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The development of language functions is of great interest to neuroscientists, as these

functions are among the fundamental capacities of human cognition. For many years,

researchers aimed at identifying cerebral correlates of language abilities. More recently,

the development of new data analysis tools has generated a shift toward the investigation

of complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very

interesting systematic review on the development of functional language networks,

explored through the use of functional magnetic resonance imaging (fMRI). Compared

to fMRI and because of their excellent temporal resolution, magnetoencephalography

(MEG) and electroencephalography (EEG) provide different and important information

on brain activity. Both therefore constitute crucial neuroimaging techniques for the

investigation of the maturation of functional language brain networks. The main objective

of this systematic review is to provide a state of knowledge on the investigation of

language-related cerebral networks in children, through the use of EEG and MEG, as

well as a detailed portrait of relevant MEG and EEG data analysis methods used in that

specific research context. To do so, we have summarized the results and systematically

compared the methodological approach of 24 peer-reviewed EEG or MEG scientific

studies that included healthy children and children with or at high risk of language

disabilities, from birth up to 18 years of age. All included studies employed functional

and effective connectivity measures, such as coherence, phase locking value, and Phase

Slope Index, and did so using different experimental paradigms (e.g., at rest or during

language-related tasks). This review will provide more insight into the use of EEG and

MEG for the study of language networks in children, contribute to the current state of

knowledge on the developmental path of functional connectivity in language networks

during childhood and adolescence, and finally allow future studies to choose the most

appropriate type of connectivity analysis.

Keywords: functional connectivity, cerebral networks, language, language development, children, EEG, MEG,

connectivity analysis
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INTRODUCTION

Language is a highly complex function that is importantly
involved in the development of human cognition and social

functions (Berwick et al., 2013). With major advances in
neuroimaging techniques, the language neural architecture has
been increasingly studied in the past 20 years. While several

brain regions have been identified as key areas for expressive and

receptive language, it is now also widely recognized that the latter
relies more on complex neural networks, requiring coordination
between distinct neuronal populations and less on independent
and specific brain areas (Ardila et al., 2015; Tremblay and Dick,
2016).

Over the past decades, functional brain connectivity
(FC) has progressively captured the interest of scientists
and clinical researchers working in the field of cognitive
neuroscience, leading to the publication of numerous articles
on the subject. On a general note, functional connectivity
is defined as the statistical relationships between cerebral
signals over time and thus potentially allows conclusions
to be made regarding the functional interactions between
two or more brain regions. Effective connectivity, on the
other hand, goes beyond the correlations between cerebral
activity and aims at specifying causal relationships through
the use of experimental paradigms or models. This allows
for an interpretation of the direction of interactions between
different cerebral regions (Friston, 2011). With the sharp
increase of studies on brain connectivity, researchers have
developed and applied increasingly sophisticated analytic
strategies that highlight functional or effective connectivity (EC)
and that allow a more advanced exploration of interactions
between regional structures and networks involved in language
development (Bastos and Schoffelen, 2016). In the past few years,
novel neuroimaging techniques and methods of analysis have
enabled the examination of functional connectivity patterns.
Namely, functional magnetic resonance imaging (fMRI) was
the neuroimaging technique used in the first published study
of brain spontaneous fluctuations, measured at rest (Biswal
et al., 1995). Functional magnetic resonance imaging is widely
used in brain connectivity studies, mostly due to its high
spatial resolution (in millimeters). However, because it relies
on the coupling between cerebral blood flow (hemodynamic
response) and the underlying neuronal activation, this technique
provides only an indirect measure of brain activity. Moreover,
even though neuronal events occur within milliseconds, the
induced blood-oxygenation changes spread out over several
seconds, thereby severely limiting fMRI’s temporal resolution
(∼2–3 s). Techniques such as electroencephalography (EEG) and
magnetoencephalography (MEG), on the other hand, provide
direct information on neuronal electrical activity and offer
higher temporal resolution (<1 millisecond). This is particularly
relevant for the study of language functions, because auditory
processing and language processing occur within a short time
interval of milliseconds (Skeide and Friederici, 2016).

So far, neuronal accounts of language system development
largely rely on EEG data (Skeide and Friederici, 2016).
Traditionally, electrophysiological data have been examined for

event-related potential (ERP), a method that reflects the brain’s
activity in response to a particular stimulus event. As of now,
several metrics can be used to estimate functional connectivity
between electrodes.

In order to perform functional connectivity analysis, MEG
and EEG (M/EEG) data are commonly transformed into the
frequency domain. Measures are thus typically classified by five
fundamental frequency bands, mostly defined by their spectral
boundaries: delta (<4Hz), theta (4–7Hz), alpha (8–12Hz), beta
(13–30Hz), and gamma (>30Hz) (Cacioppo et al., 2007), each
of which has different functional characteristics and cortical
topography (Herrmann et al., 2016). Despite the fact that the
definitions of these bands may vary between studies, and the
boundaries used in studies of early childhood may be lower
(Saby and Marshall, 2012), the interpretation arising from the
present systematic review is based on the above definition by
Cacioppo et al. (2007).

What is more, development and maturation affect the
frequency and synchronization of neural oscillations, both at rest
and during a cognitive task. Globally, analyses of resting state
networks reveal that slow-wave activity (delta and theta) tends
to decrease throughout childhood and adolescence, whereas
oscillations in higher frequency (alpha, beta, and gamma) show
an increase with age (Uhlhaas et al., 2010). Moreover, FC in
childhood is dominated by short-distance local links, which
are gradually replaced by long-distance functional connections
in adulthood, thus forming mature cerebral networks (Vértes
and Bullmore, 2015; Meng and Xiang, 2016; Oldham and
Fornito, 2018). The task-related developmental trajectory of
neural oscillations is, however, less clear and varies widely
depending on the nature of the task.

When it comes to the functional meaning of different
frequency bands, previous studies have suggested that brain
signals of each frequency band play a different role. First,
the coherence of local neuronal populations and bottom-
up processing are associated with high-frequency oscillations
(Buzsáki et al., 2013; Friederici and Singer, 2015). Slower
frequency ranges, on the other hand, are understood to represent
the cooperative activity of large-scale neuronal networks and
mediate top-down feedback information (Palva and Palva, 2018).

Regarding language processing, the use of FC in the spectral
domain is certainly important, but little is known about the
association between frequency bands and language networks.
Nevertheless, distinctions have been made regarding language
processing and frequency band using spectral power analyses.
It is argued that different stages of auditory and speech
processing, language comprehension, and active speech itself
do not rely on the same frequency bands (for an exhaustive
review see Kösem and Van Wassenhove, 2017; Meyer, 2018).
More specifically, delta range (<4Hz) has been associated with
intonational processing and syntactic comprehension (Kösem
and Van Wassenhove, 2017; Meyer, 2018). It plays a role in top-
down processing and seems to contribute to the organization
of the cortical speech system, which regulates auditory-cortical
excitability. It is further implicated in language comprehension,
more precisely in the grouping of words into syntactic phrases
(Meyer, 2018). It has been pointed out that theta (4–7Hz)
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synchronizes with syllabic rates (Giraud and Poeppel, 2012;
Meyer, 2018) and that theta coherence increases in tasks
involving verbal information retrieval and verbal working
memory (Friederici and Singer, 2015; Meyer, 2018). Alpha (8–
12Hz) oscillationsmay also play a role in verbal workingmemory
(Friederici and Singer, 2015; Meyer, 2018). Beta activity (13–
30Hz) in language processing has been associated with semantic
predictions (top-down mechanisms), as well as in syntactic and
semantic binding mechanisms. It has also been correlated with
verbal memory processes and language production (Weiss and
Mueller, 2012). Finally, the gamma band (>30Hz) has been
associated with phonological perception and assessment of the
contextual semantic fit of incoming words [bottom-up; (Meyer,
2018)]. The association of functional connectivity based on
frequency bands and the different stages of language processing
are still subject to investigation.

Several techniques have been proposed in order to measure
cerebral activity, thus allowing for the interpretation of brain
connectivity. Even though a large range of FC metrics is
available in the current literature, the present article is limited
to those brain connectivity approaches used in pediatric
electrophysiological language research. Thus, FC analysis will
not be addressed exhaustively. Only the most commonly used
metrics to quantify brain connectivity, such as coherence, phase
locking value (PLV), Phase Lag Index (PLI), correlation, Granger
causality, and Graph theory, will be briefly described in this
review. Complementary reviews on more detailed mathematical
analyses of connectivity methods can be consulted elsewhere
(e.g., Kida et al., 2015; Bastos and Schoffelen, 2016).

