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While analysis of the bacterial microbiome has become routine, that of the fungal microbiome is still
hampered by the lack of robust databases and bioinformatic pipelines. Here, we present FunOMIC, a pipe-
line with built-in taxonomic (1.6 million marker genes) and functional (3.4 million non-redundant fungal
proteins) databases for the identification of fungi. Applied to more than 2,600 human metagenomic sam-
ples, the tool revealed fungal species associated with geography, body sites, and diseases. Correlation net-
work analysis provided new insights into inter-kingdom interactions. With this pipeline and two of the
most comprehensive fungal databases, we foresee a fast-growing resource for mycobiome studies.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fungi ubiquitously exist as commensals in various body sites of
humans, including the gastrointestinal tract (GIT), oral cavity,
vagina, and skin [1]. Under certain circumstances, some of these
fungal commensals, identified as pathobionts, could cause harm
[1,2]. Also, bacterial-fungal interactions have been reported to
exacerbate, reduce, or resist disease caused by fungal infection
[3,4]. The colonised fungi are highly variable across populations
[5], which may prevent the establishment and, thereby, the identi-
fication of key players among the fungal community in humans. It is
therefore critical to investigate commensal fungi and their interac-
tions with the host and commensal bacteria in a large-scale study.

Unlike the prokaryotic community in the human microbiome,
the fungal population, known as mycobiome, is still understudied
due to various reasons, including the challenge associated with
unculturable microorganisms, the extremely low abundance
among the human microbiome community [6], inter-individual
variability, and the lack of a comprehensive database. Over the last
decades, along with the rapid development of high-throughput
sequencing (HTS) technology, the study of the human bacterial
and fungal microbiome has gradually moved from culture-
dependent towards culture-independent methods [1].

The characterization of the mycobiome has been catalysed by
targeted HTS of the internal transcribed spacer (ITS) or the 18S
rRNA (18S) region located inside the ribosomal region. Similar to
the 16S rRNA (16S) gene in prokaryotes, the ITS and 18S regions
have conserved and highly variable segments among different fun-
gal organisms. Moreover, the ITS has been recognised as a univer-
sal DNA barcode marker for fungi [7]. The current knowledge of
human mycobiome derives mostly from the analysis of ITS and
18S amplicon sequencing [8,9]. However, as for the 16S amplicon
sequencing approach [10], ITS and 18S approaches can introduce
biases due to variability in amplification efficiency [11], problems
related to species delineation, and the large variations in gene copy
numbers, which limits the relative abundance analysis between
closely related species [12]. As an alternative to ribosomal DNAs,
a set of single-copy marker genes can be candidates for taxonom-
ically annotating the microbiome. They have been shown to pro-
vide higher resolution than 16S in prokaryotic species
delineation [13] and have been used to estimate relative abun-
dances and richness of bacterial members in human faecal
microbiomes.
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With the decreasing cost of sequencing, the shotgun approach,
which can capture more unbiased information from the gene pool
of microbial genomes within an environment than the amplicon
approach, has emerged as a more attractive tool in microbiome
research. Various strategies and databases have been developed
to determine eukaryotic community compositions from metage-
nomic data [14–16], yet few of them tackled fungi in the context
of the human microbiome.

To enable a more precise analysis of the human mycobiome, we
propose herein two built-in fungal databases, FunOMIC-T and
FunOMIC-P, integrated into an automated pipeline for taxonomic
and functional profiling, respectively. The functionality of the pipe-
line is achieved by mapping next-generation sequencing reads to
the two FunOMIC databases. FunOMIC-T contains more than 1.6
million single-copy marker genes from 4,839 high-quality fungal
genome data. FunOMIC-P includes more than 3 million fungal pro-
teins, being an integration of the corresponding coding genes of the
collected fungal genomes with the fungal subset of the Uniprot
database. FunOMIC was used to analyse a publicly accessible set
of 2,679 human metagenome samples, which revealed fungal tax-
onomic and functional signatures associated with clinical and
demographic metadata.
2. Methods

2.1. Aim, design and setting of the study

FunOMIC is a pipeline implemented with two fungal databases
FunOMIC-T and FunOMIC-P aiming at providing automatic myco-
biome analysis. Shotgun sequencing reads are directly mapped to
the databases to obtain mycobiome taxonomic and functional pro-
filings via the main program FunOMIC.sh. The main program and
two databases can be downloaded from Manichanh Lab (vhir.
org). Detailed establishment steps can be found below.

