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Abstract: Nanocomposite films based on spinel ferrite (Mg0.8Zn0.2Fe1.5Al0.5O4) in a PVA matrix
were obtained. An increase in the spinel concentration to 10 wt.% caused an avalanche-like rise
in roughness due to the formation of nanoparticle agglomerates. The lateral mode of atomic force
microscopy (AFM) allowed us to trace the agglomeration dynamics. An unexpected result was
that the composite with 6 wt.% of filler had a low friction coefficient in comparison with similar
composites due to the successfully combined effects of low roughness and surface energy. The
friction coefficient decreased to 0.07 when the friction coefficient of pure PVA was 0.72. A specially
developed method for measuring nano-objects’ surface energy using AFM made it possible to explain
the anomalous nature of the change in tribological characteristics.

Keywords: nanocomposites; ferrites; spinel nanoparticles; surface energy; friction

1. Introduction

Nanomaterials attract a lot of attention from researchers and developers due to their
anomalous optical, thermal, electrical, and magnetic properties, and significant differences
from their bulky counterparts [1]. Spinel ferrites are a hybrid functional material with the
general formula MFe2O4 (M = Mg2+, Co2+, Mn2+, Ni2+, Zn2+) [2–4]. Ferrites are essential
for many recent technological designs of electrical, magnetic, and microwave devices [5–7].
The properties of ferrites are influenced by the method of synthesis, the composition, the
microstructure features, and the distribution of cations in the tetrahedral and octahedral
sites in the lattice of the ferrite [8–10]. The distribution of equilibrium between the spinel
structure cations depends on ionic, electronic, and polarizing effects [11–14].

Polymers, due to their many properties, have a wide variety of uses, in addition to
the invention of new applications [15–18]. One of these polymers is polyvinyl alcohol
(PVA), which can be used as a matrix for many materials due to its good properties, and
characteristics such as chemical resistance, mechanical and dielectric strength, solubility
in many solvents and water, low cost, environmentally friendly nature, thermal-stability,
non-toxicity, and capability for film formation via solution casting [19–29].
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One of the primary material science trends is developing composite materials based
on a polymer matrix with various fillers [30–34]. Composites often exhibit unexpected be-
haviors and have properties that differ significantly from those of their components [35–37].
The addition of various additives to PVA (from metallic, ceramic, or organic nanoparti-
cles) leads to a significant change in the optical [25,28], electrical [22], sorption [38], and
thermal [39–41] properties compared to pure PVA. The fillers in PVA can also improve
composites’ mechanical properties, hardness, elasticity, tensile strength, and adhesion
characteristics [42–48]. There are several papers on the study of the friction of pure PVA
films and composites based on PVA. Pure PVA has the following values of coefficient
of friction: 0.65 [49], 0.72 [50], or 0.8 [51], depending on synthesis conditions and other
technological parameters. As demonstrated by Chen and colleagues, PVA hydrogel is a
promising method for producing ultra-low-friction coatings [49,52–54].

The main factor that reduces friction (excluding the effect of roughness) is a decrease
in surface energy due to a reduction in the number of unsaturated bond atoms. In addition
to changing the polymer’s chemical structure, this can be achieved by introducing nano-
sized particles. Due to the high specific surface area, nano-sized particles also have a high
concentration of unsaturated bonds. However, a combination with a polymer with good
adsorption capacity, such as PVA, is capable of self-removal of unsaturated bonds, and
dramatically reduces surface energy; this, in turn, can reduce friction, as well as impart
hydrophobicity, as in [44,55].

The problem of obtaining a homogeneous composite based on magnetic nanoparticles,
including spinel ferrites, is complex; it usually requires specific synthesis techniques for
good homogenization of particles in the matrix and rapid polymerization of the matrix. It
is believed that the optimal balance of concentration and surface energy of the nano-sized
filler will allow a uniform distribution of nanoparticles to be obtained in the matrix [56–60].
However, this assumption has not previously been tested for magnetic nanoparticles, where
there is an additional magnetic contribution to the formation of agglomerates.

