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Abstract

failure in his second year of life.

disease.

Background: Mutations in the X-linked gene filamin A (FLNA), encoding the actin-binding protein FLNA, cause a
wide spectrum of connective tissue, skeletal, cardiovascular and/or gastrointestinal manifestations. Males are typically
more severely affected than females with common pre- or perinatal death.

Case presentation: \We provide a genotype- and phenotype-oriented literature overview of FLNA hemizygous mutations
and report on two live-born male FLNA mutation carriers. Firstly, we identified a de novo, missense mutation (c.238C >

G, p.(Leu80Val)) in a five-year old Indian boy who presented with periventricular nodular heterotopia, increased skin laxity,
joint hypermobility, mitral valve prolapse with regurgitation and marked facial features (e.g. a flat face, orbital
fullness, upslanting palpebral fissures and low-set ears). Secondly, we identified two cis-located FLNA mutations
(c7921C > G, p.(Pro2641Ala); c.7923delC, p.(Tyr2642Thrfs*63)) in a Bosnian patient with Ehlers-Danlos syndrome-like
features such as skin translucency and joint hypermobility. This patient also presented with brain anomalies, pectus
excavatum, mitral valve prolapse, pulmonary hypertension and dilatation of the pulmonary arteries. He died from heart

Conclusions: These two new cases expand the list of live-born FLNA mutation-positive males with connective tissue
disease from eight to ten, contributing to a better knowledge of the genetic and phenotypic spectrum of FLNA-related

Keywords: Periventricular nodular heterotopia, Live-born males, Filaminopathy, Connective tissue disease

Background

FLNA encodes a widely expressed 280-kD dimeric protein
that crosslinks actin filaments into three-dimensional
networks and attaches them to the cell membrane.
Each monomeric chain of the protein consists of four
major domains: a N-terminal F-Actin-Binding Domain
(ABD) consisting of two tandem calponin homology
domains (CH1 and CH2), two ROD regions which are
composed of 23 Ig-like repeats, and a repeat at the
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C-terminus, undergoing dimerization prior to interaction
with membrane receptors (Fig. 1) [1]. FLNA is involved in
various cell functions, such as signal transduction, cell
migration and adhesion [2] and FLNA mutations have
been linked to a wide spectrum of disorders.

Classification of these filaminopathies depends on the
nature of the underlying mutation mechanism. Gain-of-
function mutations cause otopalatodigital disorders (OPD)
[3, 4], while loss-of-function mutations result in periven-
tricular nodular heterotopia (PVNH) with or without
connective tissue findings [5-14], X-linked cardiac valvular
dystrophy (XCVD) [15], or gastrointestinal diseases such
as chronic intestinal pseudo-obstruction (CIPO) and
congenital short bowel syndrome (CSBS) [16—18]. Patients
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Fig. 1 Schematic representation of the FLNA domains and repeats and overview of FLNA mutations and their associated disorders. Each FLNA-related
disorder and their causal mutations in live-born males is depicted separately. The four diseases indicate the primary clinical expression of the patients.
Mutations in bold and underlined are identified within the current paper. Mutations indicated with # occur together in patients of the same family

presenting phenotypical features of multiple FLNA-related
diseases have been described as well [19, 20]. While in
heterozygous females the FLNA-related phenotype ranges
from absence of overall symptoms to severe manifesta-
tions, most male mutation carriers die prenatally or in the
first years of life [21-23]. This points towards a key role
for FLNA in human embryonic development. In the litera-
ture, 65 different FLNA mutations have been reported in
live-born males (Fig. 1). Here, we report on two male
cases with connective tissue disease and brain abnormal-
ities who carry novel FLNA mutations. In addition as an
introduction, we provide a literature overview on FLNA
genetic variability in live-born males.