Connectivity analyses in M/EEG traditionally include the
examination for changes in coherence between sources or
sensors. Coherence can be defined as the covariation in amplitude
and phase between two signals and quantifies the linear
correlation between two time series, and this on the frequency
domain (Bowyer, 2016). It is assumed that the higher the
correlation, the more synchronized, and therefore integrated, the
signals are. Thus, coherence is sensitive to changes in both power
and phase relationships but cannot provide direct information on
the true relationship between the two signals (Sakkalis, 2011).

As an alternative to traditional amplitude-based indices
of coherence, metrics of phase synchronization have been
developed, such as PLV and PLI. Both PLV and PLI compute
the consistency of phase difference between two variables over a
time period. They provide a measure of the two signals’ temporal
relationship, independent of their signal amplitude (Lachaux
et al., 1999). The PLV approach evaluates the instantaneous phase
difference of signals, assuming that the connected areas generate
signals whose phases evolve together. Therefore, the phases of the
signals are considered synchronous or locked if the difference
between them is constant (Bruña et al., 2018). Similarly, PLI
estimates the asymmetry of the distribution of phase differences
between two signals, but this method is designed to reduce the
effect of volume conduction (Stam et al., 2007). The central idea
is that a consistent phase difference between two times series
(asymmetric distribution, PLI > 0), cannot result from a single
source (volume conduction). Overall, phase synchronization
metrics are better used for short-duration events such as in

event-related studies, to determine the coupling of two signals
across trials (Aydore et al., 2013; Bowyer, 2016).

Recently, directed connectivity or EC metrics have been
developed to determine the nature of the neural interactions that
enable information flux, such as Granger causality in the time
domain (Bressler and Seth, 2011) or phase slope index (PSI) in
frequency domain (Nolte et al., 2008). Based on phase differences,
PSI is a weighted average measure of phase coherency slope
between two signals, over a frequency band (Nolte et al., 2008;
Bastos and Schoffelen, 2016). Some EC measures rely on the
concept of Granger causality, whereby one time series is said
to “Granger cause” a second one if the past values of the first
improve the prediction of the second. Originally, the concept of
Granger causality was applied to time series, but this approach
has been extended to the frequency domain (Geweke, 1982),
and many multivariate measures can be derived from this model
(Sakkalis, 2011).

Similar to fMRI or other neuroimaging techniques, M/EEG
data used along with connectivity matrices can be used to
construct brain networks from FC measures of the frequency
domain (PLI, PLV, coherence), the source space domain, or the
ECmodels (Sporns et al., 2004; Stam, 2004; Bullmore and Sporns,
2009). Subsequent connectivity metrics of all paired electrodes
can then be explored between regions, using the Graph theory
approach (Stam and Van Straaten, 2012). This method represents
the brain as a collection of nodes, corresponding to recording
sites or brain regions, and the pairwise relationship between them
(edges). Taken together, nodes and edges enable the quantitative
description of the local and global topological organization of
brain networks (Van Diessen et al., 2015). It has been shown
that small-world topology is found at different frequency bands
(Stam, 2004) and can be associated with cognitive performance
and developmental changes in functional brain networks in
young children (Boersma et al., 2013).

Despite the growing number of published studies on language
brain connectivity, the establishment of functional patterns
of language networks during childhood and adolescence is
not yet fully understood. In 2015, Weiss-Croft and Baldeweg
(2015) published the first and only systematic review of studies
that used fMRI to explore the development of functional
language networks. The authors identified both progressive
(increasing) changes of FC with age, associated with cerebral
specialization, and regressive (decreasing) changes of FC with
age, associated with more automatized language processing
and lower engagement of control mechanisms (Weiss-Croft
and Baldeweg, 2015). Specifically, their review highlights
four main findings. First, brain activity in regions that
support semantic processing increased throughout development,
reflecting specialization of the brain. Second, with age, there is
an increased activation in sensory–motor regions, along with a
decreased activation in higher–order cognitive regions. Third, an
age-related decreased activation was found in regions implicated
in the default mode network (posterior cingulate cortex and
precuneus). Finally, their results demonstrate the establishment
of language lateralization by the age of 5 years. Although this
study is indeed interesting, there is currently in the literature
no systematic review that includes M/EEG studies. Because of
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the excellent temporal resolution of MEG and EEG, such a
study would greatly help to provide additional and important
information on the establishment of functional patterns of
language networks. Therefore, the main objectives of this article
are to provide a state of knowledge on the investigation of
language-related cerebral networks in children, through the use
of M/EEG, and a detailed portrait of relevant M/EEG data
analyses methods that have been used in the assessment of
language functional connectivity in children. To do so, we
conducted this systematic review on functional, and to some
extent effective, connectivity patterns of spoken language in
children, as revealed by EEG or MEG. Given the multitude of
metrics used to quantify oscillatory interactions (e.g., coherence,
phase locking, connectivity matrices, graph theory, PSI) and the
diversity of methodological designs (e.g., resting state vs. task
recording, large variety of language tasks, longitudinal vs. cross-
sectional study), the secondary objective is to synthesize and
compare variousmethod of connectivity analysis in the context of
different pediatric populations (healthy and clinical) and a wide
range of research objectives.

METHODS

Search Strategy
The literature review was conducted using five databases:
PubMed, PsycINFO, Web of Science, Scopus, and Linguistics
and Language Behavior in order to find articles published
between January 1995 and June 2018 inclusively. The key
terms used were as follows: (magnetoencephalography OR
electroencephalography OR MEG OR EEG) AND (resting
state OR functional connectivity OR synchron∗ OR network∗
OR effective connectivity OR coherence) AND (Language OR
Speech) AND (infant∗ OR infancy OR child OR children
OR youth∗ OR toddler∗ OR schoolchild∗ OR teenager∗ OR
adolescent∗ OR kid OR kids OR newborn). Additional reports
were identified by handsearching the references cited in the
retrieved articles.

Selection Criteria
This review is limited to empirical studies published in peer-
reviewed journals in English or in French. Studies that adhered
to the following inclusion criteria were considered: (1) The
study included children or adolescents (<18 years old), although
the age range may extend into adulthood; (2) functional or
EC analysis was performed based on EEG or MEG data.
We verified whether the described methods allowed actual
interpretation of functional connectivity or applied different
techniques such as intertrial synchronization, ERP timing, or
time-frequency analysis, which were sometimes referred to as
functional connectivity, but do not in fact fall in this category
(Sakkalis, 2011; Bastos and Schoffelen, 2016). (3) Studies that
investigated language networks were included if either one of
the following two conditions was met: (a) the authors used a
behavioral assessment before or after the imaging acquisition,
in order to evaluate language abilities; or (b) the authors
applied expressive or receptive language paradigms (e.g., speech
stimuli, story listening, or speech production) during MEG or

EEG recording. In order to provide an exhaustive view of the
connectivity patterns associated with language in childhood,
this systematic review includes clinical pediatric samples as
well as healthy children, as long as the methodology fit our
selection criteria. Articles about written language only (reading
or writing) without any association with verbal comprehension
or expressions have been excluded.

The lists of references of the selected articles were searched
manually for additional relevant articles. The study selection
process is summarized in Figure 1.

Data Extraction
Following the database search, duplicates were removed. For
all remaining articles, titles and abstracts were reviewed by the
first author (IG) and selected for a second revision if they met
at least one of the inclusion criteria. For the second revision,
remaining articles were reviewed independently by two authors
(IG and AH), in order to determine whether they matched the
purpose of this study. When no consensus was reached, the
consultation of a third-party expert in the domain (PV) helped
make the ultimate decision on eligibility. Figure 1 shows the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) workflow diagram for study selection. Relevant
information from each article was entered into a spreadsheet that
included: (1) sample characteristics: age, gender, IQ, language
evaluation method, sample size; (2) experimental paradigms:
resting state, event-related experiments, sleep studies; (3) brain
recording technique (EEG or MEG); (4) connectivity metrics.

The wide variability in study characteristics along these
methodological dimensions precluded a meta-analysis. Instead,
we synthesized and critically appraised findings made through
the use of functional connectivity in the study of spoken language
in children.

