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Abstract: Automatic modulation recognition plays a vital role in electronic warfare. Modern elec-
tronic intelligence and electronic support measures systems are able to automatically distinguish
the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This
extra information can facilitate deinterleaving process as well as be utilized in early warning systems
or give better insight into the performance of hostile radars. Existing modulation recognition algo-
rithms usually extract signal features from one of the rudimentary waveform characteristics, namely
instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estima-
tion methods, specifically for radar signals, whereas estimator accuracy may adversely affect the
performance of the whole classification process. In this paper, five popular methods of evaluating the
IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate
the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency repre-
sentations. The novel approach based on the generalized quasi-maximum likelihood (QML) method
is also proposed. The results of simulation experiments show that the proposed QML estimator is
significantly more accurate than the other considered techniques. Furthermore, for the first time in
the publicly available literature, multipath influence on IF estimates has been investigated.

Keywords: electronic support measures; electronic intelligence; radar signal; modulation recognition;
intrapulse analysis; instantaneous frequency; linear frequency modulation; nonlinear frequency
modulation; multipath

1. Introduction

Recent years have seen dynamic development in radar instruments, including ad-
vancement in multiple-input multiple-output (MIMO) techniques, the pursuit to put quan-
tum sensors into practice and the continual exploitation of even more ingenious modulation
types. The last fact could not be overlooked from the context of electronic warfare (EW).
This activity is aimed at gathering information about adversary radars, which is usually
accomplished by highly sensitive interception receivers, specialized in collecting signals
emitted by far, non-cooperative emitters. During peacetime, intercepted radar signals may
be analyzed to find out the purpose and capabilities of the specific device. By contrast,
during a conflict, the detection, identification and geolocation of enemy radar becomes
far more important. The acquired intelligence can then be utilized to target or penetrate
hostile air defense. Another relevant function of interception systems is supplying emitter
data to databases used by other EW systems, such as radar warning receivers (RWRs).

Traditionally, electronic interception assets are divided into two distinct categories:
electronic support measures (ESMs) and electronic intelligence (ELINT), where the former

Sensors 2021, 21, 2840. https://doi.org/10.3390/s21082840 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4121-7890
https://orcid.org/0000-0001-5345-9470
https://orcid.org/0000-0003-3856-2706
https://orcid.org/0000-0003-3930-7504
https://doi.org/10.3390/s21082840
https://doi.org/10.3390/s21082840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082840
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082840?type=check_update&version=2


Sensors 2021, 21, 2840 2 of 20

are intended for deployment on a tactical level in order to provide situational awareness,
and role of the latter is to conduct long-term analysis and provide national level strategic
databases. In recent years, the line between both systems has become blurred, since modern
ESM systems are now capable of performing tasks distinctive for ELINT, including the
recording of intercepted signals [1] (p. 4). For this reason, here, both kinds of the systems
are referred jointly as ESMs.

Commonly, signal emitted by surveillance radar has the form of pulse train. Thus,
an ESM system performs both inter-pulse and intra-pulse analysis in order to determine
the so-called pulse descriptor word (PDW), while a set of PDWs forms a signal signature
unique to a certain type of radar. Nowadays a PDW is supplemented with information
on modulation observed in the intercepted signal, i.e., modulation on pulse (MOP). This
extra characteristic eases the attribution of a PDW to a given emitter (a task which can
become quite challenging in a dense electromagnetic environment) but also aids pulse
deinterleaving algorithms or may be exploited during the assessment of the application
and performance of the unknown radar. Today’s ESM systems are capable of determining
MOP in real-time, with no human involvement needed, by means of automatic modulation
recognition/classification algorithms (AMR/AMCs).

AMC techniques can be generally divided into two distinct categories: one is statistical
hypothesis testing and the another is pattern recognition via extracted signal features [2].
Examples of the former approach can be found in papers [3,4]. However, the vast ma-
jority of existing algorithms employed pattern recognition methods. This implies the
selection of features distinctive to a certain modulation, the devising of a mechanism
able to extract the features from the signal and consecutively supplying extracted fea-
tures to a decision-making algorithm (classifier), which assigns an unknown signal to
one of the known modulations. The most common classifiers in radar AMC algorithms
are hierarchical decision trees and artificial neural networks, whereas there are a lot of
possible signal features, including those derived from instantaneous signal properties [4–6],
higher-order statistics [6–8], time-frequency distributions (TFDs) [8–10] or power spectral
density [11,12]. Over the recent years, one can notice an increasing number of deep learning
AMC algorithms, especially those using time-frequency image features combined with a
convolutional neural network classifier [13–15].

Much effort has been devoted yet to recognize miscellaneous radar signals. Numerous
studies have concerned widespread waveforms, such as linear frequency modulation
(LFM) or binary phase shift keying (BPSK). Nonetheless, in the case of another prominent
waveform which is nonlinear frequency modulation (NLFM), the number of devised
methods is very restricted. Examples of such AMC algorithms, which distinguish NLFM
as a separate class, may be found in [16,17]. However, both papers examine only the single
NLFM waveform. Besides two mentioned works, there are a couple of distinct reports
regarding NLFM recognition, yet they are questionable because they assume the NLFM
model, which substantially differs from one used in real-life radars.

