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Abstract

In large scale systems of embodied agents, such as robot swarms, the ability to flock is

essential in many tasks. However, the conditions necessary to artificially evolve self-orga-

nised flocking behaviours remain unknown. In this paper, we study and demonstrate how

evolutionary techniques can be used to synthesise flocking behaviours, in particular, how fit-

ness functions should be designed to evolve high-performing controllers. We start by con-

sidering Reynolds’ seminal work on flocking, the boids model, and design three components

of a fitness function that are directly based on his three local rules to enforce local separa-

tion, cohesion and alignment. Results show that embedding Reynolds’ rules in the fitness

function can lead to the successful evolution of flocking behaviours. However, only local,

fragmented flocking behaviours tend to evolve when fitness scores are based on the individ-

uals’ conformity to Reynolds’ rules. We therefore modify the components of the fitness

function so that they consider the entire group of agents simultaneously, and find that the

resulting behaviours lead to global flocking. Furthermore, the results show that alignment

need not be explicitly rewarded to successfully evolve flocking. Our study thus represents a

significant step towards the use of evolutionary techniques to synthesise collective behav-

iours for tasks in which embodied agents need to move as a single, cohesive group.

Introduction

Flocking is a collective behaviour that can be observed in numerous species, such as birds, fish

and locusts [1–3]. There are several evolutionary hypotheses for the emergence of flocking

behaviour in biological systems. These include safety from predators, which itself can be attrib-

uted to different reasons [4]: flocking can confuse predators [5], provide increased vigilance

[6, 7], and decrease the individual’s chance of being caught, since it is predominantly the ones

at the periphery that are at risk [8]. Another advantage of flocking is foraging efficiency: many

studies have shown that individuals find food faster when foraging in a group than on their
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own [4, 9–11]. Other hypotheses for flocking behaviour in animals include mating success and

energy efficiency [12–14].

Flocking became a popular subject of study in domains beyond biology after the seminal

work of Reynolds [15], in which he proposed a computational model of flocking called the

boids model. Reynolds formally defined flocking behaviour as “polarised, non-colliding, aggre-

gate motion”, and showed that three simple rules are sufficient to obtain flocking: (i) cohesion,

(ii) separation, (iii) alignment. With these rules, each individual moves towards the centre of

mass of its neighbours, while trying to avoid collisions and to align its orientation with the

average orientation of its neighbours. Flocking has since become an area of study in several

fields, such as statistical physics, control theory, and robotics [16–20].

The ability to flock and display coordinated motion is essential in many tasks for large-scale

systems of embodied agents, such as robot swarms. Robot swarms are large groups of autono-

mous collaborating robots with relatively simple hardware and decentralised control [21].

Inspired by swarm intelligence principles, the main properties of swarm robotics systems are

robustness, scalability and flexibility [22]. Control for a swarm robotics system can either be

achieved by hand-coded design methods or via automatic design methods. Evolutionary

robotics (ER) is a field dedicated to the study and development of methods based on evolution-

ary computation for automatic synthesis of autonomous robots [23].

The potential of ER to automate the design of behavioral control has been demonstrated in

a large number of studies, in which different collective behaviours have been successfully

evolved, such as aggregation, dispersion, and foraging [24–28]. However, there are only few

studies in evolutionary robotics that have been applied to achieve flocking, and it is still unclear

how high-performance flocking behaviours can be reliably synthesised by means of artificial

evolution [29].

To date, flocking in artificial embodied agents has primarily been achieved with hand-pro-

grammed control [19, 30–32]. The synthesis of such behaviours with ER could pave the way

for the evolution of other application-oriented behaviours that rely on flocking. There are

many real-world tasks, such as patrolling and environmental monitoring, where groups of

autonomous robots sometimes are required to simultaneously exhibit flocking and a task-spe-

cific behaviour. In such scenarios, it may be non-trivial to manually design behavioural control

that integrates flocking rules with the required task behaviour, and ER can thus be a valuable

alternative.