RESULTS

A total of 704 articles were screened in the first step. Of these,
507 were excluded on the basis of their title or abstract, either
because they were not experimental studies (e.g., review), they
were conducted with adult participants only, or they did not
conduct connectivity analysis using EEG or MEG. Following
these exclusions, 197 articles were assessed for eligibility. Of
these, 173 were excluded because they did not meet at least one
of the selection criteria.

A total of 24 articles met the selection criteria, passed
interrater revision (79% agreement), and were confirmed by the
third-party expert. All publications included in this work are
peer-reviewed studies about FC of language functions in children,
as revealed by EEG or MEG, and were published between 1999
and 2018. Detailed information was gathered about each study’s
population of interest, sample size, age of participants, design,
imaging paradigm, type of language assessment, frequency bands
considered for analyses, use of source or sensor analyses,
and, finally, approach for connectivity analysis (see Table 1

for studies including healthy children and Table 2 for those
addressing clinical populations). Each table begins with studies
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FIGURE 1 | PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram describing the paper selection process. Figure adapted

from Moher et al. (2009).

using EEG (Tables 1A, 2A) followed by those employing MEG
(Tables 1B, 2B).

Thirteen of the articles covered in this review addressed
functional connectivity and language functions in healthy
children, whereas 11 included children at risk of or suffering
from various clinical conditions. Table 3 shows the different
populations included in these studies. The most studied
pathologies were related to language impairments such as
dyslexia, language learning disorders, and stuttering (20%), as
well as autism spectrum disorder (ASD) (13%).

Figure 2 shows the distribution of the number of participants
per age group taken together for all studies, both in healthy and
clinical populations. Infancy includes the first year after birth (0–
12 months). Toddlers are children aged between 1 and 3 years;

preschoolers include the period from 3 to 5 years of age, grade-
schoolers from 5 to 12 years, and adolescents are participants
between 12 and 18 years of age. Each age group is subdivided into
the number of children included in the studies addressing various
clinical populations (green bars) and those interested in healthy
children (blue bars), including those used as controls. Most of
the healthy children studied were toddlers (n > 350), whereas
studies interested in the impact of pathological conditions mostly
included grade-schoolers (n > 150), although several studies on
clinical populations also included infants and preschoolers. No
data were available for any toddler or adolescent populations with
clinical conditions. Overall, studies included in this systematic
review total together a sample size of 728 in studies of healthy
children and 394 in studies of clinical populations.
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TABLE 1A | Descriptive data and methodological outline of articles focusing on healthy children in EEG studies.

References n (M/F) Age Design EEG/MEG paradigm Language

assessment

Frequency

band(s)

Source/

sensor

Connectivity

analysis

EEG

Asano et al., 2015 13/6 11 mo Cross-

sectional

Symbol–sound

mismatch

N/A Alpha, beta Sensor Phase locking

value

Hanlon et al., 1999 284/224 0–16.75 y Cross-

sectional

Resting N/A Theta Sensor Coherence

Kühn-Popp et al.,

2016

15/17 14; 15 and

42 mo

Longitudinal Resting Declarative pointing

and Verbal-IQ

Theta–alpha Sensor Coherence

Marshall et al., 2008 48/42 30 and 42

mo

Longitudinal Resting Reynell

Developmental

Language Scales

Theta, alpha,

beta

Sensor Coherence

Mundy et al., 2003 18/14 14–24 mo Longitudinal Resting MCDI Theta Sensor Coherence

Poblano et al., 2016 18/18 9–16 y Cross-

sectional

Resting; Lexical-tonal

discrimination

N/A Theta Sensor Pearson

correlation

Whedon et al., 2016 153/147 6–34 mo Longitudinal Resting PPVT-III2 Theta–alpha Sensor Coherence

Yang et al., 2005 23 (N/A) 6–8 y Cross-

sectional

Resting Verbal-IQ Delta, theta,

alpha, beta

Sensor Pearson

correlation

TABLE 1B | Descriptive data and methodological outline of articles focusing on healthy children in MEG studies.

References n (M/F) Age Design EEG/MEG

paradigm

Language

assessment

Frequency

band(s)

Source/

sensor

Connectivity

analysis

MEG

Doesburg et al.,

2016

31/42 4–18 y Cross-

sectional

Word generation PPVT, EVT Alpha, beta,

theta

Source Phase locking

value, phase lag

index, graph

theory

Doesburg et al.,

2012

5/5 16–19 y Cross-

sectional

Word generation N/A Gamma, theta Source Phase locking

value

Kadis et al., 2016 13/8 5–18 y Retrospective Word generation N/A All Source Phase slope

index

Kikuchi et al., 2011 36/42 32–64 mo Cross-

sectional

Story listening Expressive

Vocabulary and

Riddles (K-ABC)

Delta, theta,

alpha, beta

Sensor Coherence

Youssofzadeh et al.,

2017

13/16 4–18 y Cross-

sectional

Word generation N/A Theta, alpha,

beta, gamma

Source Phase locking

value

Studies in the first part of the table used EEG, whereas those in the second part applied MEG.

M, male; F, female; N/A, not applicable; MCDI, Mac-Arthur communicative developmental inventory; PPVT, Peabody Picture Vocabulary Test; ECT, Expressive Vocabulary Test; K-ABC,

Kaufman Assessment Battery.

Different methods of connectivity analyses were used in
these studies; they are summarized in Table 4. Some studies
combined or compared several methods for estimating cerebral
connectivity. Phase coherence analysis was the most common
method used (45%), followed by PLV (21%). The analyses were
based on all frequency bands, as specified in Tables 1, 2. The
most studied frequency band was theta, and the least studied
was gamma. Sixteen studies used sensor information, and seven
applied a source analysis. One study reported results for both
source and sensor-based analyses.

Despite the fact that the scope of these studies differed, the
aim of this review is to capture common findings concerning
language-related functional connectivity. Therefore, we first
present an overview of the results that emerged from the studies
that investigated the association between language functioning

and connectivity patterns, regardless of the task used during
the EEG or MEG recording. Second, we illustrate, separately for
healthy children and those in clinical populations FC and EC
findings, while an expressive or receptive task was performed
during the EEG and MEG recording. Finally, we display the
results that emerge from all included studies organized according
to the types of connectivity analyses used, beginning with those
using functional connectivity, followed by those using EC. Again,
the results will be indicated separately for healthy children and
children with various clinical conditions.

Overview of All Results
From the 24 articles included in the review, only nine attempted
to associate FC or EC patterns with objective measures of
language functioning. Figure 3 shows themain results from these
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TABLE 2A | Descriptive data and methodological outline of articles focusing on children with or at risk of different clinical conditions in EEG studies.

References Pathology n (M/F) Age Design EEG/MEG

paradigm

Language

assessment

Frequency

band(s)

Source/

sensor

Connectivity

analysis

EEG

Righi et al., 2014 Risk of autism 54 (N/A) 6 and 12

mo

Longitudinal Discrimination of

consonants

Subtest of Mullen

Scales of Early

Learning

Gamma Sensor Coherence

Njiokiktjien et al.,

2001

Nonverbal

learning

disorder/

Language

disorder1

12/6 12/6 6–11 y Cross-sectional Resting N/A All Sensor Coherence

Zare et al., 2016 Risk of language

disorder1
17/7 6 mo Cross-sectional Resting N/A Delta, theta,

alpha1, alpha2

Sensor Connectivity matrix,

graph theory

Kabdebon et al.,

2015

Prematurity/

healthy

18/12 10/5 8 mo Cross-sectional Syllabic learning N/A Alpha, beta Sensor Coherence

Vasil’yeva and

Shmalei, 2013

Stammering/

healthy

47/0 59/0 3–5 y Cross-sectional Resting N/A All Sensor Coherence

Williams et al., 2012 Congenital heart

disease

14/2 0–18 mo Longitudinal Resting Bayley Scales of

Infant Development

Beta Sensor Coherence

TABLE 2B | Descriptive data and methodological outline of articles focusing on children with or at risk of different clinical conditions in MEG studies.