Literature overview

The OPD spectrum encompasses five X-linked disorders,
in order of severity: OPD1, OPD2, frontometaphyseal
dysplasia (FMD), Melnick-Needles syndrome (MNS),
and terminal osseous dysplasia with/without pigmentary
defects (TOD(PD)). These syndromes are predominantly
characterized by skeletal dysplasia (i.e. bowing of long
bones, limb deformation, and short stature), hearing loss,

facial dysmorphism, cleft palate and abnormalities of the
extremities. The central nervous system, cardiovascular
system, gastrointestinal tract, ocular system, cutaneous
system and respiratory airways are occasionally affected as
well [4]. MNS or TOD(PD) male offspring of affected
mothers die prenatally or shortly after birth [4]. OPD2
males die in their first year of life, mostly due to pulmon-
ary hypertension caused by thoracic and lung hypoplasia
[23, 24], while FMD exhibits a milder phenotype in
affected males [25, 26]. OPD1 males survive to normal
adulthood. OPD-causing mutations (missense mutations
and small in-frame deletions) cluster in four specific
domains, i.e. the ABD and filamin repeats 3, 10 and 14/15
(Fig. 1) [1, 4]. They act through a gain-of-function
mechanism by establishing abnormal interactions
between FLNA and its binding partners, such as mem-
brane receptors, transcription factors and enzymes. No
genotype-phenotype correlation has yet been described
for the OPD subtypes.

PVNH is a neuronal migration disorder that can occur
in FLNA males [21], but is more frequently observed in
females. About 90% of PVNH patients present with
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difficult-to-treat seizures, manifesting from early child-
hood to adulthood [27]. It can occur with or without
Ehlers-Danlos syndrome-like (EDS-like) connective tissue
anomalies such as joint hypermobility, skin hyperelasticity,
translucent skin and cardiovascular abnormalities. The
condition is prenatally or neonatally lethal when caused
by truncating FLNA mutations, such as N-terminal
nonsense or out-of-frame splicing mutations [21]. In
PVNH males who survive past infancy, distal truncat-
ing, hypomorphic missense or mosaic mutations are
identified, implying that at least some functional FLNA
is produced [19, 21].

XCVD is characterized by stenosis, regurgitation or
prolapse of the mitral and/or aortic valve. Male XCVD
cases with FLNA mutations typically display severe phe-
notypes such as polyvalvular disease, regularly requiring
valve replacement surgery [28]. Although sudden cardiac
death occasionally occurs during infancy, they tend to
survive up to adulthood [15, 20, 28-30]. Brain imaging in a
subset of cases did not reveal PVNH [28]. XCVD-causing
FLNA mutations are mostly missense or splice-altering
mutations affecting highly conserved amino acids in five of
the protein’s first seven filamin repeats, i.e. repeats 1, 4, 5, 6
and 7 (Fig. 1) [15, 28-30]. Of note, two FLNA missense
mutations (p.(Gly1554Arg) and p.(Glyl576Arg)) have most
recently been linked to an X-linked syndrome of cardiac
valvulopathy, but also keloid scarring, reduced joint
mobility and a large optic cup-to-disc ratio [31-33]. In
case of p.(Glyl554Arg), also Ebstein anomaly segre-
gated with the mutation [33]. Further investigation is
needed to determine these mutations’ precise mode of
action. Besides in heart and brain, FLNA is highly
expressed in neurons of the enteric system. As a conse-
quence, intestinal abnormalities have recurrently been
described in FLNA mutation-positive males (Table 1),
but these usually do not present as primary symptoms.
Few exceptions can be found in literature and those
have been described as CIPO or CSBS (Fig. 1) [16, 17].
CIPO is characterized by severely impaired gastrointestinal
motility owing to impaired involuntary or coordinated
muscular contraction of the gastrointestinal tract. CSBS
patients present with abdominal pain and diarrhea due
to a shortened small intestine and intestinal malrota-
tion. Initially, CIPO and CSBS mutations were identified
between FLNA’ first two methionines. More recently,
duplications of multiple FLNA repeats have also been
described (Fig. 1) [16, 17, 34, 35].