In this paper, we study how evolutionary techniques can be used to synthesise neural con-

trollers for self-organised flocking behaviours. In particular, we adapt the work of Reynolds

[15] and translate his three rules to components of the fitness function. Our goal is engineer-

ing-oriented, and this study thus represents a step toward the use of ER for collective behav-

iours in which agents can either benefit from or are required to move as a single, cohesive

group.

Related work

Zaera et al. [29] were among the first to report on attempts to evolve controllers that could

exhibit behaviours similar to flocking, schooling or herding, but they did not succeed. Zaera

et al. intended to develop neural network-based sensorimotor controllers for schooling behav-

iour in three dimensions, using realistic Newtonian kinematics, such as inertia and drag. The

authors tried to evolve behaviour based on the definitions of flocking suggested in the litera-

ture (such as Reynolds’ rules [15]), namely by rewarding individuals for moving at the same

speed or for maintaining a certain distance to their neighbours, but they only succeeded in

evolving simple group behaviours: aggregation and dispersion.
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The authors expressed difficulty in formulating an explicit fitness function that is able to

measure the degree of schooling exhibited by a group of agents, claiming that schooling behav-

iours arises from complex interactions of a number of factors, which are hard to capture in a

simple fitness function. The authors furthermore claimed that it can be more difficult to evolve

schooling than using manual design methods. It should be noted, however, that Zaera et al.

[29] neither specified the fitness functions that were tried, nor did they provide a detailed and

quantitative analysis of the obtained behaviours.

Instead of trying to explicitly encode flocking in the fitness function, Ward et al. [33] had

more success than Zaera et al. [29], claiming that the obtained results “would have been diffi-
cult, if possible at all, to foresee or even implement” with manual design methods. In their work,

predators and prey coevolved to produce flocking behaviour. The fitness function is based on

the virtual energy levels of each agent, and agents consume or gain energy by performing a

given behaviour, such as moving, eating, and mating. At the end of a generation, the individu-

als with highest energy levels are selected for reproduction. This simple and implicit fitness

function led to some interesting results, where preys learned to get close to one another, as

well as to the food, and predators learned to pursue preys. However, despite the interesting

results, it is not clear to which degree flocking was displayed, since no metrics were applied to

quantify the degree of cohesion and alignment among the preys. The authors tried to provide a

detailed and quantitative analysis of their work, but they only reported the Euclidean distance

between the agents and the food, which gives little information about the degree of cohesion

and none about alignment. In fact, the images in the paper show multiple fragmenting groups

of preys, instead of a single cohesive flock moving in a common direction.

Baldassarre et al. [27] evolved behavioural control that enabled a swarm of four simulated

Khepera robots to aggregate and move as a group toward a light source. Although the study is

not strictly focused on flocking, it is actually one of the most frequently cited papers in ER

about flocking behaviour, since flocking emerged in one of the experiments. The authors for-

mulated the fitness function with two components, a compactness component that promotes

cohesion, and a speed component that promotes movement in the direction of a light source.

From a set of 10 evolutionary runs, a variety of strategies emerged, including flocking in one

out of the 10 runs conducted. By analysing the flocking strategy, the authors observed that

evolved individuals had different behavioural roles, such as leader and followers. The authors

concluded by highlighting the potential of artificial evolution for automating the design of the

desired behaviours, which contradict the findings of Zaera [29].

In a more recent contribution, Witkowski and Ikegami [34] evolved neural networks able

to display flocking behaviour in a foraging task via signalling. As in Ward et al. [33], the

authors used an implicit fitness function that is based on a virtual energy level of each agent.

The agents spend energy when moving or emitting signals, and gain energy when eating. The

signalling between the agents promoted the flocking behaviour and helped establish temporary

leader-follower relations. Similar works can be found in [35–38], in which flocking was not

explicitly rewarded in the fitness function, but rather evolved to study a biological hypothesis,

mostly involving prey-predators scenarios. Another relevant work that should be highlighted

is [39], in which flocking behaviour was demonstrated on physical robots operating under

real-world conditions. However, while evolutionary techniques were used, they were only used

as a means to optimise specific behavioural parameter values, and not to evolve flocking from

scratch.