2.2. Collection of fungal genomes

In total, 9,401 publicly available strain-level fungal genomes or
draft genomes were downloaded from NCBI (https://www.ncbi.
nlm.nih.gov/) and JGI MycoCosm (https://mycocosm.jgi.doe.gov/
mycocosm/home) [17] before January 25th, 2021. All fungal gen-
omes with more than 500 contigs and N50 < 10 kbp were filtered
out [18], which led to a final set of 4,331 high-quality genomes and
draft genomes. Genomic shotgun data from 508 Candida isolates
were downloaded from 30 unique bioprojects from the NCBI SRA
before February 4th, 2021 (https://www.ncbi.nlm.nih.gov/sra/).
The accession numbers of the 4,839 combined reference fungal
genomes are listed in Supplementary Table S8.

2.3. Construction of the taxonomic and functional FunOMIC database

2.3.1. Identification of marker genes for establishing a taxonomic
fungal database

Assembling Candida genomic sequencing reads was performed
as described in the study of Montoliu-Nerin et al. [19]. Basically,
each of the Candida genomic sequencing reads was normalised
by BBNorm v38.9021 of BBtools (https://jgi.doe.gov/data-and-
tools/bbtools/) with a target average depth of 100x. Then, nor-
malised data were assembled by SPAdes v3.15.2 [20] (https://cab.
spbu.ru/software/spades/). BUSCO (Benchmarking Universal
Single-Copy Orthologs) version 5.0.0 (22) was used to identify mar-
ker genes using Fungi OrthoDB version 10.1 [21] in the pool of
4,839 fungal genomes. BUSCO makes use of 758 HMMs (hidden
Markov models) of fungal single-copy marker genes and was run
using default parameters with the AUGUSTUS gene predictor
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[22]. Genomes with<30 single-copy marker genes identified were
discarded, resulting in a final set of 4,816 genomes. Clustering with
a 99 % identity threshold [14,23] was applied using CD-HIT [24] to
remove redundancies, which led to a final set of 1.69 million fungal
marker genes, referred here as FunOMIC-T.

2.3.2. Establishment of a functional fungal database.
A protein database for fungal functional analysis was also con-

structed by collecting the corresponding amino-acid sequences
that were available for 2,967 of the 4,331 genomes cited above
and the 35,360 reviewed fungal proteins from UniProt (https://
www.uniprot.org/), both before January 2022. Then, the proteins
without an explicit annotation were discarded (1.5 million) leading
to a total of 4.9 million genes. Redundancy was removed with a
95 % identity clustering using CD-HIT [6]. Finally, 3,413,239 non-
redundant fungal proteins, referred to as FunOMIC-P, were
obtained for fungal functional profiling. These protein accessions
(from JGI, NCBI, UniProt) were then linked to EC numbers and
KEGG pathways.

2.4. Validation of the FunOMIC databases and the pipeline

To verify the absence of bacterial contamination [14] in the fun-
gal database and to ensure specificity for fungal detection, we
applied three different validation methods. Firstly, we mapped
the 1.69 million fungal single-copy marker genes to the Unified
Human Gastrointestinal Genome (UHGG), which is a gene cata-
logue that comprises 204,938 non-redundant genomes from
4,644 gut prokaryotes [25] using bowtie2. Because of the memory
limitation of our computers (44 CPUs), we simulated sequencing
reads of all the marker gene sequences (22 million paired-reads,
1-fold coverage, 11.2 GB out of 4.6 GB) to perform the alignment
to the UHGG. Secondly, we simulated Illumina formatted sequenc-
ing output reads from a set of 903 bacterial genomes from 458 spe-
cies that inhabit the human body collected from the NCBI to create
a mock community for a bacterial community (Supplementary
Table S1). The simulation was carried out by ART, a set of simula-
tion tools that generate synthetic next-generation sequencing
reads [26]. The simulated reads were then aligned to FunOMIC-T.
Thirdly, another mock community was created with the top 20
fungal species and top 20 bacterial species identified in the 2,679
human metagenomes collected (cited below). The genomes of
these 40 species were used to simulate Illumina formatted
sequencing output reads, which were then mapped to the con-
structed database. The lists of genomes used for creating the mock
communities and the number of simulated reads can be found in
Supplementary Table S1.