Case presentations

Proband with connective tissue findings carrying a de
novo p.(Leu80Val) mutation

Clinical description

The proband is a five-year old Indian boy (II-2) without
a family history of connective tissue or cardiovascular
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disease (Fig. 2a). He was born at 34 weeks of gestation to
non-consanguineous parents by normal vaginal delivery
with a birth weight of 2.4 kg. Bilateral hip dislocation and
cryptorchidism were noted on the second day of life. A
pavlik harness was applied during the first six months and
he underwent bilateral varus derotation osteotomy for hip
subluxation (Fig. 3e) at four years of age. Cryptorchidism
was surgically treated at three years of age. At the age of
five, his height was 98 cm (2 SD below the mean), head
circumference was 49.5 cm (2 SD below the mean) and
weight was 14 kg (2 SD below the mean). Craniofacial
examination demonstrated brachycephaly, telecanthus
with upslanting palpebral fissures, epicanthal folds, perior-
bital fullness and infraorbital creases bilaterally and low-
set, posteriorly rotated ears (Fig. 4a, b). Further clinical
examination revealed marked skin laxity with excess
skinfolds over the fingers (Fig. 4¢, d, h, i and j). Increased
mobility across all joints, and brachydactyly with proximally
placed thumbs (Figures e,f), flat feet with sandal gap and
medially deviated great toes were also observed (Fig. 4g).
Radiographs revealed dislocated distal phalanx of the right
thumb (Fig. 3c). The pelvis had narrow iliac bones and a
wide femoral neck (Fig. 3d). The spine showed tall vertebral
bodies (Fig. 3a, b, g). Motor development was mildly
delayed, illustrated by the fact that he only started walking
independently at 20 months of age. At age 5, he presented
with genu recurvatum and bilateral hip subluxation for
which he underwent bilateral varus derotation osteotomy
(Fig. 3d, e, ). Cognitive and language milestones as well as
his ophthalmological parameters were normal. Echocardi-
ography revealed a myxomatous and prolapsed mitral valve
with moderate regurgitation. Additionally, it also showed
tricuspid aortic valve prolapse with mild regurgitation.
Aortic measurements were within the normal range.
After molecular diagnosis, magnetic resonance imaging
(MRI) of the brain showed PVNH along the subependy-
mal regions of both lateral ventricles (Fig. 3h, i; Add-
itional file 1: Table S1).

Molecular diagnosis

After obtaining informed consent of the parents, genomic
DNA of the proband (III-2) was screened for mutations in
37 connective tissue disease genes (Division of Medical
Genetics, Charité, Berlin), including the known genes for
cutis laxa. No pathogenic variants were identified. Whole
exome sequencing of III-2 was performed, which led to
the identification of a novel missense mutation (c.238C >
G, p.(Leu80Val)) in FLNA. Genotyping of p.(Leu80Val) in
the proband’s parents revealed that the mutation arose de
novo. In silico analysis strongly supports variant patho-
genicity: (1) the variant is absent in the gnomAD database
(http://gnomad.broadinstitute.org/; including 1000 Ge-
nomes database and the ExAC database) [36, 37] and also
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Fig. 2 Family pedigrees with their respective mutations. Squares represent males, circles represent females, black-filled symbols represent affected

individuals and a + or — sign denotes the presence or absence of FLNA mutations. a Pedigree of case A, the Indian patient (proband) with a de
novo FLNA missense mutation p.(Leu80Val) and his unaffected family members. b Pedigree of case B, the Bosnian patient with a frameshift
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absent from the dbSNP database (build 147) [38] (2)
p-(Leu80) is highly evolutionary conserved (down to zeb-
rafish) and locates to the protein’s F-actin-binding domain,
and (3) prediction programs SIFT, PolyPhen2 and Muta-
tionTaster predict a damaging effect on protein structure
and/or function.

An EDS-like patient with two mutations in cis: a
frameshift p.(Tyr2642Thrfs*63) and a missense mutation
p.(Pro2641Ala)

Clinical description

The second patient is a male Bosnian infant with a posi-
tive family history for connective tissue and cardiovascu-
lar disease (Fig. 2b). He was born at 37 weeks of
gestation by Caesarean section for placenta previa after
an uneventful pregnancy. Immediately after birth he re-
ceived oxygen support because of an underdeveloped left
lung. Neonatal jaundice was treated with phototherapy.
In the second week of life he was hospitalized again be-
cause of bacterial sepsis. The proband displayed dys-
morphic features, such as hypertelorism, pectus
excavatum, clubfeet and features of connective tissue
disease, such as translucent skin, bilateral inguinal her-
nia and hypermobile joints (Fig. 4k, 1). His neurological
examination was significant for muscle hypotonia and
poor muscle mass. Other health issues included hydro-
ureteronephrosis, hypospadias, food allergies, chronic
diarrhea (which improved with a modified diet) and re-
current bronchitis. Echocardiographic examination
showed elongated cusps of the tricuspid valve with re-
gurgitation, thinned and elongated cusps of the mitral

valve with mitral valve prolapse, dilation of the
pulmonary arteries with pulmonary hypertension and
atrial septum defect with right atrial and ventricular dila-
tation. Aortic measurements at 12 months of age were
normal. Brain ultrasound showed broader interhemi-
spheric fissures and subarachnoid spaces with echogenic
parenchyma. Since only ultrasound evaluation of the brain
was available of the patient, no solid conclusion can be
made about the presence or absence of PVNH. He died
due to severe pulmonary hypertension and heart failure in
his second year of life.