Overall, there are only few studies that report on attempts at evolving flocking behaviour in

evolutionary robotics, and the conditions necessary to evolve flocking behaviour for a swarm

of autonomous robots are still unclear. In particular, it remains unexplored how to design fit-

ness functions to explicitly and effectively reward flocking behaviours. In this paper, we show
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evolutionary techniques can be used to automatically synthesise robot controllers for flocking

behaviour, using a simple, explicit fitness function inspired by Reynolds’ rules.

Materials and methods

In this study, we use a circular differential drive robot model with a diameter of 10 cm. The

two wheels enable the robots to move at speeds up to 10 cm/s. Our robot model does not have

inertia and a robot can thus rapidly change its speed and orientation. Each robot is equipped

with limited onboard sensors: one alignment sensor to perceive the neighbours’ average orien-

tations, and four robot sensors to detect the neighbours’ distance, both with a range of 25 cm.

The alignment sensor computes the orientation of the robot relative to the average orienta-

tion of its neighbours within the range of the sensor. The sensor’s value is [0, 1]. If the robot

has the same orientation as its neighbours, the reading sensor has a value of 0.5. Otherwise, if

the average orientation is in ]0, π] or in ]− π, 0[, the reading sensor is between [0, 0.5[ and ]0.5,

1], respectively.

The four robot sensors provide information about the distance to the closest neighbour in

four sections around the robot. Each sensor has an opening angle of 90˚ and a range of 25 cm.

The reading of a sensor depends linearly on the distance of the closest robot within the sensor’s

field of view, according to the following equation:

R ¼ 1 �
dn

range
ð1Þ

where dn is the distance to the closest neighbour.

We use an unbounded environment. The robots are initially placed at random initial posi-

tions and with random orientations within a square. The side length in metres of the square

depends on the number of robots according to the following formula: 1

5

ffiffiffiffiffiffiffiffiffi
#robots

5

q
, which means

that the robots start relatively close to one another, but with no guarantee that every robot is

within the sensor range of its nearest neighbour. In our experiments, we used different config-

urations of swarm sizes, namely 5, 8, 11 and 16 robots, to promote the evolution of general and

scalable behaviours.

The experiments were conducted in simulation using JBotEvolver [40], a Java-based open-

source, multirobot simulation platform and neuroevolution framework. The use of open-

source software allows the experiments in this paper to be replicated and extended by other

researchers. The code, the configuration files, and the results can be found at [41].

Controller architecture and evolutionary algorithm

In evolutionary robotics, artificial neural networks (ANNs) are often used as robotic control-

lers [42]. As input, the ANN takes normalised readings from the robot’s sensors and the

ANN’s output control the robot’s actuators. In our experiments, we use a homogeneous con-

troller corresponding to a continuous time recurrent neural network (CTRNN) [43], with

three layers of neurons: a reactive input layer fully connected to a hidden layer, which, in turn,

is fully connected to an output layer. The input layer has one neuron for each sensor input and

the output layer has one neuron per actuator. Thus, our CTRNN has a total of five input neu-

rons (four robot sensors and one alignment sensor), two output neurons (one for each of the

two wheel actuators), and a hidden layer of 10 neurons.

The parameters of the neural network, such as the connection weights, are then optimised

by an evolutionary algorithm, to synthesise controllers. We use a simple generational evolu-

tionary algorithm with a population size of 100 genomes. Each genome is evaluated over 24
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samples: six samples for each of the four variations of swarm sizes (5, 8, 11 and 16 robots).

Each sample lasts 3000 simulation time steps, which is equivalent to 300 seconds. After all the

genomes have been evaluated, the individuals’ mean fitness scores are used for selection. The

five genomes with highest mean fitness score are selected to become part of the next generation

and to populate it with offspring. The genotype of an offspring is the result of applying a

Gaussian noise (mean: 0, st. dev: 1) to each gene with a probability of 10%.

