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Abstract

Macrophages which infiltrate adipose tissue and secrete pro-inflammatory cytokines may be 

responsible for obesity-induced insulin resistance. However, why macrophages migrate into 

adipose tissue and become activated remains unknown, though some studies suggest this may be 

regulated by T and B lymphocytes. In the present study, we test whether T and B lymphocytes and 

NK cells are necessary for the obesity-induced activation of macrophages in adipose tissue.

NOD/SCID/IL2-receptor gamma-chain knockout (NSG) mice, which lack mature T and B 

lymphocytes and NK cells, were made obese by selectively reducing litters and weaning onto a 

high-fat diet. Mice were then maintained on the diet for 10-11 weeks. Adipose tissue from obese 

NSG mice had more activated macrophages than non-obese mice. These macrophages were found 

in “crown like structures” surrounding adipocytes, and expressed higher levels of the 

inflammatory cytokine TNFα. However, obesity did not impair glucose tolerance in the NSG 

mice.

These studies demonstrate that T and B lymphocytes and NK cells are not necessary for adipose 

tissue macrophage activation in obese mice. T and B lymphocytes and/or NK cells may be 

necessary for the development of obesity-induced impaired glucose tolerance.
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Introduction

There is accumulating evidence that infiltration of adipose tissue by immune cells may play 

an important role linking obesity and diabetes (1-3). Obesity is associated with alterations in 

the immunobiology of adipose tissue, including an influx of T and B lymphocytes, NK cells, 

and macrophages, and a relative paucity of regulatory T lymphocytes (2, 4-8). However, the 

signals regulating the trafficking of these immune cells into and out of adipose tissue remain 

unclear. In obese immunocompetent mice, T and B lymphocytes enter adipose tissue prior to 

macrophages. A scheme has been proposed in which pro-inflammatory T lymphocytes 

(CD8+ and CD4+ Th1) promote macrophage migration and/or activation in adipose tissue, 

while regulatory T lymphocytes prevent the infiltration and activation of macrophages (9).

It is unclear what the mechanism is for obesity-associated insulin resistance. While some 

studies in obese mice and humans have demonstrated the importance of activated 

macrophages, NK cells, and CD8 T lymphocytes in the development of insulin resistance, 

other studies in immunodeficient mice have implied that T and B lymphocytes are not 

necessary (5, 10). Given the growing prevalence of type 2 diabetes, along with other 

comorbidities that are likely related to inflammation (e.g. cardiovascular disease, cancer), it 

is important to elucidate the mechanisms regulating obesity-associated adipose tissue 

inflammation. In the present study, we induced obesity in NOD/SCID/IL2-receptor gamma-

chain knockout (NSG) mice, which lack T and B lymphocytes and NK cells. In these 

studies, we directly test whether T and B lymphocytes and NK cells are necessary for 

obesity to cause 1) adipose tissue macrophage activation, and 2) impaired glucose tolerance.

Methods and Procedures

Mouse models

All animal studies were approved by the CHLA IACUC, and performed in accordance with 

the U.S. Public Health Service Policy on Humane Care and Use of Laboratory Animals. 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ are NOD/SCID mice which lack an IL2 receptor gamma 

chain. They therefore lack mature lymphocytes and NK cells, and are used commonly for 

xenotransplant (11). Mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

bred in the Children’s Hospital Los Angeles Animal Care Facility. In initial experiments, 

mice were randomized at the time of weaning to a high fat (60% calories from fat) or control 

diet (10% calories from fat, Research Diets, New Brunswick, NJ). Because of the modest 

degree of obesity attained with this model, an optimized model was developed, in which 

litters were selectively reduced from 5-7 mice down to 2 female mice at day of life #5 to 

maximize weight gain prior to weaning ((12) and Simerly, pers. comm). At day of life #28, 

remaining mice from these culled litters were weaned onto a high-fat diet (60% calories 

from fat). Control litters were kept at 5-7 mice/litter until weaning, and then the females put 

on a control diet (10% calories from fat).