This article aims to create a functional magnetic composite material based on ferrite
spinel Mg0.8Zn0.2Fe1.5Al0.5O4 in a PVA matrix with excellent magnetic characteristics
and an optimal microstructure, as well as to find the optimal filler concentration for the
formation of a homogeneous film. The aim was achieved through comprehensive studies
of the structure, adhesion, surface energy, and nano-friction of the composite, depending
on the filler concentration. An unexpected result was that the synthesized composite with
6 wt.% Mg0.8Zn0.2Fe1.5Al0.5O4 had a low coefficient of friction in comparison with similar
composites due to the successfully combined effect of microstructure (low roughness) and
low surface energy.

2. Materials and Methods
2.1. Synthesis of Mg0.8Zn0.2Fe1.5Al0.5O4 Nanoparticles

The flash auto-combustion method [61,62] was used for the spinel ferrite nanoparticle
preparation. Spinel ferrite has the formula Mg0.8Zn0.2Fe1.5Al0.5O4 (MZFA). To achieve the
desired composition, stoichiometric amounts of magnesium nitrate (Mg(NO3)2·6H2O),
zinc nitrate (Zn(NO3)3·9H2O), aluminum nitrate (Al(NO3)3·9H2O), and iron nitrate (Fe
(NO3)3·9H2O) were used. Urea CO(NH2)2 was used as a fuel. All the metal nitrates were
mixed with distilled water using glass rods. The mixture solutions were first prepared, and
then stirred at 80 ◦C for 30 min using a hot-plate magnetic stirrer, followed by adding urea
to the mixture while stirring until it becomes viscous and the internal ignition took place,
forming brown ferrite nanoparticles. The spinal nanoparticles were annealed at 600 ◦C for
2 h to avoid any foreign phase.

2.2. Synthesis of PVA/MZFA Nanocomposite Films

The PVA/MZFA nanocomposite films were prepared using the solution casting tech-
nique. An amount of 10 mg of PVA was dissolved in 200 mL of distilled water with constant
stirring with a magnetic stirrer at 70 ◦C to obtain a clear solution. Various concentrations (2,
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4, 6, 8, and 10 wt.%) of MZFA were added to the PVA solution and stirred with a magnetic
stirrer at 70 ◦C for 20 min to obtain a completely homogeneous solution. Then, the mixture
of PVA/MZFA was poured into Petri dishes and dried at room temperature. Images of the
prepared films are provided in Figure 1.
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2.3. Characterization

All prepared PVA/MZFA nanocomposite films were characterized using X-ray diffrac-
tion (XRD). The patterns were determined using a Shimadzu 600—0XRD X-ray diffrac-
tometer using Cu-Kα radiation (λ = 1.54056Å). The pure ferrite sample morphology was
investigated using scanning electron microscopy (SEM) (ZEISS Sigma 500 VP FE-SEM),
equipped with a secondary electron detector and EDX to quantify the presented elements.
Fourier transform infrared (FTIR) spectroscopy was performed using Perkin-Elmer-1430 at
room temperature in the range of 200 to 4000 cm−1. The microstructure, surface roughness,
adhesion force, friction coefficient, and specific surface energy were determined using a
multifunctional atomic force microscope (AFM).

2.4. AFM Investigations

A multifunctional AFM (NT-2006) was used to investigate sample microstructure,
surface roughness, adhesion force, friction coefficient, and specific surface energy. The
microscope was designed by ODO “Microtestmachines” (Gomel, Belarus). The scanning
speed was 35 µm/s, and the normal load (FN) was about 70 nN. A silicon probe (CSG30
series) with a tip curvature radius of about 10 nm and a force constant of 0.6 N/m was
used to obtain the topography. The root-mean-square roughness and average particle
size of nanocomposites were calculated using at least five AFM images, as in [63,64]. The
following equation estimated the average surface roughness (Ra):

Ra =

∫ L
0 |r(x)|dx

L
, (1)

where r(x) is a profile deviation from its mean value and L is a sampling length.
The calculation of particle size was carried out, taking the particle form as an equiv-

alent sphere, as in [65,66]. The adhesion force (Fad) was determined using force spec-
troscopy [67]. The Fad value was equal to the force required to separate the AFM probe
from the investigated surface when moving in the normal direction.