The fitness function has to reward the individuals that exhibit flocking. We therefore adopt

Reynolds’ seminal work [44], since he successfully defined three simple rules that can achieve

flocking. We transform Reynolds’ three rules respectively for cohesion, separation and align-
ment to components of the fitness function as follows:

F ¼
Xtime� steps

t¼0

ðCt þ St þ AtÞ

T
þM; ð2Þ

where the first three components correspond to Reynolds’ rules: C—cohesion, S—separation,

A—alignment. Although these three components are sufficient to evolve flocking, we consid-

ered an additional and optional component for movement, M. The components, C, S, A, and

M, are detailed below.

Cohesion component (C): rewards each robot for moving to the centre of mass of their

neighbours, as in Reynolds’ rule:

C ¼
1

N

XN

i¼1

1 �
di

R

� �

ð3Þ

where N is the number of robots, di the Euclidean distance a given robot is from its i’th neigh-

bour, and R the sensor range (25 cm).

Separation component (S): penalises robots for colliding with each other, similar to Rey-

nolds’ rule of avoiding collisions with nearby flockmates.

S ¼ �
1

N

XN

i¼1

si ð4Þ

si ¼
1 if collided

0 otherwise

(

ð5Þ

where N is the number of robots.

Alignment component (A): rewards each robot for matching its orientation to the average

of their neighbours, as Reynolds suggests “steer towards the average heading of local flockmates”
[44]:

A ¼
1

N

XN

k¼1

ck ð6Þ

ck ¼
1

F

XF

a¼1

eiya
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ð7Þ

where N is the number of robots, F the number of flockmates of a individual k (including

itself), k. . .k denotes the norm of a vector and θa is the orientation of the corresponding flock-

mate a. This component first computes the average orientation of each robot with its nearby
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neighbours. Each robot obtains a reward between [0, 1], having a value of 1 when the neigh-

bourhood has a common direction, and a value of 0 when there is no alignment (or no neigh-

bours). Then, A is computed as the mean score of all individual rewards.

The above components only reward the swarm for cohesion, separation and alignment.

Thus, when conducting our initial set of experiments, flocking did emerge, but around the

robots’ initial positions (see S1 Video), since the fitness function does not reward robots for

moving farther away. Therefore, we consider an additional and optional component for move-

ment, M, that promotes the swarm to move away from the initial positions:

M ¼
d=D d � D

1 otherwise

(

ð8Þ

where D is a distance that the swarm should move from the initial location (5 m) and d the

actual distance the robots moved, on average. When d> D, M is set to a value of 1, thereby M
is defined in [0, 1]. Rather than just rewarding the robots for moving farther away, this term

could as well be adapted to enable flocking for a specific task, such as area coverage or

foraging.

In our experiments, the fitness scores are calculated offline: after all the data of the swarm is

available. Note, however, that it could be easily adapted to be implemented as an online

approach, namely by having each robot compute its fitness and then aggregate their results to

obtain the final fitness score.

Metrics

Flocking behaviour is usually defined as an aggregate and polarised motion [15], where indi-

viduals move together in a common direction. Thus, in order to evaluate the evolved behav-

iours, we used metrics that measure the alignment and cohesion of the swarm, similar to other

works in robotics [19, 20].

Order: To evaluate the degree of alignment among the individuals, we used the order met-

ric, well known both in robotics and control theory [19, 20, 45]:

c ¼
1

N
�
XN

k¼1

eiyk
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ð9Þ

where θk is the orientation of individual k. This metric averages the orientation of the N robots,

having a value of 1 when the swarm is aligned, and value of 0 when there is no common

direction.