References Pathology n (M/F) Age Design EEG/MEG

paradigm

Language

assessment

Frequency

band(s)

Source/

sensor

Connectivity

analysis

MEG

Kovelman et al.,

2015

Autism/healthy 10 (N/A)

9 (N/A)

8–12 y Cross-sectional Discrimination

of native and

foreign language

N/A All Source Coherence

Mamashli et al.,

2017

Autism/healthy 29/0 17/0 9–15 y Cross-sectional Tonal

discrimination

Social

communication

questionnaire

All Source Coherence

Molinaro et al., 2016 Dyslexia/healthy 9/11 10/10 8–14 y Cross-sectional Sentence

listening

Verbal fluency, rapid

automatized

naming,

pseudoword

repetition, and

phonemic deletion

Delta, theta Sensor,

Source

Coherence, partial

direct coherence

based on Granger

causality

Lizarazu et al., 2015 Language

disordera/healthy

6/4 5/5 8–14 y Cross-sectional Listening of

sounds

Reading of word

and pseudoword

lists, pseudoword

repetition, and

phonemic deletion

Delta, theta,

beta, and

gamma

Source Phase locking value

Barnes-Davis et al.,

2018

Extreme

prematurity/term

born

9/6 7/8 4–6 y Cross-sectional Story listening PPVT, Expressive

Vocabulary Test

Beta Sensor Phase slope and

phase lag index

Studies in the first part of the table used EEG, whereas those in the second part applied MEG.
aLanguage-based learning disorders (e.g., dyslexia, dysphasia).

M, male; F, female; N/A, not applicable; PPVT, Peabody Picture Vocabulary Test.

nine studies, for healthy subjects (eight studies) and for a clinical
population (one study). Results are presented for each frequency
band and organized according to age.

Only one study (Williams et al., 2012) investigated the
relationship between FC networks and language abilities in a
clinical population, that is, children with congenital heart disease
(CHD), who are known to be at high risk of language delay
(Hövels-Gürich et al., 2008; Hövels-Gürich and Mccusker, 2016;
Fourdain et al., 2019). The authors did not find any significant

association between FC during the neonatal period and their later
language abilities as measured at 18 months of age. Additionally,
Marshall et al. (2008) found no significant correlation between FC
patterns and language performance in preschoolers under foster
care. However, seven studies found a significant relationship
between FC in the theta band and language performance. Positive
correlations between FC and language score were also found in
higher frequency bands: alpha (Yang et al., 2005; Doesburg et al.,
2016) and beta (Yang et al., 2005; Doesburg et al., 2016). It should
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be noted that no study investigated the relationship between
language skills and FC patterns in the gamma band.

In addition to articles that included a behavioral assessment
of language functions, performed before or after an EEG or
MEG recording, this systematic review also considers studies
that included an expressive or receptive language paradigm (e.g.,
speech stimuli or speech production) during an MEG or EEG
recording. The FC or EC patterns that arose from language
paradigms are summarized in Figure 4 (for healthy children) and
Figure 5 (for clinical populations).

In healthy children, the use of an expressive language
paradigm (usually a verb generation task) was favored in four
studies, whereas three studies used a receptive language task
in order to examine the connectivity patterns that underlie
language processing. These types of research paradigms
have been performed mostly in research pertaining to
grade-schoolers and adolescents, and the results are spread
across all frequency bands.

TABLE 3 | Overall composition of samples included in all studies.

Study population % (n)

Healthy 54 (13)

Autism spectrum disorder 13 (3)

Prematurity 9 (2)

Dyslexia 8 (2)

Language learning disorders 8 (2)

Stuttering 4 (1)

Congenital heart disease 4 (1)

In clinical populations, language tasks were mainly used to
compare FC patterns between vulnerable children and healthy
children. Here, only receptive language paradigms were used
during M/EEG recording. Differences in FC between healthy and
clinical subjects occur predominantly in the higher frequency
bands (beta and gamma). Again, more details on the results
of these studies are provided in section Results Derived From
Connectivity Metrics.

Finally, it should be noted that two studies (Njiokiktjien
et al., 2001; Vasil’yeva and Shmalei, 2013) done in resting-
state FC in clinical populations were not presented in any of
these figures. One of these studies looked at FC in children
who received a diagnosis of language-based learning disorder
(LLD), compared to children with non-verbal learning disorders

TABLE 4 | Overview of all approaches applied to analyze functional or effective

connectivity in included studies.

Connectivity analysis % (n)*

Coherence 45 (13)

Phase locking value 21 (6)

Pearson correlation 7 (2)

Graph theory 7 (2)

Phase slope index 7 (2)

Phase lag index 7 (2)

Connectivity matrices 3 (1)

Granger causality 3 (1)

*Some studies applied multiple analyses; hence the total n outranges the number of

studies included in this review.

FIGURE 2 | Number of participants per age group of all included studies (n = 24). Blue bars represent number of participants included in the articles addressing

healthy children; green bars stand for the number of participants included in studies investigating clinical populations (including control groups) such as autism

spectrum disorder, dyslexia, language-learning impairment, or prematurity (Table 3).
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FIGURE 3 | Summary of studies investigating the association between language abilities, assessed with standardized tools, and cerebral language networks. Results

are presented for each frequency band and organized regarding ages. Studies in healthy subjects (n = 8) and a clinical population (n = 1) are included. Upper arrows

(↑) indicate a positive correlation with either receptive (simple solid line), expressive (dashed lines 1), or global language functioning (solid double lines), whereas

downward arrow (↓) indicates negative correlation with language. Hatched areas represent non-significant correlations with language abilities.

(Njiokiktjien et al., 2001). The other looked at the FC patterns
in children who stutter (Vasil’yeva and Shmalei, 2013). These
studies did not use a language paradigm during EEG recording
and therefore do not directly correlate connectivity patterns with
behavioral language measures. The results of these two studies
will nonetheless be discussed in section Results From Coherence
in Clinical Population.

Results Derived From Connectivity Metrics
Results From Correlation and Coherence Analyses
The correlation coefficient and its analog in the frequency
domain, coherence, are the classic measures of interdependence
between two signals (Sakkalis, 2011; Van Mierlo et al., 2014;
Hassan and Wendling, 2018). Based on the amplitudes of the
signals, the cross-correlation coefficient is a measure of the linear
correlation between two time series and was utilized in one
study using a tonal discrimination task (Poblano et al., 2016).
Coherence, on the other hand, detects the linear relation between
two electrophysiological signals at any particular frequency (Van
Mierlo et al., 2014; Bowyer, 2016). It is mainly used at rest and

appears to be the most popular metric for M/EEG evaluation of
functional language networks in children (n = 13). One other
study used coherence and Granger causality and will therefore
be discussed in the section on EC.

Results from correlation in healthy children
In a study on adolescents (9–16 years old, Poblano et al.,
2016), correlation analyses were performed between several
recording sites of the brain and were acquired during a
lexical-tonal discrimination task of bisyllabic words in the
Zapotec language (a tonal language, spoken by the participants).
Results showed significant increases of interhemispheric and
intrahemispheric correlations of the theta-relative power during
a word discrimination task, predominantly between left frontal
and right temporal sites.

Results from coherence in healthy children
In healthy infants, few studies (n= 6) investigated the association
between measures of coherence and later language abilities of
preschoolers (Mundy et al., 2003; Marshall et al., 2008; Kikuchi

Frontiers in Human Neuroscience | www.frontiersin.org 9 March 2020 | Volume 14 | Article 62

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Gaudet et al. M/EEG Functional Connectivity of Language

FIGURE 4 | Overview of task-related connectivity patterns in healthy subjects. Results are organized regarding frequency bands and age groups investigated.

Upwards arrows (↑) indicate an increased connectivity during receptive (simple solid line) or expressive (dashed lines) language task, whereas downwards arrows (↓)

indicate decreased connectivity.

et al., 2011; Kühn-Popp et al., 2016; Whedon et al., 2016) and
grade-schoolers (Yang et al., 2005). Specifically, between 5 and 10
months of age, an increase in resting-state EEG coherence in the
theta–alpha band (6–9Hz) within left frontal regions seems to be
associated with higher cognitive functioning, including receptive
language at 3 years of age (Whedon et al., 2016). This association,
however, might not be specific to language functions because the
authors reported a mediating influence of the level of attentional
control at the age of 2 years. Another study showed that, in the
theta band (4–6Hz), a pattern of less proximal (left-frontal to left-
central) but more distal (left-frontal to left-occipital) resting state
FC at 14 months old is negatively associated with the number of
words expressed at the age of 2 years, as reported by the parents
(lower vocabulary group; determined by the median split of the
MacArthur Communicative Developmental Inventory (MCDI)
results; Mundy et al., 2003). The same group also showed that at
18months of age a ratio of higher proximal synchrony in the right
hemisphere (right-frontal to right-central) is positively associated

with vocabulary outcome (MCDI; total words) at 2 years old
(Mundy et al., 2003).