The friction at the nano-level was investigated according to the AFM technique. The
method of nanofriction investigation with AFM consisted of measuring the torsion angle
of the tip under the action of friction forces during contact scanning of the surface in
forward and backward directions. It is well described in [68–72]. The value of torsion
strongly correlates with the frictional force (Ffr). Thus, the scan provides information
about surface topography (profiles) and profiles of the forward (zfw) and backward torsion
angle (zbw) movements, respectively. Subtracting the backward motion from the forward
motion profile gives the resulting graph, which corresponds to the frictional force value.
Different ∆Z values characterize the areas with different coefficients of friction and different
properties. Roughness zones with different torsion polarities disappear after subtraction.
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Equation (2) was used for friction force calculation. The friction coefficient (µ) is the ratio
of friction force to normal load, as in Equation (3).

Ffr =
lk(zfw − zbw)

6s(1 + ϑ)
, (2)

µ =
Ffr
FN

, (3)

where l is the cantilever length, k is the stiffness coefficient of the AFM probe, s is the
height of the probe tip, ϑ is the Poisson’s ratio of the silicon (material of AFM probe
tip), and zfw and zbw are the average cantilever deviations in the forward and reverse
motions, respectively.

A unique technique [73] was used to calculate the specific surface energy (SSE) of the
nanocomposites. SSE calculation results were obtained from the adapted contact interaction
models with the described contact case of the investigated sample using an AFM probe.
Equation (4) was used for SSE calculation:

SSE = − lk
6πrs(1 + ϑ)

×
[∫ L

0
(ffw(x)− Ffr)dx +

∫ 0

L
(fbw(x)− Ffr)dx

]
, (4)

where r is the tip radius, L is the length of the scanning line, and ffw and fbw are functions
of the average torsion profiles for the forward and reverse tip movements, respectively.

3. Results and Discussion
3.1. Structural Analysis

SEM was carried out to illustrate surface morphology, as shown in Figure 2a–c. The
average grain size estimated from the micrograph is found to be approximately 51 nm.
Elemental analysis employing EDX determines the elemental composition. The estimated
stoichiometry is very close to the anticipated values, as given in Table 1.
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Table 1. The results of EDX analysis.

Elements Mg Zn Al Fe O C

Weight % 6.57 5.56 4.82 20.75 43.47 18.83

Atomic % 5.21 1.64 3.44 7.16 52.35 30.21

As shown in Figure 3, the XRD patterns of the pure PVA polymer and the synthesized
PVA/MZFA composite films are depicted in the range of 5◦ ≤ 2θ≥ 80◦ at room temperature.
It is clearly shown that pure PVA indicates a diffraction band at 2θ = 19.50◦, which is
attributed to the partially crystalline nature of PVA polymer molecules; this could be as
a result of strong intermolecular hydrogen bonding between the PVA chains, although it
indicates the presence of a typical semi-crystalline structure [74]. It can be observed that
the intensity of the main peak at 2θ = 19.50◦ is found to decrease with increasing MZFA
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content in the PVA matrix. This decrease in the intensity may be related to interactions
between PVA and MZFA, resulting in an increase in amorphousness due to destroying the
PVA chain’s steric regularity [75]. There are additional peaks that appear to confirm that
MZFA was present in the PVA matrix, as shown in Figure 3. Furthermore, after doping,
the XRD of PVA/MZFA shows new peaks at 29.70◦, 35.26◦, 43.88◦, 57.00◦, and 62.72◦. The
peaks can be indexed to those reflections from the (220), (311), (222), (400), (511), and (440)
planes, respectively, and can be attributed to doped ferrite samples.
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The interchain separation (R), crystallite size (L), dislocation density (δ), interplanar
distance (d), distortion parameters (g), and microstrain (ε) were calculated using the
following equations [76–78]:

R =
5
8
λ

sin θ
, (5)

L =
kλ

β cos θ
, (6)

δ =
1

L2 , (7)

d =
λ

2 sin θ
, (8)
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g =
β

tan θ
, (9)

ε =
β cos θ

4
, (10)

where θ is the Bragg angle, β is the full width at half maximum (FWHM), k = 0.89, and
λ = 1.541178 Å. Table 2 lists the structural parameters (R, L, δ, d, g, and ε) that are calculated
relatively to the PVA peak. As shown in Figure 3, the average crystallite size decreases with
increasing MZFA content, from 123 to 173 nm, and the dislocation density is inversely pro-
portional to the crystallite size; the value of δ decreases from 6.0× 10−2 to 8.5× 10−5 nm−2.
A slight change in the value of interplanar and interchain distances is associated with a
small change in the angle of the PVA peak. The microstrain and distortion parameters
decrease due to the shift in the XRD pattern towards higher 2θ values with increasing
MZFA concentration.