To validate the FunOMIC-P database, a mixed mock community
was created with the available coding gene sequences of the afore-
mentioned top fungal and bacterial species. Again, the coding gene
sequences collected from NCBI were used to simulate Illumina for-
matted sequencing output reads, which were then mapped to the
FunOMIC-P database using Diamond blastx function v2.0.8 with
an e-value < 10e-10 to recover the fungal functional profiling. To
optimise the alignment parameters, we tested nine different com-
binations using three different percentages of coverage (>90 %,
>95 %, >99 %) and three different percentages of identity (>90 %,
>95 %, >99 %).

2.5. Collection of metagenomic data

We downloaded 2679 public human shotgun metagenomic
sequencing data from NCBI SRA before February 4th, 2021 [27]
(https://www.ncbi.nlm.nih.gov/sra/). The 2679-public human
metagenomic data derive from 27 unique bioprojects, two of which
were published in our previous studies (PRJNA514452,
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PRJEB1220). The metadata of all the human metagenomic data can
be found in Supplementary Table S2. This metadata contains avail-
able information such as continent, country, city, latitude, longi-
tude, sample source, gender, age, extraction procedure, and use
of mechanical lysis during extraction.

2.6. Aligning human metagenomic sequencing reads onto the FunOMIC
database

After quality control and decontamination using KneadData
v0.7.7-alpha (https://huttenhower.sph.harvard.edu/kneaddata/),
Bowtie2 v2.3.4.3 was used to map the 2,679 metagenomic data
to the FunOMIC-T database for fungal taxonomic annotation.
Mapped reads were kept if more than 80 % of the length aligned
to the reference sequence with a q-score of over 30 [6,14,28] by
using Samtools v1.9. Diamond blastx function v2.0.8 was used to
map the metagenomic data to the FunOMIC-P database (read cov-
erage >95 % and identity percentage >99 % and e-value < 10e-10)
for fungal functional annotation. An in-house script, which is freely
available at our GitHub (https://github.com/ManichanhLab/
FunOMIC), was used to recover the final fungal taxonomic and
functional profiling.

2.7. Prokaryotic taxonomic and functional profiling of human
metagenomic data

After quality control and decontamination using KneadData
v0.7.7-alpha (https://huttenhower.sph.harvard.edu/kneaddata/),
we used MetaPhlAn v3.0.9 for profiling the composition of
prokaryotic communities in the 2,679 human metagenomic data.
Then, the HUMAnN v3.0 [29] (https://huttenhower.sph.harvard.
edu/humann/) and the UniRef90 database [30] were used to profile
the abundance of prokaryotic metabolic pathways and other
molecular functions.

2.8. Statistical analysis

All statistical analyses, except for SparCC correlation, were per-
formed using R software 4.1.2 (2021–11-01). Alpha- and beta-
diversity were calculated using the Phyloseq package. Beta-
diversity was compared between different disease groups using
the UniFrac distance metric with permutational multivariate anal-
ysis of variance (PERMANOVA) to identify significance (p � 0.05).
The associations between fungal profilings with variables from
the metadata were measured using the MaAsLin2 package with
age as the random effect (results were considered significant if
FDR (false discovery rate) < 0.05). The correlations of taxonomic
profilings or functional profilings between bacteria and fungi were
performed using the Python script SparCC [31].
3. Results

3.1. Characteristics of the taxonomic and functional FunOMIC
database

To build a database for taxonomic profiling of environmental
fungal species, more than 1.6 million fungal single-copy marker
genes were extracted from 4,816 fungal high-quality genomes
and draft genomes by aligning them to a set of 758 fungal universal
orthologs from OrthoDB (Fig. 1). The newly constructed database,
FunOMIC-T, covers eight fungal phyla, among which three
(Ascomycota, Basidiomycota, and Mucoromycota) represented
more than 98 % of the genomes (Fig. 1A). At lower taxonomic
levels, they encompassed 475 genera, 1,916 species, and 4,537
strains.
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It has been reported that 99.9 % of human metagenome
sequences are from bacteria [6] and that, bacterial sequences are
ubiquitous in eukaryotic genomes [14]. Validation of the absence
of bacterial sequence contamination in the fungal database is,
therefore, critical. To address this requirement, the FunOMIC-T
database was mapped to the UHGG dataset, which contains
204,938 non-redundant genomes from 4,644 gut prokaryotes
[25]. Only<0.01 % of the fungal marker genes mapped to the UHGG,
demonstrating that this fungal taxonomic database was specific
enough to detect mostly fungal sequences.