An intuitively appealing feature of the NLFM signal is its instantaneous frequency (IF),
which should clearly separate this waveform from the others. Methods and algorithms for
estimating the IF of noise-corrupted signals is a substantial field of knowledge, which has
been developed for over three decades [18,19]. Meanwhile, this issue is not addressed in
the context of AMC algorithms with a few exceptions in [4,20,21]. Consequently, different
authors apply arbitrarily chosen IF estimation methods in the feature-extraction stage,
without examining their accuracy in prior. It is worth stressing that effective features can
offset the mediocre performance of the classifier [22] (p. 11) and fairly improve overall
classification results. The purpose of this study is to investigate different methods practiced
for IF estimation with regard to linear and nonlinear frequency modulated radar signals.

The contributions of this paper are as follows:

1. It is the first extensive comparison of five different instantaneous frequency estimation
methods which are specific to radar signals recognition, which also accounts for
various frequency modulation laws.
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2. We introduce an alternative IF estimation algorithm based on the generalized quasi-
maximum likelihood (QML) method with a novel signal model.

3. Multipath propagation effects inherent to ESM analysis has been discussed and their
influence on respective estimation methods is examined.

The paper is organized as follows. Section 2 presents the recognition system model
as well as the assumed signal model. A multipath phenomenon description is introduced
in Section 3. Section 4 gives the considered IF estimation methods. Section 5 shows the
simulation experiments’ results. Finally, Section 6 discusses the paper and presents the
conclusions.

2. System and Waveforms

A typical automatic modulation recognition algorithm in an ESM system may be
divided into the feature extraction stage and classifier stage, as shown in Figure 1. Here,
we assumed a common situation, i.e., that one of the analyzed signal features is the IF. First,
the signal was detected and then carrier frequency was estimated and removed. Hence, a
complex envelope was determined. The time of arrival and pulse duration were assumed
to be known. The AMC algorithm itself is not considered in this paper.
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Figure 1. Block diagram of the typical radar waveform recognition system.

A feature extractor is supplied with a discrete-time radar pulse corrupted with noise
y(n) and sampled with rate fs. The signal model is then given by

y(n) = x(n) + ε(n) = a(n)ejφ(n) + ε(n), (1)

where x(n) denotes the complex radar signal, n is the sample index, Ts stands for sampling
interval x(n) = x(nTs), ε(n) represents complex additive white Gaussian noise (AWGN)
with variance σ2

ε and a(n) with φ(n) are instantaneous amplitude and instantaneous phase,
respectively.

In reality, the pulse amplitude is not constant during the time, as both the rising and
falling edge have some finite time. This phenomenon is usually caused by the transmitter,
but the envelope can be also tapered deliberately in order to limit out-of-band emissions or
suppress the sidelobes in matched filter. In the literature, the instantaneous amplitude of
a pulse is frequently modeled by weighting functions such as the Tukey or raised cosine
window. Here, similarly to [23], we adopted the Tukey window with the shape parameter
αT = 0.05.

This paper is focused on nonlinear frequency modulated radar signals. Along with
LFM, it is one of the first conceived radar waveforms. NLFM’s advantage over LFM
comes from its naturally low sidelobes level, attainable without a need of mismatched
processing, which is not the case for LFM. Thanks to this, the entire transmitter energy
can be embraced. This is reflected in growing interest in NLFM, especially for synthetic
aperture radars [24] or long-range surveillance radars [25]. The last decade brought rapid
advancement in NLFM synthesis methods, with algorithms based on Bézier curves [26] or
genetic optimization techniques [27]. The vast majority of already devised methods have
one thing in common, namely that yielded IF functions are monotonic, symmetric with
respect to time point corresponding to center of the pulse and the chirp rate is abruptly
increasing towards both edges of the pulse. Different, i.e., nonsymmetrical IF generally
would result in a deteriorated sidelobes level and Doppler tolerance [26] so it is hard to find
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such forms of NLFM in real-life applications. If we designate the constant-time variable as
t, pulse duration as T, frequency deviation as ∆F, and IF as f (t) and further assume that
pulse is defined in time period [−T/2, T/2], it may be concluded that the IF of the NLFM
signal meets the following assumptions:

f (−T/2) = −∆F/2,
f (t) = − f (−t),
|d f /dt| > 0.

(2)

The following NLFM signal synthesis methods were used in the remainder of this study:

1. Based on the stationary phase principle (SPP). It is a primary design approach, origi-
nally devised by Fowle in the 1960s [28]. The IF is determined using its approximative
relationship with inversed group delay, which in turn is obtained from the assumed
prototype of energy spectral density. An interested reader can find a concise expla-
nation of the method in [29] (pp. 87–89). Here, during the synthesis process, we
picked Blackman–Harris due to its ability to achieve low sidelobes while preserving
adequate range resolution [30].

2. A design algorithm which describes the instantaneous phase of the NLFM waveform
as a combination of the catenary and kappa curve [31]. In experiments, we used the
optimization parameter α = 6 as defined in [31] and assumed that the maximum
Doppler shift fD = 6 kHz.

3. The NLFM waveform originally proposed for active sonar [32]. For our study, we
skipped additional amplitude tapering and applied parameters of frequency modula-
tion function α = 0.52 and γ = 1.47 as defined in [32].