At 14 months of age, a theta–alpha band (6–9Hz), FC
pattern of more proximal and less distal coherence appears
to be specifically and positively associated with later language
functioning, regardless of the child’s IQ (Kühn-Popp et al.,
2016). Accordingly, those results indicate that maturation of
EEG coherence in the left hemisphere, established by the
ratio of short-distance/long-distance connections, is positively
correlated with preverbal communicative abilities at 15 months
of age (e.g., pointing at objects) and with verbal communication
skills at 48 months of age (epistemic language; Kühn-Popp
et al., 2016). Congruently, left short-distance (parietotemporal)
connectivity dominance in the theta band of preschoolers (32–
64 months of age) during story listening shows exclusive positive
correlation with language performance (no correlation with
nonverbal cognitive performance or with chronological age),
as assessed by the Kaufman Assessment Battery for Children
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FIGURE 5 | Overview of task-related connectivity patterns in clinical populations compared to healthy subjects. Upper arrows (↑) indicate an increased connectivity

during either receptive (simple solid line) or expressive (dashed lines) language task in this clinical population compared to healthy children, whereas downward arrow

(↓) indicates decrease FC correlation in this clinical population compared to healthy children.

at the same age (Expressive Vocabulary and Riddles subtests;
Kikuchi et al., 2011).

In older children (6–8 years old), participants with high
language functioning (verbal IQ >110, as assessed by the
Wechsler Intelligence Scale for Children III) had an increased
chance of higher correlations between homologous hemispheric
regions (homologous interhemispheric correlations), compared
to those who were classified as having a low verbal functioning
(verbal IQ <90; Yang et al., 2005). This was apparent in
several regions (frontal, parietal) and mostly in the theta and
alpha bands. In contrast, higher connectivity in interhemispheric
central regions (delta and beta) was associated with lower
language abilities.

However, one study reported non-significant correlations
between coherence indices and language functioning. Marshall
et al. (2008) highlighted environmental impacts on cerebral
connectivity in young children, even though no significant
correlation with language or cognitive functioning was found.
They reported that EEG patterns in 42-month-old children
placed in foster care before the age of 24 months differed from
those of children placed in institutional care, the former showing
lower short-distance connectivity. Specifically, in the foster-care

group, intrahemispheric connections between frontal-central
and frontal-temporal regions were characterized by lower
connectivity in theta–alpha (6–10Hz) and alpha–beta (11–18Hz)
bands. The authors did not link this difference to language
abilities (no significant results) but instead to environmental
conditions (foster care vs. institutional care).

Finally, an extensive longitudinal study including 508
children between 2 months and 16.5 years of age investigated
developmental differences between sexes, using EEG coherence
(Hanlon et al., 1999). However, no behavioral data were used
to associate coherence patterns with language functioning.
Results illustrated a sex difference in development, whereby
girls presented earlier development of comprehensive language
networks in theta neural networks than boys. Results also
suggested that girls have more complex interconnection patterns
between paired sites, particularly in those involving the
temporal lobes.

Results from coherence in clinical population
Coherence for FC analyses was also used in several studies
that included children with or at risk of neurodevelopmental
conditions and therefore known to have vulnerable language
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functions. More specifically, included in this section are those
studies using coherence as FC analyses and that focused on
children with ASD, CHD, language learning impairment (LLI),
stuttering, and dyslexia.

Children with CHD are known to be at higher risk of speech
and language delays (Hövels-Gürich et al., 2008; Hövels-Gürich
and Mccusker, 2016; Fourdain et al., 2019) It is in this context
that Williams et al. (2012) investigated the predictive value
of neonatal EEG frequency power analysis for later language
development in children with CHD. Results revealed predictive
value of the delta-relative power for language skills at 18 months
of age, as assessed by the Bayley Scales of Infant Development
(BSID). However, association between language functioning and
coherence measures did not achieve significant results, despite
the high correlation between BSID cognitive scores and beta’s
interhemispheric (left frontal polar to right frontal polar) and
intrahemispheric (left frontal polar to left occipital) coherence.
According to the authors, this may have been due to the small
sample size (n= 13 participants).

Autism spectrum disorder is a neurodevelopmental
disorder commonly associated with verbal and communicative
dysfunctions (Mcdaniel et al., 2018). In three studies identified
in this review, alteration of language task-related coherence was
associated with ASD (Righi et al., 2014; Kovelman et al., 2015;
Mamashli et al., 2017). However, no direct association was made
with language functioning.

One publication aimed to identify an early
electrophysiological biomarker for later ASD diagnosis (Righi
et al., 2014). Electroencephalography recordings were performed
for 6-month-old infants at high risk (HR, meaning siblings of
children that were already diagnosed with ASD) and low-risk
(LR) for ASD, done while listening to speech sounds. A higher
right than left hemispheric coherence in the gamma band was
observed in all children, with no difference between groups (HR
vs. LR). At 12 months of age, analyses in LR and HR groups
revealed no remaining hemispheric lateralization differences.
Interestingly, HR infants showed significantly reduced task-
related FC between frontal and parietal regions, compared to
LR infants. Although these results must be replicated using
a larger sample, this association seems to identify a potential
12-month predictive marker for clinical outcomes (Righi et al.,
2014). These results also point out that genetic vulnerability for
autism, that is, having a full sibling diagnosed with ASD, can
potentially be assessed in the first year of life, based on differences
in neural integration.

The two other published studies that used coherence involved
older children with confirmed ASD diagnosis. Important
differences were identified in FC patterns between healthy
children and those diagnosed with ASD. Results of a preliminary
study by Kovelman et al. (2015) indicated differences in cerebral
coherence between ASD and control groups (8–12 years old)
during a language task. In particular, EEG coherence measures
during familiarization with a new language, including statistical
learning for discrimination between adjacent syllables, were
higher in children with ASD and had predictive value for ASD
diagnosis. Coherence measures during the familiarization phase
showed improved identification of ASD diagnosis, compared to

coherence measure at rest, thus suggesting that language learning
abilities are different in children with ASD, compared to typically
developing (TD) peers.

Finally, Mamashli et al. (2017) used an MEG tonal mismatch
paradigm in children (9–15 years old) with ASD. The MEG
recording revealed an increase in frontotemporal coherence in
the ASD group relative to the TD group, in response to both
standard and deviant stimuli. This manifested in the gamma
band for the left hemisphere and in the alpha and beta bands
for the right hemisphere. When coherence was normalized with
respect to the standard condition, the differences between groups
were no longer significant. However, when the same stimuli were
presented against a noisy background, the normalized coherence
remained greater in ASD group, and this for the beta band
in the left frontotemporal regions (not illustrated in Figure 5).
According to the authors, thismay suggest that, for ASD children,
reduced speech comprehension in noisy surroundings is due
to a lower involvement of frontal control mechanisms. These
results imply that auditory processing, when done against a noisy
background, results in altered functional networks in this group
of patients.

Overall, studies in children with ASD demonstrated several
distinct characteristics of functional neuronal networks
associated with auditory and language processing, which are in
line with typical difficulties in language functions associated with
ASD. Knowing the characteristics of cerebral networks could
potentially allow an early identification of children at higher risk
of developing ASD.

Two studies involved participants with oral language
disabilities, such as language disorder or childhood-onset
fluency disorder (stuttering). Vasil’yeva and Shmalei (2013)
were interested in brain coherence of male preschoolers (3–5-
year-old boys) with neurosis-like stammering. These children
showed generally stronger global coherence in delta and beta
oscillations than did healthy children. Compared to healthy
controls, theta band synchrony in interhemispheric frontal
regions was also increased for the stammering group, although
a smaller number of connections was observed in children who
stutter than in healthy children. Finally, in all frequency bands,
interhemispheric coherence was higher in preschoolers with
neurosis-like stammering than in the control group. These results
suggest that, in children with this kind of speech disturbance, the
specialization of functions of the left and right hemispheres, as
well as the interhemispheric asymmetry, is less expressed.

Finally, for children (6–11 years old) with non-verbal learning
disorders, Njiokiktjien et al. (2001) reported a right lateralized
decrease of intrahemispheric coherence, in contrast with children
with LLI, who showed reversed lateralization. This difference
was higher in the gamma band. Again, these M/EEG FC results
suggest that hemispheric functional brain alterations are related
to specific language development disorders.