A bacterial environmental mock community was also created.
For this, we collected 903 genomes from 458 bacterial species
found to inhabit human bodies (Supplementary Table S1). These
genomes were then simulated into 19,301,201 Illumina formatted
sequencing output reads and mapped to the FunOMIC-T database.
The mapping rate of this artificial community to the database was
also <0.01 %. Lastly, a mixed mock community was also created
comprising the top 20 bacterial species and top 20 fungal species
identified during the taxonomic profiling of the metagenomes
(Supplementary Table S1). To better mimic real human metagen-
omes, the ratio of the number of simulated bacterial reads over
fungal reads was set to nearly 1000 (999021 bacterial reads and
1046 fungal reads) [6]. As expected, none of the 999,021 bacterial
reads aligned against FunOMIC-T, leading to a specificity (false
positive / (false positive + true negative)) of 0.9999.

Given the numerically small proportion of fungal sequences in
human metagenomes, the fungal functional analysis was not rele-
vant in almost all the published human mycobiome studies. To
address this knowledge gap, in the present work, we also proposed
a protein database specifically for environmental fungal functional
profiling. The FunOMIC-P database consists of 3,413,239 non-
redundant fungal protein sequences integrated from NCBI, JGI,
and UniProt (see Methods section above, Fig. 1B). Evaluation and
validation were also performed by a mixed mock community con-
stituted by the top species mentioned above. The available coding
gene sequences of these species were simulated into 439,798 Illu-
mina formatted sequencing output reads and mapped to the
FunOMIC-P database. We tuned the Diamond blastx function with
nine different combinations of parameters to optimize mapping
performance. With the threshold of read coverage >95 %, identity
percentage >99 %, and an e-value < 10e-10, we obtained the high-
est mapping rate of the fungal reads, where around 70 % of the hits
passed this threshold. More than 50 % of the mis-mapped bacterial
genes were related to ATP synthase (Supplementary Table S1).

3.2. Characteristics of the 2679 metagenomes

A set of 2679 metagenomes, which encompassed a total of
9077.12 Gb, collected from 27 bioprojects are listed in Supplemen-
tary Table S2. Taxonomic profiling of the metagenomes against
FunOMIC-T detected fungal DNA sequences in 1950 metagenomes
(72.9 %) which was much higher than the ratio reported in previ-
ous shotgun sequencing studies analysing the human mycobiome.
Lind et al., reported a detection rate of<20 % and Olm et al., found
6 % in their cohorts (infant). The 1,950 metagenomes were col-
lected from 14 countries, 12 body sites, and 19 health and disease
conditions (Table 1). The average mapping rate was 4.72E-05
(8.16E-09 min, 1.1E-02 max).

Gut samples comprised the majority of the dataset (84 %), fol-
lowed by conjunctiva (5 %), saliva (3 %), and throat swab (1.5 %).
Among the diseases evaluated, Crohn’s disease (CD), ulcerative col-
itis (UC), end-stage renal disease (ESRD), type 1 diabetes (T1D), and
type 2 diabetes (T2D) accounted for 779 faecal samples, whereas
500 faecal samples were obtained from healthy individuals.

All biological specimens were extracted by at least 10 different
protocols, for which mechanical lysis, previously reported as a cru-
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Fig. 1. Workflow of the construction of the FunOMIC database and its application in metagenomic analysis. (A) Recovery of fungal single-copy marker genes from fungal draft
genomes and Candida isolate sequencing reads downloaded from NCBI and JGI. A.1) Distribution of the fungal draft genomes at the phylum and species levels in FunOMIC-T
(Taxonomy). A.2) Distribution of Candida assemblies at the species level. (B) Fungal and bacterial taxonomic and functional profiling of the 2,679 metagenomic datasets
downloaded from NCBI. B.1) Geographical location of the collected human metagenomes. B.2) Proportions of the collected human metagenomes by body sites. B.3)
Proportions of human metagenomes by disease type (HIV = human immunodeficiency virus; T2D = type 2 diabetes; CD = Crohn’s disease; UC = ulcerative colitis; ESRD = end-
stage renal disease; SCZ = schizophrenia). B.4) Distribution of the collected human metagenomes by gender.
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cial step during the DNA extraction process to recover an optimum
microbial diversity [32], was applied in 1,049 samples (53.8 %).