Furthermore, the LFM was also employed in research for comparison.
One can note that frequency variations in the NLFM waveform can have different

sizes, depending on specific design requirements. For this reason, it is helpful to introduce
the notion of nonlinearity factor, given by

η = 8
0∫

−T/2

[
f (t)− fLFM(t)

∆F

]
dt, (3)

where fLFM(t) denotes the IF of the LFM signal with the same pulse duration, frequency
deviation and modulation direction (here we assumed that both signals are upchirp) as
the analyzed NLFM signal. Multiplication by eight is used to fit the coefficient values
to the interval [0, 1], where 0 represent signals with purely linear frequency modulation
and 1 describes signals which exhibit sharp frequency variations on the pulse borders
(the waveform proposed by Price [29] (p. 92) may be used as an example of such). The
nonlinearity factor can be simply seen as a value proportional to the area between the
normalized IF of the NLFM and LFM signals, as illustrated in Figure 2.

The comparison of different NLFM waveforms in the function of factors such as
a time–bandwidth product (TBP) is further complicated by the fact that for the NLFM
signal, the frequency deviation is not equal to the effective signal bandwidth B (generally,
deviation is larger). For this reason, in experiments we assumed that the instantaneous
frequency took the values from the interval f (t) ∈ [−∆F/2, ∆F/2], which are adjusted
in order to fit the required bandwidth. Meanwhile, the bandwidth is interpreted here
as the frequency span which contains the majority of the signal energy. To facilitate this,
the in-bound energy ratio parameter (IBER) may be used, introduced in paper [33] and
defined as

IBER =

B/2∫
−B/2

|X( f )|d f

∞∫
−∞
|X( f )|d f

, (4)
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where |X( f )| represents the amplitude spectrum of a signal. IBER = 0.9 is used in simulation
experiments.

Figure 2. Illustration of nonlinearity factor (in above case η = 0.57).

Finally, all radar waveforms employed in the study are summarized in Table 1.

Table 1. Considered radar waveforms.

Waveform f (t) Nonlinearity Factor η

LFM 1 µt 0
NLFM A [28] no closed-form 0.48

NLFM B [31] 2 1
2π

{
c1sinh

(
t

c2

)
+ (1− c1)

[
2tc3−t3

(c3−t2)
3
2

]} any, typically ~0.45 when
optimized

NLFM C [32] B
2

[
α tan(2γt/T)

tanγ + 2(1−α)t
T

] any, 0.35 for α = 0.52 and
γ = 1.47

1 µ =∆F/T denotes chirp rate.; 2 design parameters c1 ∈ [0, 1], c2 ∈ (0, 1), c3 ∈ (1, 3) are determined during
optimization.

3. Multipath Phenomenon

Commencing the analysis of intercepted radar signals, one often has to deal with the
multipath phenomenon. It comes up when the interception system receives unwanted sig-
nals reflected from the ground, trees, buildings, etc., in addition to the desired direct-path
signal. Reflected signals make a detour, so they are delayed and will consequently have a
different phase than the direct-path signal. The resultant signal perceived by the receiver
is the effect of constructive and destructive interferences of the direct-path and reflected
signals, the interferences which particularly distort the envelope. The instantaneous ampli-
tude may increase or droop, and in extreme cases even wane. The multipath phenomenon
is illustrated in Figure 3.
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Figure 3. Schematic explanation of multipath phenomenon with a single reflection.

Side effects which come from the multipath were thoroughly investigated in the con-
text of global navigation satellite systems (GNSS) and wireless communications. Nonethe-
less, multipath is averse to the ESM systems as well, while its most recognizable outcome
is the deterioration of direction-finding algorithms. Until recently, only a few studies have
taken up this subject, such as [34] (p. 266). Meanwhile, significant contribution was made
by Robertson in her book [1]. Here, we adopt a simplified description of the phenomenon,
yet sufficient to evaluate the considered algorithms. Inspired by the profound DMCM
model in [35], if we assume that each signal cluster consist of one propagation path, both
the radar and ESM platform are stationary and no local scattering is present, the pulse
affected by the multipath yM(t) can be represented as a vector sum of the direct-path pulse
yD(t) and its Z reflected copies yR(t):

yM(t) = yD(t) +
Z
∑

z=1
yRz(t) = a(t) exp[jφ(t)] +

Z
∑

z=1
λzζza(t− ∆tz) exp{j[φ(t− ∆tz) + ∆φz]}, (5)

where λ < 1 denotes the reflection coefficient which is related to the attenuation level at
the reflection surface and depends on the grazing angle, the polarization of the reflected
signal and the admittance of the reflecting medium [1]. Further, ∆t is the time lag between
the direct-path signal and reflected signal (for the intra-pulse distortions to occur ∆t < T).
Clearly, reflected rays will be delayed with respect to the direct-path signal, making a
detour of ∆R =c ∆t, where c stands for speed of light in vacuum. Next, ζ denotes the
amplitude attenuation factor accounting for path loss, whereas power attenuation is given
by PdB= 20 logζ [36]. Following power delay profiles remarked in [35], here we assume
that power decreases linearly with respect to distance [36] and PdB = −0.03∆R. Next, ∆φ
represents the phase difference between the direct and reflected signal, and z is a number
of the respective reflected pulse.