C57Bl/6J mice were purchased from Jackson Laboratories. Litters were randomized to 

control or obese, selectively culled to 2 female mice, and placed on diets identical to the 

optimized model described above. All mice were housed 3-4 per cage and given free access 
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to food and water. Physiological testing was done after 8-10 weeks on the diet, and then 

mice were sacrificed after 10-11 weeks on the diet.

Body Composition

After sacrifice, a subset of mice was sent frozen to University of Alabama, Birmingham for 

body composition measurements by chemical carcass analysis (13). Body fat was 

determined on carcasses after the stomach and intestines were removed. Fat weight was 

calculated as the weight lost during fat extraction.

Hormone assays

Plasma cytokines and hormones were measured using Milliplex mouse cytokine and 

adipokine kits (Millipore, Billerica, MA) in the Beckman Center for Immune Monitoring at 

the University of Southern California Norris Cancer Center, and analyzed with the Bio-Plex 

Suspension Array System (BIO-RAD, Hercules, CA). Adiponectin was measured using an 

ELISA (Millipore).

Flow cytometry

Mice were perfused with PBS with 0.1% heparin at sacrifice, and adipose tissue depots 

rapidly removed. Tissue was minced into small pieces in the presence of 0.004 units/mg 

tissue of Liberase TM (Roche) and incubated for 30 minutes with shaking at 37°C. Tissue 

was resuspended in 5% FBS in PBS and passed through a 70 μm nylon filter. The 

stromovascular fraction (SVF) was isolated by centrifugation at 500g for 10 minutes, 

washed twice, resuspended in buffer with Fc Block (BD Bioscience), and then stained with 

DAPI and labeled anti-CD45, anti-F4/80, anti-CD11c, anti-CD206, or isotype controls 

(BioLegend, San Diego). Cells were then analyzed in the Saban Research Institute Flow 

Cytometry Core on an LSR II Analyzer using FACSDiva software (Becton Dixon), and live 

leukocytes gated by DAPI and forward and side scatter. M1 macrophages were 

characterized as F4/80+ CD11c+ CD206−, while M2 macrophages were F4/80+ CD11c− 

CD206+ (6).

Immunohistochemistry

Paraformaldehyde fixed adipose tissue samples were embedded with paraffin, sliced, and 

mounted by the CHLA Pathology Core. Sections were subjected to antigen retrieval with 

Tris-EDTA steam at pH 8.0 for 30 min. Endogenous peroxidases were inactivated with 3-

H2O2. Non-specific staining was blocked with 2.5% normal goat serum before staining with 

rat anti-mouse F4/80 (Clone: A3-1, Abcam, Cambridge, MA), and detected with the 

ImmPRESS reagent (Vector Laboratories Inc., Burlingame, CA) containing polymerized 

peroxidase labeled goat anti-rat immunoglobulin (mouse adsorbed). The reaction was 

detected with ImmPACT DAB (Vector Laboratories Inc.) and counterstained with Mayer’s 

hematoxylin. Images were acquired on a Zeiss Axioplan Microscope (20x/0.5 and 63x/1.25) 

with a SPOT QE Color Digital Camera.

Adipocyte area was measured by an automated routine with the Fiji distribution of ImageJ 

software (14). Each color image was divided by a 20 × 20 Gaussian-filtered copy to 

normalize intensity variations. Then the contrast was enhanced by saturating 1% of the 
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pixels and equalizing the histogram. The image was then converted to 8-bit and a minimum 

filter (radius 3 pixels) and grayscale open operation (radius 10 pixels) were applied. The 

image was then coverted to binary by manual thresholding to include only cell outlines. In a 

few cells where the automated routine failed the cells were traced manually. Measurements 

were performed on three fields per mouse from four obese and four lean C57BL/6J mice and 

6 obese and 6 lean NOD/SCID mice. Adipocyte area data from 477 to 1796 fat cells per 

group were analyzed using the percent relative cumulative frequency (PCRF) approach and 

EC50 values were calculated according to Riachi et al.(15).

