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Morphological variation 
in paediatric lower limb bones
Laura Carman1, Thor F. Besier1,2 & Julie Choisne1*

Available methods for generating paediatric musculoskeletal geometry are to scale generic adult 
geometry, which is widely accessible but can be inaccurate, or to obtain geometry from medical 
imaging, which is accurate but time-consuming and costly. A population-based shape model is 
required to generate accurate and accessible musculoskeletal geometry in a paediatric population. The 
pelvis, femur, and tibia/fibula were segmented from 333 CT scans of children aged 4–18 years. Bone 
morphology variation was captured using principal component analysis (PCA). Subsequently, a shape 
model was developed to predict bone geometry from demographic and linear bone measurements 
and validated using a leave one out analysis. The shape model was compared to linear scaling of adult 
and paediatric bone geometry. The PCA captured growth-related changes in bone geometry. The 
shape model predicted bone geometry with root mean squared error (RMSE) of 2.91 ± 0.99 mm in the 
pelvis, 2.01 ± 0.62 mm in the femur, and 1.85 ± 0.54 mm in the tibia/fibula. Linear scaling of an adult 
mesh produced RMSE of 4.79 ± 1.39 mm in the pelvis, 4.38 ± 0.72 mm in the femur, and 4.39 ± 0.86 mm 
in the tibia/fibula. We have developed a method for capturing and predicting lower limb bone shape 
variation in a paediatric population more accurately than linear scaling without using medical imaging.

Childhood conditions such as cerebral palsy, developmental hip dysplasia, and slipped capital femoral epiphysis 
have a negative effect on lower limb mobility1. Personalised musculoskeletal modelling can help to understand 
structure–function relationships in both typically developed (TD) children and children affected by movement 
disorders2. Three-dimensional gait analysis, for example, can be used in conjunction with musculoskeletal models 
to understand muscle–tendon function and predict outcomes from surgical intervention3. Computational models 
have the potential to assist surgeons to deliver appropriate interventions, customise orthoses, and monitor patient 
rehabilitation. However, the first step in generating a personalised musculoskeletal model is to accurately capture 
the anatomy of the participant, which is often the most labour-intensive and challenging.

A common method for generating musculoskeletal models is to scale the bone and muscle geometry from 
an existing adult template4. Scaling is performed either by using relative measurements of anatomical landmarks 
(typically segment lengths calculated from optical motion capture markers) or by height and mass. Scaling might 
work when the template model is of similar proportions to the target participant. However, linear scaling of 
body segments is unlikely to accurately capture the geometry of a paediatric population, as children are not just 
scaled down adults; they differ significantly in geometry and physiology5–7. To generate personalised paediatric 
musculoskeletal models, we need representative template models from a paediatric population. An accurate but 
time-consuming approach is to create subject-specific models from medical images, such as MRI or CT, which 
in children can take 10–12 h per case5. Subject-specific models produce different results compared to generically 
scaled models in both adults and children2,8–11. We propose an alternative approach to create paediatric muscu-
loskeletal models using a statistical shape model (herein referred to as a ‘shape model’) to scale a template model 
to match a participant’s anthropometry. The template model represents the mean paediatric bone geometry in 
the population. This approach bridges a gap between generic and patient-specific models, providing easy and 
rapid generation of anatomically accurate models.

Shape models typically use a principal component analysis (PCA) to characterise anatomical variation as 
a combination of weights and principal components, or modes. This approach has been used to capture the 
geometry of the adult pelvis12,13, femur14–20, the knee joint21, the tibia20, and the lower limbs collectively22. Using 
a shape model of the adult femur, for example, geometry can be predicted within 2.3 mm root mean square 
error using just six parameters: age, sex, height, body mass, femoral length, and epicondylar width14. To our 
knowledge, existing studies of this type on the lower limb have only been conducted on adult cohorts and adult 
shape models do not accurately predict paediatric bone5.

The development of a paediatric shape model to predict musculoskeletal geometry in children could provide 
a solution for modelling the lower limbs in a paediatric population. Such a shape model will likely produce more 
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accurate results than a linearly scaled generic model as has been seen in adults22,23 and is more reasonable for 
widespread implementation than a model created from medical imaging. Creating a population-based model 
from a large dataset of bones will allow us to analyse and predict changes in musculoskeletal geometry, as has 
been done in adult populations22. This will allow the observation of how musculoskeletal shape changes with 
growth on a scale which has not been seen in the paediatric population. These valuable data will help to inform 
clinical decisions and form a comparison for children with movement abnormalities.

The objectives of this research were to: (1) understand how bone shape differs within a typically developed 
paediatric cohort aged from 4 to 18 years, (2) evaluate the accuracy of bone shape prediction in the lower limbs 
and determine the factors which affect bone shape, and (3) evaluate the differences between shape model pre-
dicted bone geometry and linearly scaled bone geometry.