Family history revealed significant clinical findings
in several female members (Fig. 2b). The mother
(III-2) (Fig. 4m, n) presented with joint hypermobility
and mild skin hyperelasticity. Her cerebral computed
tomography (CT) and MRI-scan revealed cerebral at-
rophy, subependymal nodular heterotopia in the wall
of the lateral ventricles and right frontal horn and
intracranial hyperostosis of the frontal bones. Echocar-
diography of the mother (III-2) showed insufficiency
of the aortic and pulmonary valves at age 33 years
(both grade I-II). Hypermobile joints in the maternal
aunt (III-3) and grandmother (II-2) were also noted.
His great-aunt (II-3) had joint hypermobility, thin and
soft skin and mild aortic valve regurgitation (diag-
nosed at age 9, but stable). She developed epilepsy
with partial seizures from age 22. A brain MRI showed
partial agenesis of the corpus callosum, cerebellar hy-
poplasia and PVNH. She died at the age of 48 due to
an accident, which was a consequence of a seizure.
The great-grandmother (I-2) was described as a frail
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both lateral ventricles

Fig. 3 Skeletal survey of five-year old Indian patient (case A). a, b, g At 5 years of age the skeletal survey revealed tall vertebral bodies, ¢ delayed
ossification of carpal bones, dislocated terminal phalanx of right thumb, d, e bilateral hip subluxation for which he underwent bilateral varus
derotation osteotomy, f genu recurvatum and (h, i) magnetic resonance imaging of the brain showed PVNH along the subependymal regions of

person who died at age 82 years with renal insuffi-
ciency and heart failure (Additional file 2: Table S2).

Molecular diagnosis

Based on the patients phenotype, a Marfan syndrome
(MFS) diagnosis was initially suspected. Mutation analysis,
including multiplex ligation-dependent probe amplification
(MLPA) of FBNI revealed no pathogenic variants. Further
genetic investigation involved mutation analysis of the
coding sequences of 22 genes [39] known to be implicated
in the etiology of cardiovascular disease using gene
panel sequencing. Two hemizygous cis variants in exon
48 of FLNA were identified and, subsequently, validated
with Sanger sequencing: a frameshift c¢.7923delC;
p-(Tyr2642Thrfs*63) and a missense ¢.7921C>G;
p.(Pro2641Ala) mutation. For both mutations, several

lines of evidence suggest involvement in disease devel-
opment. Pathogenicity of p.(Tyr2642Thrfs*63) is sup-
ported by: (1) its absence from the gnomAD database
(http://gnomad.broadinstitute.org/; including 1000 Ge-
nomes database and the ExAC database) [36, 37] and
also absent from the dbSNP database (build 147) [38],
(2) the fact that the mutation leads to the formation of
an alternative stopcodon approximately 57 amino acids
downstream of the original one, resulting in an aberrant
protein C-terminus (i.e. a ‘no-stop mutation’), and (3)
proven pathogenicity of a previously reported frame-
shift mutation with a similar effect at the protein level
(p-(*2648Serext*101)), leading to systemic anomalies,
including CIPO, PVNH, pyloric stenosis, patent ductus
arteriosus (PDA) and atrial septum defect (ASD) [19,
40]. Evidence for pathogenicity of p.(Pro2641Ala)
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Fig. 4 Clinical features. In the five-year old Indian patient (case A) the following features were noted: (a) flat face, telecanthus, orbital fullness,
upslant of palpebral fissures, prominent nasolabial folds, (b) brachycephaly, midface retrusion and low-set ears, (e, f) mild brachydactyly and a
deformed right thumb due to an unstable and lax interphalangeal joint, (g) broad and medially deviated great toes with sandal gap and flat feet
and (¢, d, h, i, j) extra skin folds and significant skin laxity. The proband of family B presented with (k, I) hypertelorism, pectus excavatum, clubfeet
and hypermobile joints whereas the mother (lll-2) demonstrated hypertelorism and joint hypermobility (m, n)