The multipath phenomenon is commonly described by statistical means. In simulation
studies, we assumed that the phase has a uniform distribution as propagation delays are
usually much greater than the carrier signal period, so all phase values are equally likely.
Next, for a given wavelength, the reflection coefficient strongly depends on the reflection
geometry and scattering medium [1]. As we do not model any specific reflectors nor spatial
scenario, we adopt that λ is governed by the uniform distribution. Lastly, we assume that
time delays ∆t follow Gamma distribution, as found in [36]. This observation relates to
GNSS, albeit in the public domain there are not adequate studies which specifically concern
ESM.

A diagram of the multipath phenomenon for a single reflection is depicted in Figure 4a.
It should be noted that the phase difference between consecutive signals determines
whether interferences will take a destructive or constructive form, as can be inferred from
Figure 4b.
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4. Considered IF Estimation Methods

In radar AMC algorithms, there are two widely used IF estimation techniques: based
on phase finite differences and time-frequency distributions. Here, we scrutinize both
approaches, considering five distinct estimation methods. Three of them are variants of
phase differentiation techniques (Section 4.1), two employ TFDs (Sections 4.2 and 4.3) and
the remaining is based on the generalized QML method (Section 4.4).

4.1. Phase Finite Differences

The IF of a signal is a derivative of its instantaneous phase φ(t) with respect to time,
i.e.,

f (t) =
1

2π
dφ(t)

dt
, (6)

whereby for a discrete-time analytic, a signal’s instantaneous phase can be easily de-
termined as an inverse tangent of the ratio of quadrature and the in-phase component.
Phase function should be unwrapped in prior, i.e., its absolute jumps towards π should be
replaced by their ±2π complements.

After the discrete, unwrapped instantaneous phase of the intercepted signal φ(n) is
obtained, the IF estimate f̂ (n) can be easily calculated using a popular numerical method
for solving differential equations, namely by a finite difference of a form

f̂ (n) =
1

2π

[
φ(n)− φ(n− 1)

Ts

]
. (7)

The aforementioned method is termed as backward finite difference (BFD). It was
referred to both in the ESM literature [34] (p. 270) and afterwards exploited in numerous
AMC algorithms [7,8,16,37] for feature extraction of a signal.

Similarly, after applying a minor amendment in the above formula, a central finite
difference (CFD) estimator is yielded. It is unbiased, does not introduce group delay for
LFM signals [18] and can be noted as

f̂ (n) =
1

2π

[
φ(n + 1)− φ(n− 1)

2Ts

]
. (8)

Both mentioned IF estimators exhibit high variance while dealing with distinct noise.
There are a couple of solutions to limit the variance. One of them is to average or “smooth”
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successive phase differences in the moving window. The estimator proposed by Kay
(hereinafter referred to as KAY) may serve here as an example [38]

f̂ (n) =
1

2π

N−2

∑
i=0

w(i)
[

φ(n + 1 + i)− φ(n + i)
Ts

]
, (9)

with an averaging window of a length N − 1, formed by

w(i) =
1.5N

N2 − 1

{
1−

[
i− ((N/2)− 1)

N/2

]2
}

. (10)

Due to windowing, the variance of the estimate is reduced by approximately N/6 [18].
In simulation experiments, we adopted N = 16, which assures a substantial error reduction.
The application of a considerably longer window is inadvisable since the estimate will be
degraded if rapid frequency variations are present within the window [18].

4.2. Data Driven Pseudo-Wigner Distribution

Another prevalent method of IF estimation is to extract the ridge from the time-
frequency image of a signal [18,19]. Authors of the AMC algorithms also draw from
this approach, using different forms of Wigner–Ville distribution (WVD), as can be seen
in [11,39]. Next, the IF estimator in consideration belongs to this category. In the first step,
a time-frequency image is obtained through pseudo-Wigner distribution (PWD) with an
adaptive window length. The discrete PWD is described by the formula [40]

WPW(n, k) =
N−1

∑
m=−N

w(m)y(n + m)y∗(n−m)e−j4πmk/2N , (11)

where N is a positive integer, k is the frequency index and w(m) denotes the real-valued
window of length 2N. The idea behind the algorithm is to select length of the PWD
window independently for each time instant, in order to reach best bias–variance tradeoff.
An interested reader may find its details in [40]. In simulations, we used a rectangular
window with lengths ranging from 10 to 128 samples.

Wigner distribution has the best energy concentration among quadratic TFDs [41]
(p. 585). PWD also exhibits good concentration and therefore the algorithm assumes
that for a given time instant, the IF estimate can be simply obtained from the peak of the
time-frequency distribution, i.e.,

f̂ (n) = argmax
k∈Qk

WPW(n, k), (12)

where Qk denotes set of frequency samples obtained for an optimum window length.
The same IF estimation strategy was employed in a notable AMC algorithm developed

by Lunden [7] and later by the authors of [42]. Similar to [7], we adopted additional median
filtering of the IF estimate with a window size of 10 samples. This removes “spikes” which
emerge in the estimate for low signal-to-noise ratios (SNRs) [43].