Table 2. The structural parameters of the polymer blend PVA/MZFA composite.

Sample
Crystallite

Size (L),
(nm)

Interchain
Separation (R),

(nm)

Interplanar
Distance (d),

(nm)

Microstrain (ε),
(arb. un.)

Dislocation
Density (δ),

(nm−2)

Distortion
Parameters (g),

(arb. un.)

Pure PVA 123 6.2 5.0 8.0 × 10−2 6.0 × 10−2 2.30

PVA + 2% MZFA 127 3.7 3.0 3.2 × 10−2 1.2 × 10−4 0.50

PVA + 4% MZFA 165 3.9 3.1 2.7 × 10−2 8.7 × 10−5 0.43

PVA + 6% MZFA 146 3.8 3.1 3.0 × 10−2 1.0 × 10−4 0.49

PVA + 8% MZFA 168 4.0 3.2 2.8 × 10−2 9.0 × 10−5 0.45

PVA + 10% MZFA 173 4.0 3.2 2.7 × 10−2 8.5 × 10−5 0.47

According to the analysis in the Williamson–Hall approximation, the contributions
to the X-ray peak broadening from the average crystallite size—or in other words, from
the average coherent scattering region—and from the microstrain in the crystallite are
independent. However, this is true only in the very initial approximation. On closer
examination, it becomes clear that the microstrain in a crystallite depends on the average
crystallite size. In the literature, one can find results for nanosized particles, for which the
interplanar distance decreases with decreasing size [79]. The decrease in the interplanar
distance occurs due to compression under the action of the surface tension force. This
compressive force is greater the smaller the crystallite size. Such compression leads to
an increase in microstrain in the nanocrystallite. Such dependence can be found in [80].
Therefore, a more detailed examination of the relationship between the average crystallite
size and microstrain can reveal just the same inverse relationship between these two
quantities and, accordingly, contributions to the broadening of the X-ray peak. Each
approximation has its drawbacks and, therefore, is not ideal. To prove the applicability
of the Williamson–Hall approximation, additional efforts are required. To detail these
contributions, it is necessary to use an X-ray diffractometer with an ultrahigh resolution,
which is not always available. Nevertheless, in the present work, Formulas (5)–(10) for the
relationship between structural parameters that are often used in practice were used. Some
examples are the works [76–78] and the papers cited herein. The values of the structural
parameters will be refined over time.

The asymmetry of X-ray peaks has two explanations. The first explanation is that for
the nanosized crystallites, as mentioned above, strong microstrains are observed; these
lead to distortion of the unit cell. The symmetry of the obtained nanosized crystallites is no
longer strictly cubic as is the case for the massive microsized crystallites of spinel ferrites.
Weak distortions, mainly rhombic ones, lead to hardly noticeable splitting of X-ray peaks
and their asymmetry for different angular positions. The symmetry of the unit cell in this
case can be called pseudocubic rather than ideal cubic. The second explanation for the
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asymmetry of X-ray peaks is the peculiarities of the size distribution of crystallites. The
asymmetry of this dependence also leads to the asymmetry of the X-ray peaks. It should be
mentioned that the XRD technique was used to be certain about the phases of the prepared
samples and whether there were any foreign phases.