3.3. Fungal community structure, diversity, and functions of the 1950
metagenomes

Five phyla, 232 genera and 475 species were identified in the
1,950 metagenomes. More than 80 % of the sequences were repre-
sented by two phyla (Ascomycota and Basidiomycota), two genera
(Saccharomyces, Candida), and three species (Saccharomyces cere-
visiae, Candida albicans, Malassezia restricta) (Fig. 2). Under healthy
conditions, the gut mycobiome was dominated, in terms of relative
abundance, by Saccharomyces cerevisiae, which was detected in
52.4 % of the samples, while Dacryopinax primogenitus was found
in 23.6 %, Yarrowia lipolytica in 13.6 %, and Candida parapsilosis in
11 % of the samples. C. albicans, known as an opportunistic patho-
genic yeast [33], was found in only 4 % of the GI tract samples of
healthy individuals. The fungal species profiling data can be found
in Supplementary Table S3. Malassezia predominated conjunctiva
samples, whereas Aspergillus predominated the saliva mycobiome.

The number of observed fungal species in the 1950 metage-
nomic samples ranged from 1 to 40 (median of 2), Chao1 index
[34] varied between 1 and 76.1 (median of 3), and the Shannon
index [35] ranged from 0 to 3.36 (median of 0.62) (Supplementary
Table S4). These three measurements indicated that the fungal
community in humans is, in general, of very low diversity com-
pared with the bacterial community, which could reach an average
of 70 in terms of the Chao1 index [36].

While fungal taxonomic profiling of human microbial commu-
nities has increased considerably over the last 10 years through
the sequencing of phylogenetic marker genes such as ITS2/18S,
the fungal community function was scarcely investigated mainly
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due to, again, the lack of a comprehensive database. Using
FunOMIC-P, we annotated the sequencing reads of the 1,950
human metagenomes using the DIAMOND aligner. In total 1,948
metagenomes successfully mapped to the database, the average
mapping rate was 0.088 % (5.42E-04 % min, 1.2 % max), consistent
with that previously reported in Qin et al., for eukaryotic DNA [6].

Sixteen pathway classes and 120 pathways were detected from
the metagenomes. Five pathway classes (Amino Acid Metabolism,
Carbohydrate Metabolism, Nucleotide Metabolism, Energy Meta-
bolism, Metabolism of Cofactors and Vitamins) and 29 pathways
(Supplementary Table S5), along with unidentified pathways and
pathway classes represented more than 80 % of the sequences.
The pattern of fungal functional structure indicated higher even-
ness compared with fungal taxonomic structure, i.e., the relative
abundances of the pathways are closer instead of being dominated
by one or two pathways.

3.4. Association between metadata and mycobiome composition and
functions

Next, we evaluated the contribution of available variables, col-
lected from the metadata files, to the mycobiome composition
variations using the adonis2 function from the vegan R package
(Fig. 3). These variables included countries, health status, body
sites, ages, gender, and bead-beating. Individually, countries and
health status were the factors that contributed most to fungal com-
position and function variations; body sites and the bead-beating
step also contributed to these variations, but to a lesser extent
(FDR < 0.01, Fig. 3).

Associations between these variables and individual taxa were
then examined using generalised linear models implemented in
the MaAsLin2 (Microbiome Multivariable with Linear Models)



Table 1
Summary of the characteristics of the 1,950 human metagenomes.

Body site Country Health status Number of samples Mechanical Lysis

Blood USA Filariasis 1 no
Lyme disease 1 no

Bone and joint France Infections 24 no
Conjunctiva China HC 100 no
Gallstones Australia NA 8 no
Gut Australia HC 56 yes

T1D 60 yes
Belgium CD 92 yes
Canada PLWH 10 na
China HC 204 yes

CD 38 yes
ESRD 208 yes
T2D 89 yes
NA 15 NA

Denmark HC 165 no
Israel NA 20 na
Italy HC 18 yes
Spain HC 63 yes

CD 50 yes
UC 69 yes

Sweden T2D 10 yes
USA HC 11 no

CD 13 na
HIV 3 na
PSO 24 no
UC 10 na
Infant-preterm 140 na
NA 272 na

Nasal mucosa Chile HC 6 no
Asthma 5 no

Oropharyngeal South Africa TB 4 na
Saliva USA NA 61 na
Skin Italy HC 3 yes
Sputum Singapore NA 30 na