Number of Groups: As to evaluate flock cohesion, we adapted the metric number of group
suggested by Ferrante in [20]. Ferrante defined this metric as the number of groups at the

end of the experiment. To define what constitutes a group, Ferrante used equivalences classes

{x 2 N j x* a}, with N being the set of all robots, a an element of the set, and * the neigh-

bourhood equivalence relation. More concretely, the distances between all pairs of robots are

computed, and then, with a given distance threshold (in our work: 25 cm which corresponds

to the range of the sensors), the subsets of robots that share the same neighbourhood are

found, making each different subset a new equivalence class. For instance, robot A and B are

neighbours if their distance is smaller than the defined threshold, and if B is also neighbour of

C, this results in an equivalence class constituted by robots A, B and C. In the end, the total

number of of groups is equal to the number of equivalence classes.

Swarm Cohesion: Evaluating flock cohesion just in terms of group splits can be limiting,

given that it is also important to consider the number of robots in each subgroup. When the
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swarm splits, it is preferable that only a few robots leave the main group, compared to the

main group spliting into two or more large subgroups. Considering this, we used an additional

metric that computes the proportion of robots that remain in the main group:

1 �
Nrl

N
ð10Þ

where Nrl is the number of robots that leave the main group, i.e. the group with the majority of

the robots.

Results and discussion

In each experimental setup, a total of 30 evolutionary runs were conducted, each lasting 6000

generations. For the highest-scoring controller evolved in each run, we conducted a post-eval-

uation with 400 samples, 100 for each of the four combinations of number of robots (5, 8, 11

and 16 robots). In this section, we present the results obtained, and we analyse the perfor-

mance and behaviours of the evolved solutions according to the metrics presented in Section

Metrics.

Experimental setup inspired by Reynolds’ local rules—Local setup
Fig 1(left) shows the fitness trajectories of the 30 evolutionary runs. The highest-scoring con-

troller obtained an average fitness of 2.70 ± 0.10 during post evaluation, see Fig 1(right).

Fig 2(left) summarises the performance of the highest-scoring controller in terms of align-

ment (the order metric). The results show that the evolved solution scored a mean value of

0.90 ± 0.09 during the experiment. Fig 2(centre) shows the performance of the highest-scoring

controller with respect to the number of groups metric. The evolved solution had a mean num-
ber of groups of 1.42 ± 0.31 at the end of the experiment, meaning that the swarm splits into

two groups in almost half of the samples. Fig 2(right) summarises the performance of the high-

est-scoring controller in terms of the swarm cohesion metric. The highest-scoring controller

achieved a mean value of 0.89 ± 0.02.

Examples of evolved behaviours for the four different configurations of number of robots

(5, 8, 11 and 16) can be seen in Fig 3. The examples show how the evolved behaviour often

Fig 1. Left: Fitness trajectories of the highest-scoring controllers evolved in each evolutionary run. Right: Distribution

of the post-evaluation fitness scores achieved by the highest-scoring controller of the 30 evolutionary runs conducted.

The box-plot summarises results from 400 post-evaluation samples.

https://doi.org/10.1371/journal.pone.0224376.g001
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leads to the emergence of local flocks, as the quantitative results also revealed. These results

can be explained by the fact that the fitness function only promotes local cohesion and local

alignment, since it was adapted from the local rules of Reynolds: robots learn to flock, but only

with their immediate neighbours, and not with the entire swarm.

We also experimented with different weights on the alignment component and on the

cohesion component. In a series of independent experiments, we multiplied weights of respec-

tively 0.0, 0.25, 0.5, and 0.75 on one of the two components, while the other component had

no weight multiplied, and vice versa. In all the evolved behaviours, we observed the same

result, namely that the swarm quickly fragments into smaller, local flocks.

Since the fitness function inspired by Reynolds’ local rules only scores behaviour with

respect to immediate neighbours, we decided to conduct an additional set of experiments in

which the fitness function takes into account the global behaviour (the whole swarm), rather

than only local interactions (neighbours).