As shown in Figure 4, the FTIR spectra have a range of 200 to 5000 cm−1 for all the
samples. A broad stretching vibration around 3290 cm−1 is observed due to hydroxyl
(O-H) groups in the structure of PVA and all the PVA/MZFA composite films. There is a
weak band at about 2900 cm−1 corresponding to the stretching vibration of CH2, implying
the presence of PVA. It shows weak bands at about 1630 cm−1; additionally, 1460 cm−1

corresponds to the H–O–H bending vibration of the residual water, and may be due to
stretching vibrations of the anti-symmetric NO−1

3 , respectively. The band around 1090
cm−1 is assigned to the vibration of the bond between the oxygen ion and the tetrahedral
metal ion O–Mtetra [81–83]. The dielectric analysis and magnetic properties of the prepared
samples will be investigated in detail and provided in the near future.
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3.2. M. Ultifunctional Atomic Force Microscope (AFM)

Figure 5 shows 3D images of composites’ surface topography based on MZFA in a
PVA matrix and a matrix without the filler. The matrix surface in Figure 5a is uniform. The
height of individual heterogeneity does not exceed a few nanometers. The roughness of
the PVA is 1.8 ± 0.5 nm. When 2 wt.% nano-spinel is added to the surface, a distinct grain
structure is formed (Figure 5b). The roughness of the composites with a 2–6 wt.% of spinel
filler varies in the range from 1.7 ± 0.5 to 3.4 ± 0.8 nm. Figure 6 shows the dependence
of the average surface roughness on the amount of filler in the composite. A noticeable
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increase in roughness begins after the addition of 8 wt.% of filler (until 22.2 ± 5.5 nm). The
roughness of the composite with 10 wt.% is 35.9 ± 7.5 nm.
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The decrease in the particle size on the surface should also be noted. Figure 7 shows
the range of particle sizes for each of the nanocomposites. The visible particles on the
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surface are probably individual MZFA particles, and their agglomerates are formed during
the polymerization of the composite. It can be argued that this is because the same powder
with the same particle size was used for all composites, but the visible particle size on
the AFM images is different. Estimates of the agglomerate size range from 41 to 140 nm
for nanocomposites with 2 wt.% of MZFA, and from 43 to 120 nm and 28 to 93 nm for
4 wt.% and 6 wt.% of nanocomposites, respectively. When the addition of the powder
was increased to 8 wt.% and 10 wt.%, the agglomeration process was greatly intensified,
as confirmed by the surface topography (Figure 5), the average size of the agglomerates
(Figure 7), and the high value of roughness (Figure 6). The roughness graph shows a sharp
increase in roughness to 22.2 ± 5.5 nm and 35.9 ± 7.5 nm for samples with 8 wt.% and
10 wt.% filler, respectively. In these nanocomposites, nanoparticle agglomerate size is in a
wide range, from 92 to 209 nm (for 8 wt.%) and 75–356 nm (for 10 wt.% of nanocomposite).
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Figure 7. Size range of nanoparticle agglomerates of nanocomposites.

Figure 8a–f show the 2D image of the microstructure of the pure matrix and nanocom-
posite surfaces, respectively. There are two images for each sample. The first image (bottom)
is the topography, which describes the sample roughness and microstructure. The second
image was obtained in the lateral force mode or in the contact mode of the atomic force
microscopy peaks. The second image (overhead) demonstrates the magnitude of the forces
that twist the AFM probe during scanning. These forces are most-often associated with
frictional forces, as they impede the movement of the tip of the probe over the surface
under study [84–86]. However, friction at the nanoscale has a more complex nature than at
the macroscale. At the macroscale, the main contributor to friction is surface roughness.
At the nanoscale, the force of adhesion; interatomic and intermolecular interactions (van
der Waals force); and electrical, magnetic, and chemical interactions also have a strong
effect. The contribution of each of these components to nano-friction processes is poorly
understood and little-studied in the literature due to its complex influence. However, it
can be asserted, with complete confidence, that individual sections of composite images
with a 2, 4, and 8 wt.% of MZFA filler interact with an AFM probe at different strengths.
This is confirmed by the contrasting areas in the lateral forces maps’ overhead images for
nanocomposite with a 2, 4, and 8 wt.% of filler in Figure 8b,c,e).
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The uniformity of the pure matrix surface indicates a high degree of polymerization,
as can be seen from Figure 8a. Figure 8b,c are similar, but differ in the ratio of dark-to-light
areas. An increase in the powder concentration from 2 wt.% to 4 wt.% causes a rise in the
number of light regions compared to dark ones. Light areas are characterized by a greater
force of twisting of the probe and, accordingly, by a greater force of interaction than dark
areas, by less. The map of lateral forces of the sample with 6 wt.% of filler is uniform. Based
on this fact, it can be concluded that a concentration of 6% for the composites is optimal for
the formation of a homogeneous nanocomposite. The composite filling degree (particle
area percentage) is approximately 45% of the surface for a 2 wt.% concentration, and
approximately 70% for a 4 wt.% concentration (Figure 8b,c). The surface looks uniformly
filled with MZFA at a concentration of 6 wt.%. However, an unexpected decrease in the
filling degree of 90% is observed for the concentration of 8 wt.% of the filler in the PVA
matrix, as judged by the lateral force maps in Figure 8e. It is probable that the concentration
of 8 wt.% is excessive and causes a “new wave” of agglomeration.