South Africa TB 10 no
Throat swab USA HC 16 no

SCZ 14 no
Tongue Italy HC 12 yes
NA USA mock communities 15 na

PLWH = People live with HIV patients, PSO = Psoriasis, TB = Tuberculosis.
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package. Five fungal species (Aspergillus recurvatus, Malassezia
restricta, Saccharomyces cerevisiae, uncultured Malassezia spp., Yar-
rowia lipolytica), which were among the 10 most prevalent and
abundant fungal species (Supplementary Table S3), were found
associated with health status, country, and body sites (Supplemen-
tary Fig. S1A). This finding suggests that the high variability of the
human mycobiome could be linked to these five species. Interest-
ingly, Yarrowia lipolytica was found positively associated with
bead-beating (Supplementary Fig. S1B), which could be explained
by its relatively higher fraction of chitin (10.3–18.9 %) in the cell
wall compared with S. cerevisiae, C. albicans, and M. restricta [37–
39].

We found that geography, health status, and body sites had
marked effects on the variability of most of the fungal pathway
classes among the 16 that we recovered from all samples, yet
bead-beating did not impact the compositions of fungal pathways,
as reported for fungal taxa (Supplementary Fig. S1).
3.5. Core taxonomic fungal microbiomes of different body sites and
different countries

To identify groups of key taxa that may influence the micro-
biome community, we applied the concept of core microbiome
across body sites and geography, taking into account health status.
For this purpose, fungal species with an occurrence of over 50 % in
the respective set of metagenomes of interest, in which fungi were
detected, were defined as the core mycobiome. The 50 % occur-
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rence threshold was chosen based on the review of the core bacte-
rial microbiome published by Neu et al. [40], but an abundance cut-
off was not applied to avoid missing any lowly abundant fungal
species. We summarised the core mycobiome for body sites
(Table 2) and countries (Table 3). In the human gut mycobiome
of non-infants, S. cerevisiae was found to be the only member of
the core gut mycobiome, except for CD and T1D patients who were
dominated by Aspergillus recurvatus. The core gut mycobiome of
infants consisted of only species from the Malassezia genera, in
accordance with several previous studies [41,42]. In other body
sites, except saliva, several Malassezia species were the most
detected members of the core mycobiome. The saliva mycobiome
was driven by Aspergillus recurvatus.

Given that geographical difference contributes the most to fun-
gal taxonomic structure variations, we also defined the core myco-
biome for gut samples collected in different countries. We focused
only on gut samples, as they represented the most available sam-
ples. S. cerevisiae appeared as a member of the core gut mycobiome
in most countries (Table 3), which is in agreement with the afore-
mentioned core mycobiome (Table 2). A. recurvatus was the only
core fungal species among all the gut samples with different health
status collected from Australia, whereas Y. lipolyticawas that of the
gut samples collected from end-stage renal disease (ESRD) patients
in China (Table 3).

Core biochemical pathways, defined as pathways that have
occurrences over 99 % among all the samples with a relative abun-
dance of over 1 % [40], were also summarised for each body site



Fig. 2. Fungal taxonomic profiling of several human body sites based on the 1950 shotgun metagenomic data using the FunOMIC-T database. Taxonomic profiling is displayed
at the phylum, genus, and species levels. Only the mean relative abundance of the genera and species summing 90 % of the sequence data is exhibited. Gut taxonomic profiling
was performed for diseases including Crohn’s disease (CD, n = 193; from the USA, Europe, and Asia), ulcerative colitis (UC, n = 79 from Europe and the USA), end-stage renal
disease (ESRD, n = 208, from Asia), type 1 diabetes (T1D, n = 60 from Australia), and type 2 diabetes (T2D, n = 99 from Asia). 468 faecal samples did not have health status
information in the metadata files. Health status and geo-localization of conjunctiva, nasal, and saliva samples are described in Table 1.