Results From Phase Synchronization
Instead of investigating the relation between the amplitudes
of the signals, one could also evaluate how the phases
of the considered signals are coupled, the so-called
phase synchronization measures. Among the many phase
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synchronization measures proposed in the literature, one of
the most used is the PLV, which evaluates the phase difference
between two signals (Lachaux et al., 1999). When two brain
areas are functionally connected, the phases of their signals are
assumed to evolve together; therefore, the difference in their
phases should be constant (Bruña et al., 2018).

Results from phase synchronization in healthy children
Three studies combined phase synchronization metrics: two with
an FC matrix (Doesburg et al., 2012; Youssofzadeh et al., 2017)
and one with ECmetrics (Barnes-Davis et al., 2018). Results from
these three will be included in the sections on graph theoretical
approaches and EC, respectively.

Two other studies drew on phase synchronization metrics
(PLV) in healthy children: one in amismatch paradigm (receptive
task) and the other in an expressive language task.

At around 1 year of age, results during an audiovisual
paradigm revealed an increased large-scale communication
between brain regions in the mismatch condition (a heard sound
does not match the previously presented symbol), compared to
the match condition (sound and symbol match; Asano et al.,
2015). This occurred in the alpha–beta band (12–15Hz) and was
more prominent in the left hemisphere. According to the authors,
this indicates that audiovisual integration requires a greater effort
in the mismatch condition (Asano et al., 2015).

In adolescents (17 years old), an expressive language
task (verb generation) resulted in an increased gamma-
band synchronization among task-activated cortical regions
(Doesburg et al., 2012). Moreover, there was a theta modulation
of interregional gamma synchrony between several pairs of
activated brain regions, mostly in the left frontal cortex. This
reflects the involvement of gamma-band synchronization
in language production and the role of low-frequency
rhythms (theta), which modulate high-frequency connectivity
in adolescents.

Results from phase synchronization in clinical population
One study used phase synchronization metrics (PLV) in task-
related paradigms, in a vulnerable population, namely, children
born prematurely. In fact, several studies report impairments of
cognitive and behavioral functions, including language abilities,
related to premature birth (weeks of gestation ≤37; e.g.,
Aarnoudse-Moens et al., 2009; de Kieviet et al., 2012). In our
sample, one study used PLV for FC analyses in prematurely
born children (27–30 weeks of gestation). Kabdebon et al. (2015)
compared spatial synchrony and phase coincidence of EEG
oscillations during syllabic learning in 8-month-old preterm-
born and term-born children (corrected age for preterm-born).
They did not find any differences between groups, suggesting
similar language processing at 8 months of age. In both groups,
an increase in the PLV was observed first in the beta band
(13–18Hz; during the first syllable) and later in alpha (8–
12Hz; after the word) over the left and right temporal areas
(Kabdebon et al., 2015).

Using auditory stimuli in children (8–14 years old) and adults
with dyslexia, another study found that, compared to a control
group, dyslexic participants presented stronger synchronization

and an absence of right hemispheric neural synchronization,
related to low frequency (4Hz; Lizarazu et al., 2015). On the other
hand, for high frequencies (30Hz), adults but mainly children
with dyslexia show a rightward, instead of bilateral hemispheric
lateralization. According to the authors, this may suggest that
speech processing in dyslexic children relies more heavily on
syllabic-rate information, compared to skilled reader peers.

Results From Network Analysis
Graph theory analysis looks at the brain as a complex network
consisting of a collection of nodes connected by edges, in order
to comprehend the topological organization of brain networks
(Tahmasian et al., 2015).

Results from network analysis in healthy children
Two studies applied graph theoretical analysis into MEG results
to investigate the organization of expressive language networks,
from preschool age to adolescence (4–18 years old). Even though
both used a verb generation task during MEG, and derived
networks from phase synchronization metrics, their conclusions
were not identical.

In the first of the two, results from a verb generation task
revealed a developmental shift of the beta band lateralization
in language production when children (4–6 years old) were
compared to adolescents (16–18 years old): hubs were most
lateralized in adolescents, whereas younger children showed a
more bilateral distribution, or even a right-hemispheric pattern
(Youssofzadeh et al., 2017).

The second study showed that connectivity within language-
related areas (left angular gyrus, left precentral gyrus, right
inferior orbital gyrus, and right rolandic operculum) increased
with age (Doesburg et al., 2016). This was true for language
production in the theta band. Increased FC during an
expressive language task was also observed in higher frequency
bands (alpha and beta). However, this increase was primarily
found in brain areas associated with visual processing and
thus might rather be associated with processing of the
stimulus than to language-related task demands. Developmental
analysis suggested significant differences between age groups:
larger connectivity networks in adolescents (14–18 years old),
compared to younger children (4–9 years old), and a stronger
task-dependent increase of connectivity (expressed as theta
coherence) in language-related areas, especially in frontal
regions. Finally, theta-band connectivity measures showed a
significant association with verbal language functioning (assessed
with the Peabody Picture Vocabulary Test and the Expressive
Vocabulary Test). Thus, the strength of task-dependent network
connectivity was associated not only with a maturational pattern
but also with language abilities (Doesburg et al., 2016).

Results from graph theoretical analysis in clinical population
Zare et al. (2016) developed a machine learning approach based
on EEG network characteristics (efficiency and leaf number) in 6-
month-old infants. They aimed at determining, based on family
history, the risk of LLDs. Relying on functional connectivity
measures, this work allowed for the accurate stratification of
the children into low-risk (LR) and high-risk (HR) groups
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for LLD. Early brain networks revealed a reduced cortical
communication capacity in HR infants, showing a network that
was both decentralized (as revealed by the clustering index in
the delta and alpha) and less efficient (as revealed by a decreased
efficiency in the delta, theta, and alpha). Based on complex EEG
patterns with support vector machine, it was possible to classify
the children into HR and LR groups with approximately 80%
accuracy (specificity of 89% and sensitivity of 92%).

Directionality of Language Networks (Effective

Connectivity)
Effective connectivity reveals the directionality of information
flow in particular brain regions and the causal and dynamic
influences of one region on another (Stephan and Friston, 2010;
Friston, 2011). Two methods of EC were used in the studies
selected for review: partial directed coherence, a frequency-
domain representation of the concept of Granger causality
(Baccalá and Sameshima, 2001) and the PSI, a method based
on phase differences in signals over a specified frequency range
(Nolte et al., 2008).

Effective connectivity in healthy children
Only one study used EC metrics to study language networks in
healthy children during an expressive language task. Kadis et al.
(2016) reported an increased number of effective connections
(PSI) with age, between 5 and 18 years. More importantly,
different task-related EC patterns seemed to emerge among
frequency bands. Analysis of lower frequency bands revealed
more local, rostrally directed connectivity patterns in the left
frontal region. At higher frequencies, EC increasingly involved
distal and interhemispheric nodes. In alpha and gamma,
bidirectional information transfer was observed between left
and right frontal and posterior temporal nodes, whereas in the
gamma band, the right posterior temporal region emerged as an
important driver ofWernicke (left posterior temporal) and Broca
(left frontal) regions.

Effective connectivity in clinical population
Phase slope index was also used to compare EC (PSI) and FC
patterns (PLI) between extremely prematurely born children
(EPT; <28 weeks of gestation) and their term-born (TB) peers
[37–42 weeks of gestation; (Barnes-Davis et al., 2018)]. At
preschool age (4–6 years old), bilateral functional networks,
including temporal and parietal regions, were revealed in
both EPT and TB children during a receptive language task.
On the other hand, the beta band indicated increased FC
in language networks, as well as a more diffused network
in EPT children, compared to TB. Moreover, analysis of
EC suggested more bidirectional connections in EPT within
bitemporal areas of the network, compared to TB, where
fewer bidirectional networks or more unidirectional networks
were identified. Effective connectivity analysis also revealed
that hyperconnectivity patterns in EPT were attributable to
a greater information flux drive from the right hemisphere.
Nevertheless, because those differences in connectivity patterns
were not correlated with language performance, it was reported
to be an effect of the clinical condition only (i.e., prematurity).

Consequently, the authors assumed that their findings indicated
an efficient reorganization of cerebral language networks,
allowing the maintenance of language abilities in EPT children
(Barnes-Davis et al., 2018).

Neuronal response while listening to low-frequency speech
(<10Hz), in grade-schoolers (8–14 years old) with dyslexia, was
overall less synchronized, compared to normal readers (Molinaro
et al., 2016). More specifically, during language stimulation
(meaningful sentences), reduced delta synchronization and
impaired feed forward functional coupling (partial directed
coherence) were found between the right auditory cortex and the
left inferior frontal gyrus.