4.3. Choi-Williams Distribution Image

Another TFD often used in radar AMC algorithms [7–9] is Choi–Williams distribution
(CWD), also known as exponential distribution. Its continuous form is given by [44] (p. 92)

WCW(t, f ) =
∞∫
−∞

∞∫
−∞

√
πσ

|τ| e
−π2σ(t−u)2

τ2 y
(

u +
τ

2

)
y∗
(

u− τ

2

)
e−j2π fτ du dτ, (13)

where τ denotes the lag variable and scaling factor σ controls the tradeoff between cross-
terms suppression and frequency resolution. For experiments, we picked a value σ = 0.05,
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likewise to [7]. Here, we determine CWD by multiplying its kernel g(ν, τ) = exp(−ν2τ2/σ)
with WVD result in the ambiguity domain [44] (p. 245), which may be represented as

WCW(t, f ) =
∞∫
−∞

∞∫
−∞

g(ν, τ)Ax(ν, τ) e−j2π(−tν+ fτ) dν dτ, (14)

Ax(ν, τ) =
∞∫
−∞

∞∫
−∞

WWV(t, f ) ej2π(−tν+ fτ) dt d f , (15)

where ν denotes Doppler shift, Ax(ν, τ) stands for symmetric ambiguity function and
WWV(t, f ) represents the WVD.

CWD’s inhering ability to attenuate the cross-terms is at the expense of worsened
energy concentration. For this reason, in the case of a CWD-based estimator, we do not
exploit the time-frequency ridge, but the morphological IF extractor is in its place. Various
AMC algorithms [9,39] have used mathematical morphology before. Here, we propose an
image processing algorithm based on one described in [8]. The absolute value of the CWD
image forms an input image CWD(i, l), where i, l denotes pixel indices. Then, adaptive
binarization is performed as follows:

a. Calculate the normalized grayscale image with the values from the interval [0, 1], as

G(i, l) =
CWD(i, l)−minCWD(i, l)

max[CWD(i, l)−minCWD(i, l)]
;

b. Determine the initial threshold as V = [maxG(i, l) + minG(i, l)]/2;
c. Set values of all pixels which meet the condition G(i, l) ≤ V to 0;
d. Calculate the Shannon entropy of the resultant image

E(G(i, l)) = −
R

∑
r=1

P(gr) log2 P(gr),

where probability associated with the given pixel value gr is estimated using the 256
bins histogram and R denotes the total number of gray levels;

e. Decrease the threshold value by specified step V = V − δV; in this paper δV = 0.005
is used;

f. Repeat steps c–e until E(G(i, l)) ≤ 2V;
g. compute final binary image B(i, l), given by

B(i, l) =
{

1 G(i, l) ≥ V
0 others

.

After binarization, some isolated noise remains in the image. In order to limit the
noise and emphasize the main trend in the IF, the image is additionally treated with
morphological opening followed by closing, with a structuring element of increasing size.
We employed a square with a size 3 · 3–5 · 5. In the end, the pretreated image may be
interpreted again in the time-frequency domain, by simply associating individual pixels
with the corresponding time and frequency values B(n, k).

Lastly, an instantaneous frequency estimate is calculated for each time instant as a
median of all K frequency values corresponding to non-zero pixels

f̂ (n) = median[B(n, 0), B(n, 1), . . . , B(n, K)]. (16)

The workflow of the CWD-based estimator is depicted in Figure 5. Two subplots
on the left-hand side and WCW(·) are related to the transforms described by formulae



Sensors 2021, 21, 2840 10 of 20

(14) and (15). The three remaining subplots illustrate the operation of the morphological
ridge extractor.
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Figure 5. Illustration of the morphological instantaneous frequency (IF) estimator based on the Choi–Williams distribution
(CWD) image, for some arbitrary nonlinear-frequency modulated signal (NLFM) immersed in noise with signal-to-noise
ratio (SNR) of 0 dB.

4.4. Generalized QML Method

Several authors have remarked that the NLFM waveform may be accurately mod-
eled as a polynomial-phase signal (PPS) [20,24,33]. Thus, in this work we adopt the
quasi-maximum likelihood (QML) IF estimator, originally proposed by Djurović and
Stanković [45] for PPS signals. However, the initial experiments showed that fast frequency
variations on pulse borders prevent signals from being accurately modeled by polynomials
only. Consequently, in order to improve the convergence of the model at the borders, we
enriched it with tangent component. Finally, a generalized IF model is given by

f (t) =
1

2π
tan
(

tπ
T

) M

∑
i=0

aiti, (17)

where ai denotes the respective coefficients of the M-th order polynomial. In experiments,
we adopted M = 4 in order to avoid overfitting of the model which might arise for higher
order polynomials. Furthermore, it is assumed that a1 = a3 = 0 to account the fact that
frequency modulation law (2) is symmetric.

The concept of this method is to compute a series of IF estimates using discrete short-
time Fourier transform (STFT) WSF(h)(t, f ), determined with different window lengths
from set H. The estimate which maximizes the QML function is considered to be the
most accurate. In research, we applied a set of rectangular windows of widths hi = 2(i+1)

samples, where i means integer from the interval [1, I], and maximum window length is
limited by the number of available signal samples hI ≤ N.