Collected raw data from each mouse in an experimental group were pooled, sorted, and the 

cumulative frequency calculated. To allow comparisons between groups with different 

numbers of data points, the cumulative frequency values were converted to PRCFs. The 

curve of best fit was plotted through the combined data points from each group using non-

linear regression (curve fit) analysis of log(adipocyte area) vs PCRF using GraphPad Prism 

Version 5. Goodness of fit was judged as an R2 value of greater than 0.99. F-tests were 

performed to test the hypothesis that 50th percentile values (data set mean) and slopes were 

significantly different between diet groups.

qPCR

To compare the relative number of macrophages infiltrating adipose tissue in mice, RNA 

was extracted from fat depots in a subset of mice (parametrial in NSG mice, epididymal in 

C57Bl/6 mice) with RNEasy Mini Kits (Qiagen). Fat depots were rinsed and then snap 

frozen prior to extraction. One μg of total RNA was reverse transcribed to cDNA with High 

Capacity 1st Strand Synthesis Kit (Applied Biosystems). The expression of selected genes 

was measured with rtPCR in at least duplicate, using 25 ng of cDNA, Power SYBR Green 

PCR Master Mix (Applied Biosystems) and 200 nM primers generated using NCBI Primer-

BLAST. Primers used were: β-actin (forward: 5′-

TCATGAAGTGTGACGTTGACATCCGT-3′; reverse: 5′-

CCTAGAAGCATTTGCGGTGCACGATG-3′); F4/80 (forward: 5′-

CTTTGGCTATGGGCTTCCAGTC-3′; reverse 5′-

GCAAGGAGGACAGAGTTTATCGTG-3′); CD11c (forward: 5′-

ACACAGTGTGCTCCAGTATGA-3′; reverse: 5′-GCCCAGGGATATGTTCACAGC-3′); 

Arg-1 (forward: 5′-CTCCAAGCCAAAGTCCTTAGAG-3′; reverse: 5′-

AGGAGCTGTCATTAGGGACATC-3′); and IL-10 (forward: 5′-

GCTCTTACTGACTGGCATGAG-3′; reverse: 5′-CGCAGCTCTAGGAGCATGTG-3′).

Gene expression levels were quantified using the ABI 7900HT Sequence Detection System 

with the following thermal profile: 10 minutes at 95.0 followed by 40 repeats of 95.0, 15 sec 

and 60.0, 1 minute, and a final dissociation stage of 95.0 for 15 sec, 60.0 for 15 sec, and 95.0 

for 15 sec. Transcript levels were quantified using the ΔΔCT method using β-actin as a 

control, and presented as fold increase over tissue from non-obese animals.

Physiological tests

At 12-14 wks of age, mice underwent either glucose (IPGTT) or insulin (ITT) tolerance 

tests. IPGTTs were performed on 6-hour fasted mice with 1 mg/kg of glucose. Blood 
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glucose was measured from tail nick on a FreeStyle Lite (Abbott Diabetes Care, Inc, 

Alameda, CA). Blood for insulin was taken at t=30 minutes from the submandibular plexus, 

and insulin measured using an ELISA (Crystal Chem Inc., Downers Grove, IL). ITT’s were 

performed on non-fasted mice using 0.75 units/kg of regular human insulin (Novo Nordisk, 

Bagsvaerd, Denmark), and glucose was measured by tail nick as above.

Calculations and Statistics

Glucose area-under-the-curves were calculated during IPGTT and ITT using the trapezoidal 

rule. Percent body fat was calculated as the fat weight divided by the carcass weight after 

removal of stomach and intestine. Unpaired t-tests were used to compare obese and non-

obese groups for normally distributed data, and Wilcoxon sum rank test for non-normal data. 

All normal data are presented as mean±SD.