DISCUSSION

We systematically reviewed 24 studies that assessed M/EEG
functional networks associated with language in children.
The great variability in study populations, sample size, and
methodology precluded us from conducting a meta-analysis.
Instead, we synthesized and critically appraised findings on
the use of functional or EC in the study of spoken language
in children.

Summary of the Main Observations
In order to characterize functional networks involved in language
development, first considered were results reported in 13 articles
on the study of TD children, and which used FC and EC
analyses. The findings of most of the reviewed studies suggested
that theta neural oscillations play a crucial role in healthy
language development. In the theta band, a greater left resting-
state coherence in early childhood seems to be associated with
higher language functioning, either at the time of M/EEG
recording (Kikuchi et al., 2011) or at a later age (Mundy et al.,
2003; Kühn-Popp et al., 2016; Whedon et al., 2016). In older
children (grade-schoolers to adolescents), associations between
connectivity patterns and language abilities are not found only in
theta, but in most frequency bands (delta, theta, alpha, and beta).
The differences in frequency bands in relation to agemight reflect
typical brain maturation. Indeed, cerebral maturation in children
has been associated with a global decrease of slow-wave activity,
including theta oscillations, and an increase in higher frequencies
(Uhlhaas et al., 2010). Thus, even though theta-band connectivity
shows significant correlation with language abilities at all ages
(Figure 3), it is critical to look at all different frequency bands,
especially in older children (grade-schoolers and adolescents).

Further, theta frequency band has been related to syllabic
processing (Giraud and Poeppel, 2012; Meyer, 2018), and
increases in theta activation have been found for tasks that
include verbal working memory (Friederici and Singer, 2015;
Meyer, 2018). Syllabic processing of human language constitutes
one of the fundamental stages of bottom-up language processing,
and there is evidence that it is established in utero, before
term age (Mahmoudzadeh et al., 2013; Skeide and Friederici,
2016). The predictive value of theta coherence for early
language comprehension in infants may thus be explained by
the fundamental role of syllabic processing in later language
acquisition. Given the assumed relation between theta band
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coherence and working memory, studies addressing language
networks should also apply language paradigms that allow for
the differentiation between higher-order cognitive functions and
different stages of language processing.

The investigation of FC or EC networks using a language
task during M/EEG recording reveals results distributed across
all frequency bands. The involvement of the various frequency
bands probably varies based on the nature of the task (e.g.,
active lexical discrimination vs. passive oddball paradigm), the
language modality (expressive vs. receptive), and the level of
language processing (e.g., syllabic vs. semantic). That being
said, results from EC patterns in expressive language paradigm
vary considerably depending on the frequency bands (Kadis
et al., 2016). An age-related increase is shown in left effective
connections, whereas higher frequencies reveal more bilateral
effective connections with increasing age (Kadis et al., 2016).

For healthy children, the majority of studies using task-
dependent connectivity analysis reveal increased left FC during
receptive (Kikuchi et al., 2011; Asano et al., 2015) and
expressive (Doesburg et al., 2012, 2016; Youssofzadeh et al.,
2017) language paradigms. This occurs as early as 11 months of
age (Asano et al., 2015) and appears to be constant throughout
development. Interestingly, when it comes to examining the
pattern of task-related FC in populations at risk of language
disorders, in comparison with neurotypical children, differences
are prominently characterized by a tendency for greater FC in
the right hemisphere (Righi et al., 2014; Lizarazu et al., 2015;
Mamashli et al., 2017).

Results from studies targeting clinical populations, mainly
children at high risk of or suffering from language disabilities,
also contribute to the understanding of the interactions between
language abilities and the brain regions associated with language
acquisition. In this review, we included 11 studies that addressed
FC and EC patterns of language networks in different clinical
populations. In children with speech disturbances (language
learning disorders or stuttering), the functional specialization
in the left and right hemispheres and the interhemispheric
asymmetry typically seen in language networks seem altered (less
hemispheric asymmetry observed). However, in populations at
risk of language disabilities, such as ASD, preterm children, and
infants with CHD, there are no clear or replicable FC profiles
associated with language functioning that arise from the current
literature. Although differences are observable between clinical
and control groups, they seem to be more attributed to the
signature of the underlying clinical condition, rather than to
language functioning itself. More studies are needed to better
understand the brain substrates of language alterations and
vulnerabilities in these populations.

These results are consistent with the conclusion from Weiss-
Croft and Baldeweg (2015), who found that left language
lateralization was well established by the age of 5 years.
However, our results suggest that, before the first birthday, left
lateralization is already apparent when a receptive language
paradigm is performed (Asano et al., 2015). Moreover, a greater
left connectivity before 5 years of age has been correlated with
better language abilities (Mundy et al., 2003; Kikuchi et al.,
2011; Kühn-Popp et al., 2016; Whedon et al., 2016). Thus,
M/EEG research points toward an earlier implementation of left

lateralization in language networks than was concluded from
studies done with fMRI. This is probably due to the suitability
of electrophysiological techniques for studying young children.
Furthermore, the impaired left lateralization in populations at
risk of language impairments attests to the importance of the
early development of left functional networks (Righi et al.,
2014; Barnes-Davis et al., 2018) and its maintenance in later
development (Lizarazu et al., 2015; Mamashli et al., 2017).

The developmental trajectory of FC of language networks
evolves significantly with age, with the presence of greater
connectivity networks in adolescents, compared to younger
children (Doesburg et al., 2016; Kadis et al., 2016; Poblano
et al., 2016; Youssofzadeh et al., 2017), but also more local
and less bilateral networks as age increases (Kikuchi et al.,
2011; Doesburg et al., 2016; Kadis et al., 2016). In line
with findings of fMRI studies, strong local networks may
actually reflect both processes related to cerebral specialization
and automatized language processing, which require less top-
down regulation and thus involves fewer network interactions
(Weiss-Croft and Baldeweg, 2015).

Nonetheless, the exact timeline of maturational processes in
language networks is not yet fully understood. This may be
due in part to the great intervariability of typical development.
Also, many studies included only a limited age range or did
not have sufficient participants per age group to permit reliable
conclusions regarding developmental changes. The importance
of accounting for age-related changes has previously been
emphasized in fMRI studies, in order to correctly interpret
associations between network characteristics and language
capacities (e.g., Weiss-Croft and Baldeweg, 2015; Rimmele et al.,
2018). On the other hand, the methodological heterogeneity
(e.g., language paradigms, cognitive assessments, connectivity
algorithms) between developmental studies on brain correlates
of language processing do not allow the drawing of a clear
maturational timeline.

Finally, one should consider that sex differences may impact
the development of FC patterns, as stated by Hanlon et al.
(1999). In fact, the importance of integrating sex analysis in
research is now well-established (Tannenbaum et al., 2019), and
the sex differences of brain development have been documented
(Gur and Gur, 2016, 2017; Kaczkurkin et al., 2019). In a
recent systematic review, Etchell et al. (2018) highlighted sex
differences in brain language structure and function. However,
they concluded that these differences do not necessarily lead to
differences in language task performance. It is therefore possible
that boys and girls employ different but equally effective cognitive
strategies for certain tasks, which leads to minor differences
in performance as evidenced by brain function but not in the
behavioral performance itself. Consequently, it is important
that subsequent studies consider possible sex differences when
characterizing language networks.

A better understanding of the association between language
functions and the different characteristics of brain networks
should include normal variation patterns that are not related to
language difficulties. Understanding the normal development of
functional language networks would enable earlier identification
of children at risk of language difficulties. Currently, language
impairment is often detected only at an age at which evidence
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of healthy language functions can be formally assessed (Prelock
et al., 2008). When a pathology is present, however, it could be
crucial to initiate early intervention in order to support language
development and increase quality of life for these children.

Methodological Considerations
This review shines light on the heterogeneity of methodological
approaches used in the study of language functions in children,
through the use of FC and EC. Beyond the neuroimaging
method used (EEG vs. MEG), the type of analyses and their
nomenclature vary greatly between research groups. Functional
brain connectivity and EC analyses are indeed still recent, and to
date, there is no consensus onwhichmethods are to be advocated,
highlighting the importance of summarizing the current state
of knowledge and pursuing further research in this field. This
would not only describe the various methods available, but also
assess their respective pros and cons, in order to select the
appropriate technique for specific experimental conditions and
samples. This will ultimately support the production of more
reliable and robust results and provide clear directions for future
studies. Methodological heterogeneity is not only an issue in
EEG and MEG, but also poses an obstacle to reliable conclusions
about language networks estimated with other neuroimaging
techniques, such as fMRI (Weiss-Croft and Baldeweg, 2015),
hence the need to establish common standards of best practice.