includes: (1) its absence from the gnomAD database
(http://gnomad.broadinstitute.org/; including 1000 Ge-
nomes database and the ExAC database) [36, 37] and
absent from the dbSNP database (build 147) [38], (2)
p.(Pro2641) is highly conserved (up to Tetraodon) and
locates to the C-terminal part of the protein, which is
important for FLNA dimerization, (3) causality of an-
other amino acid substitution at the same position
(c.7922C > T; p.(Pro2641Leu)), causing PVNH, PDA,
severe bronchodysplasia and partial seizures [41] and
(4) classification of the variant as disease causing by predic-
tion programs PolyPhen2, SIFT and MutationTaster.

After obtaining informed consent of the family
members, segregation analysis of p.(Tyr2642Thrfs*63)
and p.(Pro2641Ala) was performed, revealing the

presence of both mutations in the patient’s clinically
affected mother (III-2), maternal aunt (III-3), maternal
grandmother (II-2) and maternal great-grandmother (I-2),
further demonstrating pathogenicity of the mutations. His
unaffected sister (IV-1) and brother of his grandmother
(II-4) were mutation-negative.

Discussion and conclusions

About 30 male FLNA mutation-positive patients with
PVNH have been reported, of which only six (patients 5,
6, 8, 12, 15, 18; Table 1) display both PVNH and EDS-like
features (Table 1) [42—46]. Four of the latter were reported
to present with cardiovascular anomalies, including aortic
dilatation, mitral valve prolapse (MVP) and a dysplastic
aortic, mitral or tricuspid valve [43, 45]. Joint
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hypermobility (5/6), skin translucency and/or hyperelasti-
city (5/6) were also common, while scoliosis and partial
seizures were only noted once (Table 1) [42—44]. Null mu-
tations typically lead to embryonic or early lethal PVNH
in males. So far, the rare live-born males with PVNH or
PVNH with EDS-like features were diagnosed with
hypomorphic missense and distal truncating mutations,
providing a sufficient amount of functional FLNA pro-
tein [43, 45]. Here, we report on a five-year old Indian
boy who presents with connective tissue findings, at-
tributed to a de novo FLNA mutation (p.(Leu80Val))
that locates to the CH1 domain. The initial presentation
included skin laxity, joint hypermobility and prolapse of
the mitral and tricuspid valve with moderate regurgitation.
Additionally, motor development was mildly delayed and
the skeletal system was prominently affected. After mo-
lecular diagnosis, brain imaging confirmed the presence of
PVNH.

Untill this report, five live-born unrelated male cases
had been described who were molecularly confirmed to
carry missense mutations in the CH1 domain (amino
acid 43-149) [43, 47, 48] (Fig. 1). Two unrelated males
with FLNA mutations in CH1 have been described by
Guerrini and colleagues [47]. The first male (p.(Met102-
Val)) was diagnosed with PVNH and cerebellar hypopla-
sia without seizures (patient 3, Table 1), while the other
(p.(Ser149Phe)) had infrequent complex partial and
secondarily generalized seizures (patient 7, Table 1). In
both patients cardiovascular abnormalities were observed,
including PDA and aortic valve insufficiency [47]. How-
ever, in contrast to our patient no connective tissue
anomalies were observed. A p.(Glu82Val) mutation was
previously described in a family with three affected
females in two generations and five presumably affected
boys whom all died within the first days or months of
life. However, molecular confirmation could not be
obtained for the male patients due to lack of DNA [48].
Reinstein et al. identified two unrelated PVNH males
with EDS-like connective tissue manifestations who
carried CH1-located FLNA mutations. A p.(Lys127Asn)
mutation was found in a 15-year old male who had,
besides PVNH without seizures, cardiovascular abnor-
malities (MVP with thickened mitral valve leaflets and
dilatation of the sinuses of Valsalva), soft and hyperex-
tensible skin, joint hypermobility, umbilical hernia, mild
lumbar scoliosis and a spontaneous pneumothorax (patient
5, Table 1). A second male with a nearby-located FLNA
mutation, p.(Ile129Met), presented with highly similar
features, including PVNH without seizures, increased
mobility across the joints, skin laxity and right inguinal
hernia (patient 6, Table 1). From a cardiovascular point
of view, however, he was more severely affected. He
had dysplastic mitral and tricuspid valves with regurgita-
tion, requiring mitral and tricuspid valvuloplasty at
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10 months of age. He also developed recurrent pulmonary
infections and at the age of one he was still hypotonic and
had to be fed via a nasogastric tube (Table 1) [43]. The
mutations identified by Reinstein and colleagues are
located within a conserved hydrophobic region between
amino acids 121-147 (Fig. 1). It is predicted that muta-
tions within this motif have a direct effect on the actin
binding of FLNA. In contrast, our mutation (affecting AA
80) is located upstream of this motif and is predicted to
have an indirect effect on the actin binding capacity of the
ABD [49]. This might explain the difference observed in
facial and skeletal phenotype between our patient and
those described by Reinstein et al. (2013).