The algorithm is summarized below, whereby each step is performed for each window
length h ∈ H (for brevity we use continuous time and frequency arguments):

1. Short-time Fourier transform WSF(h)(t, f ) is obtained.
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2. The initial IF estimate f (t) is obtained from the ridge of the spectrogram

f h(t) = argmax
f

∣∣∣WSF(h)(t, f )
∣∣∣. (18)

3. Coefficients of the signal model (17) are estimated using least-squares polynomial
regression function F(·)

F(â0, â1, â2) = argmin
ai∈R

∣∣∣∣∣ f h(t)
2π tan(t π/T)

−
2

∑
i=0

âit2i

∣∣∣∣∣
2
 (19)

4. Particular frequency, and then phase is reconstructed on the base of estimated coeffi-
cients âi, as

f̂h(t) =
1

2π
tan
(

tπ
T

) 2

∑
i=0

âit2i (20)

φ̂h(t) = 2π
∫ t

0
f̂h(τ)dτ (21)

Finally, among all calculated estimates f̂h(t) we select those that is maximizing the
QML function of a form [45]

J(h) =

∣∣∣∣∣∣
T∫

0

y(t)e−jφ̂h(t)dt

∣∣∣∣∣∣
2

. (22)

Moreover, in simulations, we adopted a slight amendment to the algorithm. It stems
from the fact that absolute values of the IF estimate purse to the infinity on waveform edges.
Hence, values of d0, 2%T f se boundary samples (where d·e denotes ceiling function) on
the left and right edge of the pulse are substituted by values of succeeding and proceeding
samples adequately.

5. Results and Discussion

This section presents the results of conducted experiments. The necessary software
was written and executed in MATLAB 2018 and code is available to the reader on request.
Algorithms were evaluated using set of complex, baseband test signals buried in noise. The
sampling frequency was set to fs = 100 MHz. The number of available signal samples was
determined by the signal length. Pulse duration and bandwidths were random variables to
reflect the fact that signals intercepted by the intelligence receiver have varying parameters.
The distribution of parameters applied in simulation trials is given in Table 2. We consider
SNR values from a range typical to ESM systems, i.e., −5 ÷ 30 dB, whereby the SNR is
defined as 10 log(Px/σ2

ε) and Px means the average power of a signal estimated using the
mean square value. Symbol U(a, b) signifies that the corresponding parameter is evenly
distributed within range a to b, Γ(ς, θ) means that it takes a value from gamma distribution
with shape ς and scale θ and [a, b] denotes any integer value within given interval.

Table 2. List of simulation parameters.

Experiment Parameter Range

all Pulse duration T [s]
Bandwidth B

U(11 · 10−6, 20 · 10−6)
U( fs/20, fs/10)

multipath
simulation

Number of reflections Z
Reflection coefficient λ

Phase shift ∆φ [deg]
Detour ∆R [m]

[1, 10]
U(0, 1)

U(0, 360)
Γ(2.6, 129)
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The accuracy of the algorithms is established using the mean squared error (MSE)
evaluated on 250 Monte Carlo trials, i.e.,

MSE = log10
1

Ntrial

Ntrial

∑
t=1

N

∑
n=1

[
f̂t(n)− f (n)

]2
, (23)

where Ntrial denotes the number of Monte Carlo runs, f̂t(n) is the IF estimate with a
length of N samples obtained in t-th trial, and f (n) stands for the true IF law of one of the
evaluation signals introduced in Section 2.

5.1. General Accuracy

In first stage, we compared the accuracy of respective methods, when dealing with
LFM as well as various forms of NLFM signals. Figure 6 presents the results obtained for
the NLFM A waveform. Our generalized QML algorithm proved to be the most precise
among compared methods, across the entire range of SNR, even for its low values (it stems
from the fact that STFT is relatively robust to the noise influence despite being biased). The
accuracy of both the CWD-based method and data-driven PWD are comparable, albeit the
former has a disadvantage in being also reliant on the image processing stage performance.
It explains the increase in CWD error, observed for higher SNR values.

For clarity, the results obtained for different waveforms are grouped in Table A1 in
Appendix A. However, they follow the same trend.
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Exemplary instantaneous frequency estimates obtained using respective algorithms
for SNR = 5 dB are shown in Figure 7.

5.2. Accuracy for Different Nonlinearity Levels

When examining Figure 7, one can discern that for the NLFM signal, the significant
part of the error results from the poor accuracy of the estimate on pulse borders. This is
reaffirmed in next experiment, whose results are shown in Figure 8a. In this case, MSE
was determined entirely on pulse edges. It turns out that the error value is increased
by approximately 1 dB, regardless of the applied IF estimation method. In other words,
although all estimators perform quite well when the frequency is shifting linearly, their
resolution turns out to be insufficient when varying chirp rate come into play (notwith-
standing that both PWD and QML employ windows of adaptive size). This is illustrated in
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Figure 8b. In practice, it may result in the misclassification of the NLFM as an LFM in the
AMC algorithm.
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Figure 8. (a) The mean squared error achieved by considered IF estimation methods, evaluated on pulse edges only.
The error was determined for time samples corresponding to 7% of pulse duration for both pulse ends. The NLFM A
waveform was concerned, as on Figure 6; (b) illustration of how an inaccurate IF estimate may cause misclassification in the
recognition system.

To better understand this effect, we performed additional calculations of the estimation
error in a function of the nonlinearity factor. The results are presented in Figure 9.
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Figure 9. Estimation error in a function of the nonlinearity factor, for a fixed SNR value of 5 dB. In order to adjust the η
value, the NLFM B waveform was used with fixed c1 and c2 coefficients while c3 was chosen from range [1.07, 15].

The noteworthy property of finite difference estimators is their invariance to modula-
tion form, despite being far less accurate when compared with other methods. The same
relates to the PWD and CWD estimator. Concededly, both techniques cope slightly better
with modulation laws which are close to linear (it emerges that both TFDs exhibit better
energy concentration for the LFM), but the decrease in their accuracy for NLFM is minimal.