Moreover, bulk agglomerates are formed, which leads to a significant increase in
roughness, as noted earlier in Figure 6. The lateral force image for a composite with 10 wt.%
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of the filler (Figure 8f) does not provide obvious information about the agglomerates’
structure, since there is no visible contrast on the lateral force map. There are two options
for this: (1) nano-sized MZFA uniformly filled the empty matrix between the agglomerates;
or (2) the formation of sufficiently large (75–356 nm) agglomerates caused a decrease in
their surface energy (or energy of the surface and AFM probe interaction) to such an extent
that it became equal to the surface energy of the PVA matrix. As a result, the differences in
the forces of interaction between the matrix and the filler with the probe disappear.

Using the previously developed unique technique for determining the specific surface
energy at a single point using AFM [73], SSE studies were carried out for “MZFA/PVA”
nanocomposites. The measurements were carried out at points coinciding with the center
of the individual particles, which are clearly visible in the AFM images. The spinel particles
correspond to the light areas in lateral force map images (Figure 8). Studies were conducted
on at least 20 points for each sample to reduce the measurement error. A set of at least
20 measurements at random locations was made for pure PVA matrices. The results
of the SSE investigations are shown in Figure 9. The SSE of the pure PVA matrix is
0.12 ± 0.07 N/m. The composite with 2 wt.% filler has a surface energy more than ten
times higher than the SSE of the pure matrix (1.24 ± 0.19 N/m). SSE is reduced two times
each time, with an increase in the filler’s concentration to 4 wt.% and 6 wt.% (to 0.63 ± 0.17
and 0.26 ± 0.06 N/m, respectively). The change in the specific surface energy correlates
well with the uniformity of filling the composite with MZFA particles. Thus, the maximum
surface energy is observed at the minimum filler concentration, and then SSE decreases and
reaches a minimum when the particle distribution in the matrix becomes uniform (6 wt.%).
A further increase in filler concentration to 8 wt.% has no significant effect on SSE. The
SSE of a composite with 8 wt.% is 0.28 ± 0.04 N/m. However, with an increase in the filler
concentration to 10 wt.%, the surface energy is reduced two times compared to the sample
with 8 wt.%: SSE = 0.14 ± 0.05 N/m. This confirms the fact that there is a “second wave”
of agglomeration, as described above.
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Figure 10 shows the study results of the friction coefficient (black line), which was
measured in the contact AFM mode. Usually, the friction force (as well as the friction
coefficient) correlates well with the roughness [68,87,88]. In this study, the maximum
friction coefficient value (0.72) corresponded to the pure PVA matrix, characterized by the
minimum surface roughness (Ra = 1.8 nm). It should be recalled that the pure matrix also
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has a minimum surface energy (SSE = 0.12 N/m). To explain the anomalously high value
of friction, adhesion force studies were carried out using the force spectroscopy method.
The results are shown in Figure 9 with a blue line.

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 

0 2 4 6 8 10
0.0

0.5

1.0

1.5

Sp
ec

ifi
c 

su
rf

ac
e 

en
er

gy
 (N

/m
)

Nanoparticle content (wt.%)
 

Figure 9. The specific surface energy of “MZFA/PVA” nanocomposites. 