Results

Litter size reduction and high-fat diet cause obesity in NSG mice

Obesity was induced in NSG and B6 mice by weaning them onto a high fat (60% of calories 

from fat) or control (10% of calories from fat) diet. In initial experiments, male and female 

NSG mice were randomized to these diets at time of weaning (3-4 weeks old). High-fat fed 

NSG mice were heavier than controls (obese males were 10% heavier than controls, 

p=0.027, obese females were 16% heavier than controls, p=0.009, Figure 1A). However, 

since the fat-fed NSG mice exhibited only modest obesity compared to fat-fed B6 mice and 

had no impairment in glucose tolerance (not shown), we selectively reduced litters on the 

fifth day of life to maximize obesity in subsequent experiments. Female NSG and B6 mice 

were used for this optimized obesity model. At the time of weaning, mice from the culled 

NSG and B6 litters were ~14% and 6% heavier, respectively, than mice from unculled litters 

(Figure 1B). These mice were then placed on a high-fat diet and by 12 wks of age were 

substantially heavier than non-obese mice; obese NSG mice were on average 33% heavier, 

while obese B6 mice were on average 51% heavier than non-obese mice. Obese NSG mice 

had approximately twice the body fat percentage as non-obese mice, similar to obese B6 

mice (Figure 1C). Overall, the selective reduction of litters coupled with high fat diet 

yielded NSG mice with similar degree of obesity and adiposity as similarly treated C57Bl/6 

mice.

Obesity in NSG and B6 mice was associated with increased plasma levels of the obesity-

related hormone leptin (p<0.01 for both strains, Figure 1D). Resistin and adiponectin levels 

(not shown) were not different between obese and non-obese mice of either strain, perhaps 

due to the relatively young age of the mice (~3 months old). The lack of effect of fat-feeding 

on adiponectin has been reported in other similar studies of fat-fed female B6 mice (for 

example, (16)). Obese mice of both strains had larger mean adipocyte size than their control-

fed counterparts, consistent with the diet-induce obesity phenotype (Figure 1E).

Obese NSG mice accumulate activated adipose tissue macrophages

To determine whether activated macrophages accumulate in the adipose tissue of obese 

NSG mice, we analyzed the macrophages in the SVF from multiple fat pads using flow 
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cytometry (Fig 2). Obesity did not significantly alter the percentage of macrophages in 

adipose tissue from obese NSG and B6 mice, but it was associated with a higher expression 

of CD11c (Fig 2A). M1 “classically” activated macrophages, characterized by surface 

expression of CD11c and absence of CD206 (4), were significantly increased in the visceral 

and parametrial adipose depots from obese NSG mice, but not in any adipose depots from 

obese B6 mice. Further, the percentages of M1 adipose tissue macrophages in NSG mice 

were correlated with body weight in the visceral, omental, and parametrial fat pads (r2 = 

0.34, 0.56, and 0.49, respectively; p<0.05 for all correlations, Figure 2C), though not in the 

subcutaneous fat pad (not shown). In contrast, M1 activation did not correlate with body 

weight in any fat pads from B6 mice (not shown). These flow cytometry findings were 

confirmed by measuring gene expression of macrophage markers in RNA isolated from 

whole parametrial adipose tissue; F4/80, a gene expressed by all macrophages (17), was 

significantly higher in adipose tissue from obese compared to non-obese NSG mice 

(p=0.025, Fig 2D). CD11c and TNFα were expressed at significantly higher levels in fat 

from obese than from non-obese NSG mice (Fig 2C). On the other hand, expression of 

arginase-1 and IL10— markers of M2 “alternatively” activated macrophages—was not 

different between obese and non-obese NSG mice.

Macrophages have been shown to surround adipocytes in obese mice and humans, forming 

“crown-like structures” (CLS), which are observed only rarely in the lean state (18). 

Adipose tissue from obese NSG mice contained more CLSs than non-obese NSG mice 

(p=0.03, Figure 3C). However, consistent with our flow cytometry results, obese B6 mice 

did not have increased numbers of CLSs compared to non-obese mice.

Obesity does not impair glucose tolerance in NSG mice

To determine whether obesity would impair glucose physiology in obese NSG mice, we 

performed intraperitoneal glucose tolerance tests (IPGTTs) and insulin tolerance tests 

(ITTs). While obesity had no effect on fasting glucose or glucose tolerance in the NSG mice, 

it caused a fasting hyperglycemia and impaired glucose tolerance in the B6 mice (Figure 

4A&B). Both obese mouse strains had higher 30 minute insulin response during the IPGTT, 

implying a degree of insulin resistance (Figure 4C); however, obesity did not alter insulin 

sensitivity quantified during the ITT for either strain (Figure 4D). Thus, obesity did not 

significantly impair glucose homeostasis in the NSG mouse as it did in the B6 mouse.