Experimental setup scoring global behaviour—Global setup
In this section, we reformulate the fitness function so that it scores global behaviour, a tech-

nique that is widely applied in evolutionary robotics to favour the evolution of cooperative

behaviours [46, 47]. The new fitness function, Fg, is based on global alignment and global

Fig 2. The figure summarises results of the average from the 400 post-evaluation samples of the highest-scoring controller in terms of the

metrics presented in Section Metrics. Left: The order metric trajectory across the 3000 simulation steps. Centre: box-plot of the distribution of

the number of groups metric. Right: The swarm cohesion trajectory across the 3000 simulation steps. The shaded areas indicate the standard

deviation.

https://doi.org/10.1371/journal.pone.0224376.g002

Fig 3. Example of the behaviour displayed by the highest-performing controller, with 5, 8, 11 and 16 robots, from left to right. The lines

represent the trajectory of the robots.

https://doi.org/10.1371/journal.pone.0224376.g003
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cohesion, defined as follows:

Fg ¼
Xtime� steps

t¼0

ðCg
t þ St þ Ag

t Þ

T
þM; ð11Þ

Alignment component (Ag): scores the orientation of the swarm, promoting a common

direction between all individuals. This term is computed using the same formula of the order
metric:

Ag ¼
1

N
�
XN

k¼1

eiyk
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ð12Þ

Cohesion component (Cg): rewards the swarm for keeping together as a single group:

Cg ¼
1

NumberofGroups
ð13Þ

where the term NumberofGroups is the same as in Section Metrics. As before, the cohesion

component is defined in [0, 1].

Note, that we did not reformulate the separation component since a global version of it

would be mathematically equivalent to the local version: the fitness simply corresponds to the

total number of collisions divided by the number of robots.

For the new global experimental setup, we used the same configuration of runs, generations

and post-evaluation as in the previous setup. When referring to the two setups, we will herein-

after use Local setup to denote the setup in which the fitness function, F, is based on local appli-

cation of Reynolds’ rules (the previous section); and Global setup to denote the setup in which

the fitness function, Fg, is based on global application of Reynolds’ rules (this section).

The 30 fitness trajectories of the controllers during the 6000 generation can be seen in Fig 4

(left). The highest scoring controller achieved an average fitness of 2.87 ± 0.22 in post-evalua-

tion, as shown in the box-plot in Fig 4(right).

Evaluating the performance of the evolved solution, we can observe that the highest-scoring

controller outperformed the best one evolved in the Local setup, with respect to all metrics, see

Fig 4. Left: Fitness trajectories of the controllers in each of the 6000 generations. Right: Distribution of the post-

evaluation fitness scores achieved by the highest-scoring controller.

https://doi.org/10.1371/journal.pone.0224376.g004
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Fig 5. Regarding alignment, the results show that the evolved solution achieved aligned

motion, scoring a mean value of 0.97 ± 0.07, outperforming the 0.90 ± 0.09 of the Local setup.

In terms of group splitting, the swarm remains cohesive during the experiments, obtaining

a mean score of 1.19 ± 0.18 number of groups. In the Local setup, the swarm split into two in

approximately half of the samples, whereas in the Global setup, by scoring global cohesion, the

swarm is generally able to remain a single cohesive group.

As for the swarm cohesion metric, the highest-scoring controller achieved a mean value of

0.95 ± 0.02 during the experiment. Observing the plot in Fig 5(right) with respect to the Global
setup, we can also see an interesting steep increase in the first 300 steps (30 seconds), suggest-

ing that the group size increased. This can be explained by the fact that, in the beginning of the

experiment, robots are placed close to each other, but at random positions, which does not

ensure that every robot is seen by its nearest neighbours. To cope with this, the robots evolved

the strategy of moving in small circles around their initial positions to find their neighbours,

and they only then move away from the origin as a single flock (see Fig 6 and S2 Video). This

can also be seen in the plot of the order metric, for which the swarm also takes 300 steps to

achieve alignment, the time needed to ensure that the flock contains all robots and that all

robots are aligned before moving away from their initial positions.