Fig. 3. Effect size of variables on the mycobiome community. The impact of the
covariates on mycobiome composition (A) and function (B) was tested by
performing a univariate analysis (adonis2) on the 1,950 metagenomes. The effect
was considered significant when FDR < 0.05.
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and country with different health status (Supplementary Table S6).
For countries, only gut samples, as the most available sample type,
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were considered. The majority of core fungal pathways were
related to nucleotides, amino acids, energy and carbohydrate
metabolisms, which are essential functions, indicating that the
functionality of the human mycobiome is maintained across body
niches and populations.
3.6. Bacterial and fungal microbiome interaction

Next, we sought to evaluate the correlations between fungal
and bacterial taxonomic composition in gut samples under healthy
conditions, especially concentrating on core fungal species.
Because of the failure in detecting the core mycobiome under
healthy conditions from China, we focused on the healthy condi-
tions of Denmark and Spain. To address this aim, we first per-
formed a bacterial taxonomic and functional profiling of the
metagenomic data. Due to a very extensive computational time
requirement (6 h/40 CPUs/sample on average), only a subset of
1,485 of the 2,679 metagenomic samples was processed (Fig. 1).
We then carried out a correlation analysis with the SparCC correla-
tion method, which handles compositional data [31] (34). In total,
4,184 significant (p < 0.05) inter-kingdom correlations were found
in the Danish cohort, while 3,471 significant inter-kingdom corre-
lations were found in the Spanish cohort, (Supplementary
Table S7). In the Spanish cohort, the two core fungal species, S.
cerevisiae and D. primogenitus, were found to correlate with the
bacterial species Haemophilus pittmaniae positively and negatively,
respectively (Fig. 4A). Beyond that, in the Spanish cohort, C. albi-
cans was found to negatively correlate with Megasphaera sp
MJR8396C, which was positively correlated with D. primogenitus.
C. albicans was also found negatively correlated with Lactobacillus
sanfranciscensis, Bifidobacterium scardovii, Desulfovibrio fairfielden-



Table 2
Core fungal species of different body sites.

Bodysite Health status Core fungal species (>50 % prevalence)

Gut HC (n = 262) Saccharomyces cerevisiae
CD (n = 109) Aspergillus recurvatus
ESRD (n = 106) Saccharomyces cerevisiae
UC (n = 55) Saccharomyces cerevisiae
T1D (n = 40) Aspergillus recurvatus
T2D (n = 50) Saccharomyces cerevisiae
PSO (n = 16) Saccharomyces cerevisiae
PLWH (n = 7) Saccharomyces cerevisiae
Infant (n = 14) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.

Nasal mucosa HC (n = 5) Alternaria alternata, Malassezia globosa
Conjunctiva HC (n = 76) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.
Saliva NA (n = 38) Aspergillus recurvatus
Throat swab HC (n = 14) Schizophyllum commune, Malassezia restricta, uncultured Malassezia spp.

SCZ (n = 12) Candida albicans, Malassezia restricta
Tongue dorsum Infant (n = 8) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.
Bones and joints BJIs (n = 24) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.
Gallstone GS (n = 8) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.

Table 3
Core fungal species of different countries.

Country Health status Core fungal species (greater than50 % prevalence)

Australia HC (n = 46) Aspergillus recurvatus
T1D (n = 40) Aspergillus recurvatus

Belgium CD (n = 76) Aspergillus recurvatus, Saccharomyces cerevisiae
China ESRD (n = 106) Yarrowia lipolytica

T2D (n = 49) Saccharomyces cerevisiae
Canada PLWH (n = 7) Saccharomyces cerevisiae
Denmark HC (n = 118) Saccharomyces cerevisiae
Italy Infant (n = 14) Malassezia globosa, Malassezia restricta, uncultured Malassezia spp.
Spain HC (n = 57) Dacryopinax primogenitus, Saccharomyces cerevisiae

CD (n = 38) Saccharomyces cerevisiae
UC (n = 52) Saccharomyces cerevisiae

USA PSO (n = 16) Saccharomyces cerevisiae
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sis, Ruminococcus sp CAG563, Coprococcus catus, and Roseburia sp
CAG309 (Supplementary Table S7, Fig. 4A), many of which are
potential short-chain fatty acid (SCFA) producers [43]. In the Dan-
ish cohort, significant correlations were found between the only
core fungal species, S. cerevisiae, and seven bacterial species, of
which five were negative (Tropheryma whipplei, Prevotella sp
CAG1124, Firmicutes bacterium CAG24, Gemella sanguinis, and Sut-
terella parvirubra) and two were positive (Bacteroides nordii and
Prevotella stercorea) (Fig. 4B).