The second case we reported is a male Bosnian patient,
who carried a no-stop mutation (p.(Tyr2642Thrfs*63))
and a missense mutation (p.(Pro2641Ala)). He presented
with skin and joint connective tissue findings. PVNH sta-
tus is unknown as no MRI was performed. Cardiovascular
anomalies included dilatation of both pulmonary arteries
with pulmonary hypertension and heart failure of which
he died at two years of age.

Two reports on affected males (patient 27 a,b,c; Table 1)
describe a no-stop frameshift mutation (p.(*2648Ser-
ext*101)) that is highly similar to ours (Fig. 1) [19, 40].
This mutation affects the last amino acid of FLNA and
is predicted to create a novel stop codon in the 3’ UTR
polyadenylation signal. Besides PVNH, described male
cases had prominent facial features (a low nasal bridge,
broad mouth and a prominent forehead) and/or gastro-
intestinal problems (obstruction, intestinal malrotation
and/or a short small bowel). Cardiovascular anomalies
were also observed, including PDA, ASD and dysplastic
mitral valves. These characteristics correspond with
what is seen in our case B patient. Mildly delayed
motor development was noted once. Remarkably, none
presented with features reminiscent of EDS [19 and
personal communication], which clearly differs from
our case (case B) (Table 1).

Pulmonary artery dilation has not been commonly
described in male FLNA mutation carriers. Only two
other cases have been reported. Reinstein and colleagues
examined a male FLNA mutation carrier (p.(Alal833_
Ser1835delinsAsp)), who presented with PVNH and
pulmonary hypertension with heart failure (patient 15,
Table 1). He had marked joint laxity and increased skin
elasticity [43]. Another report mentioned two brothers with
a 4-bp deletion (c.6425_6428delAGAG; p.(Glu2142A-
lafs*22)) in exon 40 of FLNA, predicted to cause a prema-
ture protein truncation (patients 17a and 17b, Table 1;
Fig. 1). RT-PCR experiments on cDNA of the siblings
suggested that the FLNA mutation induced both nor-
mal and alternative splicing. Both brothers had cardiac
complications, with the oldest brother presenting with
dilatation of the ascending aorta and bilateral pulmonary
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arteries. Bilateral inguinal hernias were noted in both
brothers, while pectus excavatum only presented in the
oldest one [34]. Those reports together with the findings
in our case B indicate that pulmonary hypertension
and/or dilatation are part of the phenotypic spectrum
of FLNA-related disorders in males (Table 1).

In summary, FLNA can either exert loss-of-function or
gain-of-function mechanisms, leading to clinically distinct
disorders. Disease is typically more severe in male muta-
tion carriers when compared to their female counterparts.
Whereas most mutation-positive males die prenatally, a
literature search demonstrates that a subset of them, i.e.
those with hypomorphic missense, distal truncating or
mosaic FLNA mutations, are live-born. Of these, eight
(patients 5, 6, 8, 12, 15, 17a, 17b,18; Table 1) have been
reported to present with EDS-like connective tissue
disease. The two new cases (patients 2 and 25) reported
here contribute to the genotypic and phenotypic spectrum
of EDS-like connective tissue disease, expanding the list of
live-born males with FLNA mutations.

Additional files

Additional file 1: Table S1. Clinical Timeline Case A. (DOCX 16 kb)
Additional file 2: Table S1. Clinical Timeline Case B. (DOCX 14 kb)
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