Fig 5. The metric scores achieved by the highest-scoring controllers of Global setup and the Local setup. Left: the order metric. Centre: the

number of groups metric. Right: the swarm cohesion metric. The shaded areas indicate the standard deviation.

https://doi.org/10.1371/journal.pone.0224376.g005

Fig 6. Example of the behaviour displayed by the highest-performing controller evolved in the Global setup, with 5, 8, 11 and 16 robots,

from left to right. Observing the beginning of trajectory, we can see the robots evolved the strategy of making a quick turn around their initial

positions, in order to first form an aligned group before moving away.

https://doi.org/10.1371/journal.pone.0224376.g006
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We conducted an additional set of experiments with larger group sizes, namely with 4, 8,

12, 20 and 40 robots. In particular, these new evolutionary experiments were performed with

6000 generations, each evaluated over 25 samples, i.e. five samples for each of the five swarm

sizes, and each sample lasting twice as many steps, 6000 steps (600 seconds), to compensate for

the larger swarm size. Given the increased computational complexity of the larger swarm size,

we were only able to conduct three evolutionary runs. In the resulting behaviour, we also

observe that robots initially coordinate by moving around their initial location in small circles.

As can be seen on Fig 7 and S3 Video, robots spend the first part of the sample coordinating

their direction of motion before moving away from their initial positions. These are only pre-

liminary experiments, and further work is therefore necessary to study the evolution of flock-

ing behaviour for large numbers of agents, and to analyse the properties of the evolved

behaviour in large swarms. Studies involving up to 1000 hand-coded flocking agents have

been conducted [19, 30], and it would be interesting to analyse if artificially evolved flocks dis-

play behavioural correlations similar to large animal flocks [48, 49].

The results show that the evolved solutions successfully achieved flocking. By adapting the

Reynolds-inspired fitness components from local to global behaviour, the resulting solutions

display swarm-wide, synchronised and coordinated motion.

After finding that adapting the local rules of Reynolds as global components of a fitness

function can successfully lead to flocking, we then studied if the global versions of all of Rey-

nolds’ principles are necessary to embed in the fitness function to evolve flocking. We there-

fore conducted additional experiments, from which we found that the alignment component

is not required to evolve flocking, as we show in the next section.

Experimental setup without the alignment component—No Alignment
setup
In this setup, the No Alignment setup, the fitness function was formulated to no longer contain

the alignment component, hence the fitness function only rewards the robots for moving as a

cohesive group.

Fna ¼
Xtime� steps

t¼0

ðCg
t þ StÞ
T

þM; ð14Þ

The fitness trajectories of the No Alignment setup can be seen in Fig 8(left), with the same

number of runs and generations as used in the previous two setups. Fig 8(right) summarises

the post-evaluation fitness scores of the highest-scoring controller, achieving a mean fitness of

1.95 ± 0.11 (note that the fitness no longer rewards alignment, and therefore has a theoretical

maximum value of 2 instead of 3 as in the previous setups).

Fig 7. Example of the behaviour displayed in the scalability experiments, with 4, 8, 12, 20 and 40 robots, from left to right.

https://doi.org/10.1371/journal.pone.0224376.g007
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Even without the alignment being explicitly rewarded in the fitness function, the evolved

solution successfully achieve flocking, as can be observed in Fig 9, which shows a similar per-

formance to the previous setup, both in terms of cohesion and alignment.

With respect to alignment, the highest-scoring controller had a mean value of 0.96 ± 0.10,

similar to the best evolved in the Global setup with 0.97 ± 0.07. As for the number of groups
metric, the highest-scoring controller obtained a mean value of 1.10 ± 0.14, compared to

1.19 ± 0.18 in the Global setup. With respect to the swarm cohesion metric, the evolved solution

scored a mean value of 0.98 ± 0.01 during the experiment and 0.96 ± 0.12 in the final simula-

tion step, compared to the solution evolved in the Global setup that reached 0.95 ± 0.02 and

0.91 ± 0.16, respectively. An example of the behaviour displayed by the highest-performing

controller can be seen in Fig 10 and S4 Video. In the beginning of the sample, the robots circle

around their initial positions, similar to the solutions evolved in Global setup, to ensure cohe-

sion prior to moving. In addition, the flocking behaviour is more compact than in the Global
setup, which can be explained by the fact the solutions now maximise cohesion, since the fit-

ness function only scores cohesive motion.