The proposed parametric QML estimator again revealed itself to be the most precise.
The devised frequency modulation model (17) nicely fits the IF-law of NLFM waveforms
for nonlinearity factors smaller than 0.4. Above this value, the estimation error rises
considerably, but still remains lower in comparison to other methods (it is to be noted
that NLFM waveforms of high η will have a strongly diffused spectrum which refrains
radar designers from implementing such waveforms in real-life). Still, it is covetable to
find another regression model which would better fit the modulation laws of applicable
NLFM waveforms with an η value equaling at least 0.6.

5.3. Accuracy in Multipath Conditions

Available reports state that the multipath in ESM receivers appears primarily by quasi-
random fluctuations in the pulse amplitude [1]. At the same time, the IF is traditionally
considered as a reliable signal feature, which may even carry unintentional modulation
on pulse (UMOP) which is characteristic to a certain emitter and thus usable for finger-
printing [46]. Hence, in the next step we surveyed the multipath impact on respective IF
estimators. In simulations, we represented the multipath signal as a sum of the discrete-
time complex radar signal and its delayed replicas with accordance to formula (5), whereas
respective parameters of the model were considered to be random variables with distri-
butions given in Table 2. Complex AWGN noise samples were added to the composite
signal, not to respective pulses. Figure 10 illustrates IF estimates obtained using different
methods, in the case of a single reflection with an amplitude amounting 0.9 of that of the
direct path component is present in the signal. Such a high value of the alternative path
component may be assumed as a strong reflection, and may occur for small grazing angles.
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Figure 10. Instantaneous frequency estimates for the NLFM pulse affected by multipath. The envelope of resultant pulse is
also shown to give better understanding of the phenomenon. SNR = 20 dB. True IF-law is the same as one presented in
Figure 7.

It can be noted that for a considered time, the phase and amplitude relationship
between the direct-path and reflected pulse, the envelope of the resultant pulse (seen by
the ESM system) is severely distorted by destructive interference. For time instants where
the amplitude almost completely fades, the estimation error clearly has the biggest value.
As it is distinct from other methods, QML does not produce error peaks as it is the only
parametric estimator in consideration. To better examine the outcomes of multipath, we
performed two simulations aiming at assessing the increase in estimation error for the
multipath scenario, compared to a signal free of reflections. The IF of the direct-path pulse
was used as the reference for MSE calculation (in fact it is imprecise while true IF is also
altered by phase shifts related to the multipath). The results are presented in Figure 11.
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Figure 11. Increase in estimation error in multipath conditions. In order make the results independent of different
performance of the estimators at the pulse edges, only the central part of the pulses was taken into account, i.e., 7% of
samples on both pulse ends were excluded from the calculation of the MSE. The NLFM A waveform was used. (a) Error
increase as a function of SNR. Simulation parameters from Table 2 are applied. (b) Error increase for a single reflection with
fixed ratio of direct pulse to reflected pulse and determined SNR = 15 dB.
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Perhaps unsurprisingly, the estimation error grows for all methods, albeit to different
extents. Referring to Figure 11a, the error growth is rather unsubstantial for finite phase
difference methods, and even declines when the SNR falls below 10 dB. This is due to fact
that those estimates are already noise-like, thus MSE approaches its maximum. One can
note that KAY is noticeably more vulnerable to the multipath in comparison to BFD and
CFD. Although all three estimators rely on the signal envelope, the former “smooths” its
values, which results in error amplification when the amplitude exhibits a longer droop.

In the case of TFD-based methods, degradation in accuracy is more evident, which
can be noted both from Figure 11a,b. This arises from the cross-terms originating from
reflected pulses, as previously remarked in [20]. However, CWD and QML perform slightly
better as—when compared to PWD—they have a better ability to suppress the cross-terms,
which are further attenuated by the morphological IF extractor and regression procedure,
respectively. Nevertheless, dropping performance of the QML is noticeable as the method
is designed for slow variations in the instantaneous amplitude. It remains for further study
of the improvement of the QML that can be used with high accuracy for multipath signals.

6. Conclusions

The choice of proper IF estimator for radar AMC algorithm is application-specific.
If a certain ESM system copes with signals with high to moderate SNR values (above
10—15 dB), finite difference-based methods are sufficient. This approach clearly benefits
in simplicity—calculations may be performed in a moving window, which facilitates
hardware implementation. Among three analyzed estimators of that class, i.e., BFD, CFD
and KAY, the latter achieves the lowest variance, which for high SNR approaches that
characteristic to TFD-based methods. Still, if the intercept system needs to deal with weaker
signals and extra processing power is available, TFD-based algorithms can be the solution,
since they are relatively robust to the noise influence.

The highest accuracy can be obtained using parametric estimators. However, they
require a priori knowledge about the modulation type present in the signal. This results
in three-step signal analysis: firstly, the initial IF estimate may be obtained using general
estimators (e.g., CFD), then the AMC algorithm (equivalently human operator) senses the
modulation type, and finally the target estimation method suitable for a certain waveform
may be employed to refine the initial estimate. Hence, parametric methods are particularly
useful when real-time operation is not required, the situation characteristic, e.g., to classical
ELINT systems.

