolated and targeted, such as CD44, CD117, CD24, CD133, and CD166. Cancer stem
cells overexpress pluripotent proteins, including ALDH1, ATX, HIF-1α, OCT4, SOX2, and NANOG, which regulate cancer
stem cell properties by mediating the expression of surface markers, cytokines, and growth factors. ATX produces LPA,
which induces cancer-associated cells to differentiate into myofibroblasts via the TGF-b1–Samd2/3 axis. LPAR1 activation
by LPA triggers cell proliferation and migration (homing) toward cancer tissues. Cancer-associated cells secrete PDGF to
activate PDGFR in cancer stem cells, thereby maintaining cancer stem cell properties.

5. Conclusions and Perspectives

CSCs have been implicated in chemoresistance, as well as the tumorigenesis, migra-
tion, and invasion of ovarian cancer cells. In patients with ovarian cancer, normal stem
cells can be also damaged if CSC-targeted therapy is performed. Therefore, it is necessary
to identify more specific markers to selectively eliminate ovarian CSCs. The CSC-targeting
antibody can be applied for targeted therapy of cancer via drug conjugation and combina-
tion therapy with conventional anti-cancer drugs. Moreover, the CSC-targeting antibody
may be useful for development of new technologies targeting the CSCs, including dual-
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specific antibodies and CAR-T cells. In addition to the direct targeting of CSCs, it will
be needed to interfere intercellular communication within the tumor microenvironment
to eradicate ovarian CSCs. Moreover, drugs targeting the autotaxin-LPA-LPAR signaling
cascade will be highly beneficial for therapy of cancer through abrogating self-renewal and
drug-resistant properties of CSCs. Therefore, for effective therapy of ovarian cancer pa-
tients, it will be needed to develop CSC-specific antibodies and CSC-targeting therapeutics
including chemical drugs, antibody drug conjugates, and CAR-T.
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