Fig 8. Left: Fitness trajectories of the 30 controllers within 6000 generations. Right: Box-plot of the results of the 400

post-evaluation samples achieved by the highest-scoring controller of the No Alignment setup.

https://doi.org/10.1371/journal.pone.0224376.g008

Fig 9. The metric scores achieved by the highest-scoring controller of the No Alignment setup and the Global setup. Left: The order metric.

Centre: the number of groups metric. Right: the swarm cohesion metric. The shaded areas indicate the standard deviation.

https://doi.org/10.1371/journal.pone.0224376.g009
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Results show that the principle of alignment need not be explicitly rewarded to evolve flock-

ing. Even without scoring alignment, the swarm achieves aligned motion, with each robot

changing its orientation in synchrony with its neighbours. This can be explained by the fact

that, by just rewarding the swarm for moving as a cohesive group, alignment is promoted,

since collective motion is most easily achieved when motion is aligned. Indeed, when a robot

changes its orientation at the same time as its neighbours, it remains in range of the rest of the

group, resulting in a cohesive swarm.

Similar to evolving flocking without explicit scoring alignment, there are also studies of

hand-coded design that did not used explicitly the alignment rule. For a review of the combi-

nations of flocking rules and their impact, see, for instance, [20, 50].

Conclusions

Inspired by Reynolds’ flocking rules, we explored simple, explicit fitness functions to evolve

controllers that effectively demonstrate flocking behaviour. We conducted evolutionary runs

in three different setups: (i) We started by adapting Reynolds’ three local behavioural rules to

components of the fitness function, which scored separation, cohesion and alignment with

respect to each robot’s neighbours within range. Scoring local behaviour resulted in frag-

mented local flocking. (ii) In our second set of experiments, we adapted the fitness function so

that the three components considered the whole swarm, rather than only local interactions. By

scoring global behaviour, the evolved solutions successfully displayed self-organised flocking.

Our results showed that flocking can be evolved by embedding Reynolds’ local rules in a fitness

function, with the condition that the rules are applied globally. (iii) We then studied if compo-

nents based on all of Reynolds’ rules are necessary to achieve flocking. In the final setup, the

fitness function did not explicitly reward alignment, but flocking still emerged. We thus found

that flocking can be achieve without explicitly rewarding alignment.

In this paper, we have shown that controllers can be evolved to display flocking, a complex

behaviour, with a simple explicit fitness function, contrary to what was claimed in previous

work [29]. It would also be interesting to study other explicit fitness functions based on metrics

that are commonly used in flocking studies.

In this study, the robots were not subject to inertial effects beyond those stemming from

limitations on wheel speed, and they were thus able to rapidly change their speed and orienta-

tion. In previous studies, it has been shown that inertia, both on velocity [51] and on behaviour

[52] can have a significant and positive impact on flocking performance. In ongoing work, we

are studying the evolution of flocking for specific hardware platforms that are subject to signif-

icant inertia effects, such as autonomous surface vehicles [26]. We are furthermore studying

Fig 10. Example of the behaviour displayed by the highest-performing controller of the No Alignment setup, with 5, 8, 11 and 16 robots, from

left to right. The behaviour displayed is more cohesive than the one in Fig 6.

https://doi.org/10.1371/journal.pone.0224376.g010
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how to integrate flocking in the evolution of other application-oriented behaviours, such as

patrolling and environmental monitoring, that represent real-world tasks that can be under-

taken by swarms of autonomous robots.
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