Plasma cytokines are not altered by obesity in NSG mice

Cytokines have been shown to cause insulin resistance in immunocompetent mice. 

Therefore, we measured various cytokines in our mice to determine which might be altered 

by obesity in immunodeficient NSG mice. There was no effect of obesity on MCP-1, IL-6, 

IL-10 (Fig. 5), VEGF, PAI-1, IL-13, IL-12(p70), IL-4, IL-1b, or IFNγ (not shown). TNFα 

tended to be higher in obese NSG mice than in non-obese, though the difference did not 

reach statistical significance (p=0.10). TNFα production by parametrial adipose depots ex 

vivo also was not different between obese and non-obese mice of either strain (not shown).
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Discussion

As the world-wide prevalence of obesity has risen dramatically over recent decades, there is 

increased interest in understanding the mechanisms linking obesity and its complications. 

Obesity is associated with a low level of chronic inflammation, which may arise in part from 

immune cell infiltration into adipose tissue (19). Multiple subsets of immune cells are found 

in the adipose tissue of obese animals and humans, including macrophages, T and B 

lymphocytes, and NK cells. However, it has been difficult to determine how these cells 

interact with each other and with adipocytes, and how they might contribute to obesity-

related complications such as insulin resistance. In the present study, we tested whether 

macrophages would infiltrate into the adipose tissue of obese NSG mice, which lack both T 

and B lymphocytes and NK cells. We further tested whether these mice would develop 

impaired glucose physiology.

We determined that NSG mice, which had been made obese by a combination of selective 

litter size reduction and high fat diet, had increased accumulation of activated macrophages 

in their adipose tissue. These results demonstrate for the first time that T and B lymphocytes 

and NK cells are not necessary for the obesity-related accumulation of activated 

macrophages in adipose tissue. These results contrast with a study by Nishimura et al., 

which demonstrated that the selective depletion of CD8+ T lymphocytes prevented the 

obesity-related infiltration of macrophages into adipose tissue. However, an alternative 

explanation proposed by Lumeng et al., is that the balance of pro- and anti-inflammatory T 

lymphocytes may regulate the adipose tissue infiltration and activation of macrophages. Pro-

inflammatory T lymphocytes could stimulate accumulation of macrophages, while anti-

inflammatory regulatory T lymphocytes could prevent macrophage influx and activation (9). 

The obese B6 mice did not accumulate activated macrophages in adipose tissue, likely 

reflecting that the anti-inflammatory effects of the regulatory T lymphocytes had not yet 

been counterbalanced by pro-inflammatory T lymphocytes. Since the NSG mouse is missing 

T and B lymphocytes and NK cells, it is a somewhat artificial model, which lacks this 

balance between lymphocyte populations. However, the present results show that the 

“default state” of obese adipose tissue without any T lymphocytes promotes macrophage 

infiltration and activation. Thus, it is clear from our experiments that the non-immune 

components of obese adipose tissue can actively contribute to recruitment and activation of 

macrophages, independent of lymphocytes. Our results are consistent with the finding that 

obesity stimulates macrophage accumulation in adipose tissue of Rag2 knockout mice, 

which lack most mature T and B lymphocytes (5).

Our results demonstrate that obesity does not impair glucose tolerance in NSG mice, despite 

the activated macrophage accumulation in adipose tissue. In contrast, the B6 mice made 

obese by a similar protocol exhibited impaired glucose tolerance. Since control-fed NSG 

mice exhibited worse glucose tolerance than control B6 mice, direct comparisons of glucose 

tolerance between the two strains are not possible; however, qualitatively it appears that the 

NSG mice were able to fully compensate for the high-fat diet while the B6 mice were not. 