We also applied SparCC to analysing correlations between fun-
gal and bacterial functions in gut samples under healthy conditions.
In the Danish cohort, 93 significant correlations were detected
(Supplementary Table S7, Supplementary Fig. S2A), of which the
strongest was the positive correlation (q = 0.06, p < 0.001) between
the biosynthesis of secondary metabolites in fungi and the endo-
crine system in bacteria. In the Spanish cohort, 76 significant corre-
lations were detected (Supplementary Fig. S2B), the strongest was a
negative correlation (q = -0.13, p < 0.001) between carbohydrate
metabolism in fungi and signal transduction in bacteria. These
functional inter-kingdom correlations could explain how bacteria
and fungi interact in the microbiome community.
4. Discussion

Here, we have designed and validated FunOMIC, a metagenomic
pipeline that integrates quality control, taxonomic profiling
(FunOMIC-T), and functional profiling (FunOMIC-P) for a compre-
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hensive analysis of fungi in environmental samples, and, particu-
larly, in humans. First, to the best of our knowledge, FunOMIC
offers the most comprehensive coverage of the reference fungal
species and functions compared with other existing databases for
profiling the human mycobiome. Indeed, FunOMIC-T, which con-
tains more than 1.6 million fungal single-copy marker genes and
covers 1,916 fungal species, exceeds the fungal spectrum of other
similar tools [14,44,45]. We also proposed FunOMIC-P which
includes more than 3 million non-redundant fungal proteins,
which is, to our knowledge, the first protein database proposed
for analysing human mycobiome functions. Second, FunOMIC-T
provided a smaller-sized taxonomic database with more accurate
mapping possibilities for mycobiome profiling using universal con-
served fungal genes instead of the full genome-based fungal refer-
ence database. Third, validations with different mock communities
mimicking the human gut microbiome ensured extremely low bac-
terial read mis-mapping.

In this study, we applied the FunOMIC pipeline to a set of nearly
2,700 metagenomic human samples representing human micro-
biomes of different body sites from individuals with different
health status and from different geographical regions. We corrob-
orated previous human mycobiome results showing that the spe-
cies S. cerevisiae, C. albicans, and M. restricta dominate the fungal
communities in different human body sites [46–49]. We found that
geography and health status were the two most important factors
contributing to the variabilities of human mycobiome taxonomic
and functional compositions. Five fungal species (A. recurvatus, M.
restricta, S. cerevisiae, uncultured Malassezia spp., Y. lipolytica) varied



Fig. 4. Interaction of fungal and bacterial communities in gut microbiome under healthy conditions. Correlation network between the relative abundance of fungal and
bacterial species in the gut mycobiome under healthy conditions from Spain (A) and Denmark (B) using the SparCC algorithm. Each node represents a fungal/bacterial/
archaeal species and their sizes are determined by relative abundances. The colours of the edges connecting two nodes represent positive (red) and negative (blue)
correlations. For a better visual effect, only correlations with p-values<0.001 and an absolute correlation coefficient over 0.05 are represented. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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along with different countries, health status, and body sites. C. albi-
cans, one of the most common human fungal pathogens [50], neg-
atively correlated with bacterial species that are mainly SCFA
producers [43]. This finding suggests that therapeutic strategies
based on SCFA administration or on inducing SCFA producers could
be implemented to control C. Albicans infection.

One important limitation of this pipeline is that the extraction
and quality of single-copy marker genes rely on the completeness
of the available fungal genomes, which may result in a lower cov-
erage of fungal taxonomies compared with the fungal amplicon
databases [23,51]. Another limitation comes from the high inter-
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kingdom conservation of a portion of protein-coding genes. As a
consequence, bacterial contamination was not totally preventable,
even after applying an exceedingly strict mapping threshold to the
fungal functional annotation. To overcome this drawback, filtration
to remove the majority of bacterial reads before functional annota-
tion could be included in the future update of this tool. Beyond
that, in this study, FunOMIC was only applied to human micro-
biome data; in the future, applications with soil microbiome, mar-
ine microbiome, or other different environmental samples will be
launched with FunOMIC to test its ability to handle other micro-
biome data.
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5. Conclusions

Taken together, our work presented here demonstrates that the
proposed taxonomic database FunOMIC-T can effectively detect
fungal species from shotgun metagenomic sequencing data.
Together with FunOMIC-P, which to our knowledge, the first pro-
posed functional database for mycobiome analysis, we believe that
more mycobiome findings will be revealed in the future.
6. Data access

The two built-in databases, FunOMIC-T and FunOMIC-P, are
freely available at https://manichanh.vhir.org/funomic/. The source
code of pipeline FunOMIC is freely available at our GitHub (https://
github.com/ManichanhLab/FunOMIC).
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