The proposed generalized QML method is able adequately reconstruct nonlinear fre-
quency modulation embedded in the waveform. It can be further improved by developing
another IF model, e.g., the tansec one described in [47]. There are couple of other prominent
estimation methods, such extended generalized chirp transform (EGCT). Still, if one has to
deal with a real-time requirement specific to ESM, their applicability is limited due to high
computational burden. In this case, a generalized QML algorithm can be used in place.

The provided multipath simulations show that respective IF estimates may be cor-
rupted by reflections. This is accompanied by severe distortions in instantaneous amplitude.
What should be regarded in AMC algorithms is that different estimators have different
tolerance to this phenomenon. It is an interesting prospect to apply techniques for IF
estimation for multicomponent signals [44] (pp. 588–596) in this case, as a pulse affected by
the multipath may be considered as a multicomponent signal. All that notwithstanding,
we are going make an effort to modify the QML so that it can work more accurately for
multipath signals.

Although our simulations concern mainly the NLFM waveform, the presented results
may also be referred to different kinds of frequency-modulated radar signals, such as
polyphase-coded frequency modulation (PCFM). The introduced notion of the nonlinearity
factor may be useful in further research on the synthesis and recognition of NLFM signals.
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Abbreviations
The following abbreviations are used in this manuscript:

AMC Automatic modulation classification
AMR Automatic modulation recognition
AWGN Additive white Gaussian noise
BFD Backward finite difference
BPSK Binary phase shift keying
CFD Central finite difference
CWD Choi-Williams distribution
EGCT Extended generalized chirp transform
ELINT Electronic intelligence
ESM Electronic support measures
EW Electronic warfare
GNSS Global navigation satellite system
IBER In-bound energy ratio
IF Instantaneous frequency
LFM Linear frequency modulation
MIMO Multiple-input multiple-output
MOP Modulation on pulse
MSE Mean squared error
NLFM Nonlinear frequency modulation
PCFM Polyphase-coded frequency modulation
PDW Pulse descriptor word
PPS Polynomial-phase signal
PWD Pseudo-Wigner distribution
QML Quasi-maximum likelihood method
RWR Radar warning receiver
SPP Stationary phase principle
STFT Short-time Fourier transform
TBP Time-bandwidth product
TFD Time-frequency distribution
UMOP Unintentional modulation on pulse
WVD Wigner-Ville distribution
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Appendix A

Table A1. Comparison of IF estimators’ accuracy, for various linear and nonlinear frequency mod-
ulated waveforms, in a function of SNR. It is worth noting that the accuracy of finite difference
methods is actually independent of the signal form.

Waveform Method −5 0 5 10 15 20 25 30

LFM

BFD 14.80 14.57 14.09 13.62 13.30 13.06 12.87 12.74
CFD 14.44 14.12 13.56 13.14 12.86 12.67 12.50 12.38
KAY 13.58 13.09 12.24 11.95 11.77 11.66 11.55 11.44
PWD 12.29 11.93 11.79 11.67 11.58 11.49 11.38 11.30
CWD 12.09 11.82 11.68 11.60 11.65 11.65 11.64 11.66
QML 11.04 10.77 10.62 10.57 10.46 10.34 10.34 10.35

NLFM A

BFD 14.80 14.57 14.09 13.63 13.30 13.06 12.88 12.73
CFD 14.44 14.12 13.56 13.15 12.86 12.66 12.50 12.36
KAY 13.56 13.10 12.24 11.98 11.77 11.65 11.53 11.39
PWD 12.23 11.92 11.82 11.71 11.58 11.49 11.41 11.29
CWD 11.98 11.74 11.66 11.62 11.65 11.63 11.68 11.64
QML 11.09 11.01 10.97 10.67 10.71 10.65 10.77 10.66

NLFM B 1

BFD 14.80 14.57 14.09 13.62 13.30 13.06 12.87 12.72
CFD 14.44 14.12 13.56 13.14 12.87 12.66 12.49 12.36
KAY 13.56 13.09 12.25 11.94 11.82 11.67 11.52 11.38
PWD 12.17 11.91 11.77 11.69 11.58 11.49 11.39 11.28
CWD 11.81 11.62 11.53 11.55 11.52 11.57 11.53 11.55
QML 11.26 11.21 10.84 10.77 10.82 10.83 10.82 10.81

NLFM C

BFD 14.80 14.56 14.09 13.63 13.29 13.06 12.88 12.73
CFD 14.44 14.11 13.56 13.15 12.85 12.67 12.51 12.38
KAY 13.56 13.08 12.25 11.99 11.78 11.65 11.57 11.45
PWD 12.21 11.90 11.78 11.67 11.56 11.46 11.33 11.29
CWD 11.95 11.71 11.62 11.59 11.61 11.62 11.61 11.65
QML 11.04 10.94 10.95 10.76 10.91 10.90 10.95 10.83

1 Since optimization procedure assumes optimization, simulation parameters were restricted to discrete values
B ∈ { f s/10, f s/20} and T ∈ {11, 15, 20} · 10−6.
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43. Djurović, I.; Stanković, L. Modification of the ICI rule based IF estimator for high noise environments. IEEE Trans. Signal. Proc.
2004, 52, 2655–2661. [CrossRef]

44. Boashash, B. Time-Frequency Signal. Analysis and Processing. A Comprehensive Reference; Elsevier: London, UK, 2016.
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