Nevertheless, the number of M/EEG studies identified
indicates that coherence and phase-locking measures may have
high utility in language research, because these metrics were
used in the majority of the published articles in the domain.
These approaches achieved popularity because of their simple
algorithms and fast computation. However, although coherence
has been the most widely used FC method in this field, this
does not necessarily mean it is the preferred method, nor the
most fruitful. In fact, coherence may cause false-positive results,
due to source leakage between local regions (Brookes et al.,
2014; Kida et al., 2015). To overcome these challenges, many
algorithms have been developed in the last few years. The
Imaginary Part of Coherency (Nolte et al., 2008) and PLI are
metrics that are less affected by the influence of common sources
and active reference electrodes. They were introduced to facilitate
the estimation of phase synchronization but have not been
used much in the research of language development (none for
Imaginary Part of Coherency and twice for PLI). Yet, the simplest
method for reducing the influence of leakage on the estimation of
connectivity is a leakage-invariant metric (O’reilly et al., 2017).

Conversely, the use of task-evoked ECmetrics such as Granger
causality and PLI in this context is recent and remains limited,
given that only three research teams have applied them since
2016. Thus, little is known about the directionality (EC) of oral
language networks in children.

To date, the use of EEG is more frequent than MEG for the
investigation of language-related brain connectivity in children
(14 and 10 articles, respectively), certainly because of the higher
accessibility, lower cost, and ease of use of the EEG technique.

Methodological Limitations of Reviewed Studies
The primary methodological limitation of most studies reviewed
was the failure to directly examine the association between

brain FC patterns and objective language skills as assessed
by standardized behavioral tests. In addition, in those studies
that did evaluate language abilities, assessment of overall
cognitive functioning was not always performed. Thus, the
observed disturbance could indicate a lower global cognitive
functioning, rather than a specific effect of language difficulties.
A clear distinction between language and global cognitive
functioning is therefore critical when investigating links
between connectivity patterns and language performance.
Relationships between brain activity and behavior must be
addressed, especially in the context of clinical populations,
where the disturbance in FC patterns associated with the
neurodevelopmental condition must be distinguished from
the disturbance specific to language functions alterations. For
instance, in contrast to healthy children, M/EEG FC differences
in children with CHD or born prematurely are not always
associated with actual differences in language skills. The lack
of attention to these relationships may be partially explained
by the small sample sizes of the studies, which led to poor
statistical power.

Finally, the results from various studies emphasized the
difficulty of applying FC analysis derived from M/EEG data.
Source localization of cerebral activity, captured on the surface
of the scalp, represents a particular challenge for sensor-space
analysis. This is known as the inverse problem, which may lead to
inaccurate identification of cerebral networks (e.g., Nunez et al.,
1997; Sakkalis, 2011; Barzegaran and Knyazeva, 2017; Abreu
et al., 2018, 2019). Also, the effect of volume conduction, which
is a mix of several signals within one sensor, and which originate
from identical cerebral regions, makes critical a direct derivative
from sensors to cerebral representation. Source-space analysis
tries to overcome this downside and uses models that aim for
a more accurate reconstruction of the true sources of the signal
(Schoffelen and Gross, 2009). The conduction of source analyses
seems particularly important when one is aiming to interpret FC,
because the same cerebral activation is measured with different
sensors and may potentially result in false conclusions regarding
connected regions. Recently, it has been shown that source-space
analyses seem accurate mostly when using high-density EEG,
but result in limited interpretation of the more common low-
density EEG (Barzegaran and Knyazeva, 2017). Also, some of
the approaches to source analysis require certain assumptions
be made about the underlying network, which may not be
accurate for all data sets (Daunizeau and Friston, 2007). In
particular, in children (where networks are developing) or in
clinical populations (where networks may be altered), it can be
risky to assume a certain network composition. These limitations
need to be taken into consideration when interpreting some
of the findings on functional networks that are reported in
this review. While studies that applied sensor-space analysis
may overestimate functional connectivity, the interpretation
of findings based on source-space analysis, especially in low-
density EEG, may be less susceptible to this same overestimation.
Finally, some studiesmight not have verified specific assumptions
for their source-model, which limits their interpretation. This
issue may occur especially in studies that include clinical
populations, where characteristics of cerebral activation may
be altered.
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General Utility of M/EEG Connectivity Analysis
By providing information about temporal coupling between
cortical areas (milliseconds time scale) and frequency bands
of neural oscillations, both MEG and EEG are well-suited to
study the development of language networks. They offer a quiet
testing environment, which facilitates the use of language tasks.
Moreover, they provide excellent temporal resolution, allowing
analyses that target an immediate response to specific tasks
or stimuli.

Because EEG is less sensitive to movement than other
techniques (e.g., fMRI), thus allowing a certain mobility and
tolerating articulatory movements, it is highly relevant for
language assessment in pediatric populations. Furthermore,
the low cost of EEG justifies its use for the investigation of
developmental trajectories, which requires longitudinal design
with multiple recordings over time. On the other hand, spatial
and temporal data available from MEG allow the investigator
to track both the neural timing and location associated with
language and thus to efficiently map the trajectories of language
networks. Regardless of the neuroimaging technique employed,
the use of FC is highly relevant in research on children,
because it allows acquisition at rest, without requiring that
a task be performed, as it is in traditional ERP paradigms.
Furthermore, the length of time required for data acquisition can
usually be shorter, compared to task paradigms. Finally, a better
understanding of FC M/EEG analysis and an evaluation of their
usefulness are essential for future research and for the potential
use of these techniques in clinical contexts.

Limits of This Review
Although this systematic review goes beyond a simple revision
of the literature, it does not include any statistical analysis of the
reviewed studies, as would have provided a meta-analysis. The
reader should therefore take into account the fact that the current
findings represent qualitative and not quantitative results. The
methodological heterogeneity of the included studies, with
respect to their paradigms, the types of FC and EC analysis, as
well as the large age range of the children investigated, is in itself
a limitation for the generalization and integration of the results.

Compared to other neuroimaging techniques, both MEG
and EEG stand out because of their high temporal resolution.
This is of particular importance in language paradigms,
where tonal differences occur at a fast rate. However, both
methods have a relatively low spatial resolution, which leads
to a rather large-scale localization of cerebral activity when
compared to techniques such as fMRI. Thus, the present findings
about functional language brain networks permit only limited
spatial interpretation.

Finally, given that we mainly reviewed studies that considered
FC as a measure of neuronal networks, we would like to
acknowledge that FC bears an index of statistical dependency.
More precisely, it allows the estimation of the correlation between
cerebral activation, measured simultaneously with different
electrodes or sensors located over different cerebral locations.
Thus, it does not allow causal conclusions about brain networks.
Only three studies (Kadis et al., 2016; Molinaro et al., 2016;
Barnes-Davis et al., 2018) included EC analysis that allowed

causal conclusions about interactions within functional language
networks. Future studies should definitely include EC analysis
that allows for more advanced characterization of cerebral
language networks.

CONCLUSION AND FUTURE DIRECTIONS

The analysis of brain functional connectivity and EC through
the use of M/EEG data is a common emphasis of ongoing
developmental research, but many unanswered questions remain
regarding the brain correlates of language development. To our
knowledge, this is the first systematic review to summarize the
current state of knowledge on linguistic electrophysiological
patterns of brain connectivity in the pediatric population.
It provides a detailed portrait of the relevant MEG and
EEG data analysis methods that have been used in that
context. Future research should consider the different FC
analyses available, in order to choose the appropriate tools
and paradigms. Overall, the results of the reviewed studies are
highly heterogeneous, precluding the possibility of drawing clear
and quantitative conclusions and showing the importance of
pursuing research in this field. Future work will enlighten on
the brain substrates of language development and may also
have important clinical impacts, for example, leading to the
identification of early neuroimaging markers associated with
altered language development in populations at high risk of
language disabilities. It would also allow the identification of
children at higher risk of language difficulties, in order to
provide early and individualized intervention (Jeste et al., 2015).
However, studies with significantly larger sample sizes, as well-
normative data, are needed in order to be able to use these tools
in a clinical context.
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