Obesity-induced glucose intolerance is caused by insulin resistance coupled with a beta cell 

impairment, which renders them unable to fully compensate for the increased insulin 

requirements. Surprisingly, we were unable to detect insulin resistance in the obese B6 mice, 
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despite the fact that they had increased insulin secretion during the IPGTT and impaired 

glucose tolerance. It is possible that insulin resistance was not detected in the ITT because 

the standard insulin doses used (0.75 U/kg) led to a substantial glucose suppression, and 

even severe hypoglycemia in some animals (<30 mg/dL). Thus, if the glucose suppression 

was near maximal, differences between groups may have been obscured. Also, 

counterregulatory hormonal responses could have also confounded the results. In any case, 

these data do show that the NSG mice were resistant to obesity-induced glucose intolerance; 

future studies will be needed to address whether this effect was due to improved insulin 

sensitivity, beta cell function, or both.

Our results are in agreement with other studies which have demonstrated that T or B 

lymphocytes may contribute to obesity-induced adipose tissue inflammation and glucose 

intolerance (6, 8, 10). In fact, diet-induced obesity was shown to cause a rapid infiltration of 

T lymphocytes into adipose tissue, possibly mediated by the chemokine SDF1α, while 

macrophage infiltration was much slower and was detected well after insulin resistance was 

initially detected (20). In contrast, Winer et al. demonstrated that macrophages infiltrate 

visceral adipose tissue of mice within 2 weeks of switching to a high fat diet, and this occurs 

before a detectible increase in T or B lymphocytes (21). Depletion of T lymphocytes by 

injection of F(ab’)2 anti-CD3 antibody improved insulin sensitivity (10). Further, the local 

elimination of T lymphocytes by injection of anti-CD3 antibody into an epididymal fat pad 

systemically reversed obesity-related insulin resistance in young mice (22). On the other 

hand, selectively increasing Treg lymphocytes can reverse both adipose tissue macrophage 

infiltration and insulin resistance (10, 23). Recent data show that B cells may contribute to 

adipose tissue T cell and macrophage activation leading to insulin resistance and glucose 

intolerance (21).

Our results are consistent with evidence that NK or NKT cells may have a role in obesity-

related insulin resistance. Rag2 knockout mice made obese by a high fat diet exhibited 

adipose tissue infiltration of NK cells and insulin resistance (5). Visceral adipose tissue, 

which is epidemiologically more closely related to insulin resistance, had more NK cells 

than subcutaneous adipose tissue in obese humans (24). Obese mice lacking NKT cells had 

fewer adipose tissue macrophages and better glucose tolerance than wildtype mice, while 

mice with NKT cell activated with α-galactosylceramide had increased adipose tissue 

macrophage infiltration and impaired glucose tolerance (7). Thus, the available evidence 

suggests that T lymphocytes, macrophages, and NK and NKT cells may all contribute in 

interdependent ways to obesity-related insulin resistance.

Since rats made obese using selective litter size reduction developed insulin resistance (12), 

we believe that it is unlikely that the selective culling protocol would itself prevent obesity-

induced insulin resistance. In fact, the selective reduction of litters mimics the rapid weight 

gain in infants who consume excessive calories, a known risk factor for later obesity (25). 

The use of selective culling coupled with a high fat diet also more closely mimics the 

current epidemic of obesity caused by excessive caloric intake and decreased physical 

activity. Thus, although the obesity in this model is more modest than common genetic 

models (e.g. ob/ob mice), it is likely more physiologically relevant to the human disease.
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One weakness of this study is that the mice were made obese for a relatively short time (< 3 

months). Although this resulted in a substantial increase in adiposity, the mice in both 

strains exhibited only a modest increase in leptin levels, and no significant elevations in 

cytokines that are generally elevated in obesity. However, the obese B6 mice developed 

fasting hyperglycemia and significant glucose intolerance in this time period, demonstrating 

that even this relatively short term of obesity can lead to physiological impairments in 

susceptible mice. Another caveat is that fat fed B6 mice generally develop increased adipose 

tissue macrophage infiltration somewhere between 5 and 10 weeks on the diet, so it is 

possible that this short diet period did not lead to maximal adipose tissue macrophage 

infiltration. However, our primary outcome of interest was macrophage infiltration in the 

NSG mice, which was clearly observed even at this early time point. Finally, it is also 

possible that the use of female mice contributed to the mild obesity phenotype, as female 

C57Bl/6 mice are less susceptible to insulin resistance than males (26). Thus, further studies 

with male NSG mice made obese for a longer period of time may help to elucidate whether 

the absence of lymphocytes will prevent insulin resistance and glucose intolerance in the 

face of chronic obesity.