Figure 10 shows the study results of the friction coefficient (black line), which was 
measured in the contact AFM mode. Usually, the friction force (as well as the friction co-
efficient) correlates well with the roughness [68,87,88]. In this study, the maximum friction 
coefficient value (0.72) corresponded to the pure PVA matrix, characterized by the mini-
mum surface roughness (Ra = 1.8 nm). It should be recalled that the pure matrix also has 
a minimum surface energy (SSE = 0.12 N/m). To explain the anomalously high value of 
friction, adhesion force studies were carried out using the force spectroscopy method. The 
results are shown in Figure 9 with a blue line. 

0 2 4 6 8 10
-0.2

0.0

0.2

0.4

0.6

0.8
 Friction coefficient
 Average adhesive force

Nanoparticle content (wt.%)

Fr
ic

tio
n 

co
ef

fic
ie

nt

20

25

30

35

40

A
ve

ra
ge

 a
dh

es
iv

e 
fo

rc
e 

(n
N

)

 
Figure 10. The friction coefficient and average adhesive force of “MZFA/PVA” nanocomposites. 

It was found that despite the low surface energy, the pure matrix has the highest 
adhesion force to the probe (36 nN). It should be noted that this refers to the adhesion 

Figure 10. The friction coefficient and average adhesive force of “MZFA/PVA” nanocomposites.

It was found that despite the low surface energy, the pure matrix has the highest
adhesion force to the probe (36 nN). It should be noted that this refers to the adhesion force
of the probe and the sample surface during separation in the normal direction. The addition
of 2 wt.%, 4 wt.%, and 6 wt.% of MZFA to the PVA matrix leads to a linear decrease in
both the friction coefficient to µ = 0.07 and the adhesion force to Fad = 21 nN for the sample
with 6 wt.% filler. As was noted, the value of the friction coefficient depends on the friction
force and the normal load (Equation (3)). Since the normal load was kept constant during
the measurement process (about 70 nN), only the friction force, which depends on the
roughness, adhesion force, and surface energy, contributes. The surface of the PVA/MZFA
composite with 6 wt.% of filler has a low roughness (Ra = 1.7 nm, Figure 6), as well as a
small distribution of particle sizes (Figure 7), which reduces the number of unsaturated
bonds. This results in a low surface energy value (SSE = 0.26 N/m, Figure 9). As a result of
the combined influence of these factors, the PVA/MZFA composite with 6 wt.% of filler has
a low value of friction force (Ffr = 4.9 nN) and friction coefficient (µ = 0.07). The coexistence
of these characteristics makes this material promising as a tribological coating. A further
increase in filler concentration does not lead to changes in the adhesion forces, which are
22 ± 2.2 nN (for 8 wt.%) and 21 ± 2.4 nN (for 10 wt.%). However, a sharp increase in the
coefficient of friction to 0.27 and 0.44 is observed with an increase in concentration to 8 wt.%
and 10 wt.%, respectively. This increase was caused by the increase in surface roughness
that is observed for these samples.

4. Conclusions

The studies of the surface morphology of nanocomposites and lateral forces maps
using AFM methods show that the addition of 6 wt.% of MZFA nano-spinel leads to the
formation of a composite with low roughness (Ra = 1.7 nm) and a good uniformity of
distribution of nano-spinel particles. Concentrations lower than 6 wt.% are also charac-
terized by low roughness, but the particles are not uniformly distributed. An increase in
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filler concentration to 8 and 10 wt.% caused intense agglomeration, which increased the
roughness to 22.2 and 35.9 nm, respectively. The formation of a homogeneous composite
and agglomeration were accompanied by corresponding changes in the specific surface
energy, which was measured using a unique, previously developed AFM technique. In
addition, it is shown that the friction coefficient of “MZFA + PVA” nanocomposites strongly
depends on the adhesion force at low roughness. When the Rq value increases due to ag-
glomeration, roughness determines the tribological characteristics. Thus, it was found that
the uniformity of nanoparticle distribution, low roughness, surface energy, and adhesion
force characterized the composite with 6 wt.% of MZFA. As a result of the above, this film
has an abnormally low value of the friction coefficient (µ = 0.07) for composites including
PVA and nanoparticles.
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