In summary, we have developed a novel murine model of immune deficiency and obesity. 

Our results show that T and B lymphocytes and NK cells are not necessary for the 

accumulation of activated macrophages in adipose tissue of obese mice. It appears that 

adipocytes themselves are likely responsible for the obesity-related macrophage activation, 

possibly due to secretion of adipokines such as leptin (27) or MCP-1 (28). Surprisingly, the 

albeit modest degree of obesity observed in the mice lacking T and B lymphocytes and NK 

cells did not lead to glucose intolerance, suggesting that T and B lymphocytes and/or NK 

cells may play a necessary role in obesity-induced diabetes.
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Figure 1. Obesity phenotype of fat-fed NSG mice
(A) Body weight of female and male NSG mice weaned onto high fat (closed circles, n=8) 

and control (open circles, n=4) diet at 3-4 weeks of age. (B) Body weight of female control 

(n=41) and obese (n=37) NSG mice and female control (n=13) and obese (n=14) B6 mice, 

on optimized diet-induced obesity protocol with selective culling of litters (see Methods for 

details). (C) Body fat measured by chemical carcass analysis of control (hatched bars, n=13) 

or obese (solid bars, n=10) NSG and B6 (n=3/diet group) mice. (D) Plasma leptin and 

resistin concentration in NSG (n=23 control and n=19 obese) and B6 (n=6 control and n=10 

obese) mice. (E) Percent relative cumulative frequency of adipocyte size by area in obese 

and control NSG (n=6) and B6 (n=4) mice. *p<0.05, **p<0.01, ***p<0.001.
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Figure 2. Obesity induces accumulation of activated macrophages in adipose tissue
(A) Representative dot plots from visceral adipose tissue stromovascular fractions of three 

obese and control NSG mice. Live cells were gated based on DAPI and side scatter. 

Macrophages were defined as F4/80 and CD45 positive, and M1 and M2 determined based 

on expression of either CD11c or CD206. (B) Quantification of macrophages of various 

adipose depots from flow cytometry (n=4-8 per depot). (C) Correlation between percentage 

of M1 macrophages and body weight in NSG mice (n=16). See text for statistics. (D) 

Expression of selected macrophage M1 activation (left) and M2 alternatively activation 

(right) genes from parametrial adipose tissue of NSG mice (n=4 per diet group), measured 

by qPCR. (control = hatched bars, obese = solid bars). *p<0.05
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Figure 3. Immunohistochemical analysis of adipose tissue macrophages
(A) Representative 20x fields of parametrial adipose tissue from obese (left) and control 

(right) NSG (top) and B6 (bottom) mice. Macrophages labeled with F4/80, calibration bar is 

100 μm (see methods for staining procedures and microscope model). (B) Representative 

CLS from an obese NSG mouse labeled with F4/80. Photo taken at 63x magnification, 

calibration bar is 25 μm. (C) Quantification of macrophages found in crown like structures 

(CLS) in parametrial fat pads of NSG (n=6/group) and B6 (n=4/group) mice. CLSs were 

counted by a blinded observer in 15 fields at 20x magnification.
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Figure 4. Physiological measures of obese and control mice
(A) Fasting glucose (B) Serum insulin level 30 minutes post intraperitoneal glucose load, 

and (C) glucose levels during intraperitoneal glucose tolerance tests (NSG: n=14 obese, 17 

control; B6: n=9 obese, 8 control). (D) Glucose concentrations during insulin tolerance tests 

(NSG: n=13 obese, 15 control; B6: n=9 obese, 5 control).
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Figure 5. Obesity does not substantially alter cytokine levels in NSG or B6 mice
Plasma cytokine levels of NSG (23 controls/19 obese) and B6 (6 controls/9 obese) mice.
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