Methods
Bone segmentation.  Retrospective post-mortem CT scans of 333 children (137 F, age: 4–18 years (12 ± 5 
Y), Height: 96–192 cm (148 ± 24 cm), Mass: 14–140 kg (49 ± 22 kg)) were obtained from the Victorian Institute 
of Forensic Medicine (VIFM, Melbourne, Australia) with ethics approval EC 22/2016 from the VIFM Ethics 
Committee. This study used retrospective data, which was collected by the VIFM for autopsy purposes between 
2006 and 2019. Before autopsy, the VIFM obtained written consent from the individual’s legal guardian. All 
methods were performed in accordance with the relevant guidelines and regulations. The resolution and slice 
thickness varied between cases, as the scans were taken over a period of 14 years (2006–2019). The slice thickness 
of the images ranged from 0.5 to 2 mm and the pixel spacing from 0.57 × 0.57 to 1.27 × 1.27 mm. Any partici-
pants with ailments affecting the lower limb structure and function were removed from the dataset.

The bones segmented included the pelvis, femurs, tibias, and fibulas. Manual segmentation on Mimics 
Research Suite v23 (Materialise, Leuven, BE) was performed for 146 of these cases, the rest were automatically 
segmented using a machine learning algorithm (Deep Segmentation, Formus Labs), to spend less time per-
forming manual segmentations. The automatically segmented bones were each visually inspected to check for 
discontinuities in any areas, then smoothed, and re-meshed using MeshLab24 ‘Uniform Mesh Resampling’ and 
‘Laplacian Smooth’ functions. Discontinuities included merging of two bones at the joint space and meshing 
errors such as overlapping faces. Accuracy of the deep segmentation can be found in Supplementary material 
(Table S1). Out of the 187 automatically segmented cases, 246 bones displayed discontinuities across 72 cases and 
subsequently were disregarded and manually segmented in Mimics. The areas where the algorithm failed were 
mostly in the cases of young children, with 40 of the failed cases being below 10 years old and 25 of the failed 
cases being 4–5 years old. This was likely due to the prominent growth plate seen in young children making it 
difficult for the algorithm to determine where the bone begins and ends. The bone type with the highest fail rate 
was the femur, accounting for 86 of the failed bones.

After all bones were segmented from the CT scans, all right bones from both segmentation pathways were 
mirrored to the left side for the femur, tibia, and fibula to increase the sample size for the shape model and to 
only require a single shape model for the femur and tibia/fibula. The tibia and fibula were combined (tibia/
fibula). The total number of bones for the pelvis was 331, for the femur was 663, and for the tibia/fibula was 658. 
Next, all bones were aligned in accordance with their individual centre of mass based on anatomical landmarks 
located on each bone.

Principal component analysis.  Principal Component Analysis (PCA) was conducted for each bone in 
the dataset. PCA is an unsupervised machine learning algorithm used to mathematically describe variation in 
a dataset using orthogonal projection, called principal components (PCs) or modes25. The weights of the PCs 
can be adjusted to predict new bone geometries outside of the dataset. PCA was performed using GIAS2, an 
open-source Python library14. PCA was performed for the pelvis, femur, and tibia/fibula separately following the 
workflow outlined below.

1.	 Fitting (Fig. 1A) The first step in the workflow was to non-rigidly register, using radial basis functions, each of 
the bone meshes in the dataset to the template mesh to achieve nodal correspondence between the meshes. 
The template mesh is chosen as the mesh with the desired number of nodes and node distributions for which 
all meshes in the dataset will be fitted to. The template mesh for the femur and tibia/fibula arose from the 
same case (F, 5Y, 111 cm, 19 kg) and for the pelvis from another case (M, 8Y, 112 cm, 24 kg) selected due to 
being able to fit a large range of meshes.

2.	 Alignment (Fig. 1B) The second step was to rigidly align the fitted meshes to remove rotational and transla-
tional variations, by aligning all bones to the template mesh using centre of mass.

3.	 Principal component analysis (Fig. 1C) The final step was to perform a PCA on the aligned meshes to gener-
ate the mean mesh and the principal components of variation in the dataset. If the dataset is large enough, 
these principal components should capture the variation present in a general paediatric population. This was 
quantified through percentage variation captured by the model and prediction errors (discussed in “Accuracy 
of the statistical shape models” section).

Standard shape model.  For the standard shape model, a PCA was performed with all bones at their origi-
nal size to retain both size and shape variation for the pelvis, femur and tibia/fibula.

Procrustes analysis.  A Procrustes analysis was performed to remove the size variation between partici-
pants and therefore have a better understanding of the shape variation of the bones using the GIAS2 library14. 
This involved scaling all bones to the size (volume) of the mean bone shape and performing PCA on these scaled 
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meshes (Fig. 1C). This enabled the analysis of shape variation independent of size, which was a dominant com-
ponent due to the age range in this dataset.

Statistical shape modelling.  The PC weights from the PCA were used to train a Partial Least Squares 
Regression (PLSR) (Fig.  1D) which was subsequently used to predict bone geometry. The predictive factors 
consisted of demographic factors and linear bone measurements. The demographic factors were; age, height, 
mass, and sex. The linear bone measurements included: width between anterior superior iliac spines and width 
between posterior superior iliac spines (pelvis); epicondylar width and femur length (femur); tibial condyle 
width, malleolar width, and tibial length (tibia and fibula). These predictor variables were chosen based on their 
ability to be easily measured in a clinic, without the need for medical imaging. PLSR was used to determine the 
individual weighting for each PC for the bones to be predicted relative to the weightings of the training dataset. 
The personalised surface bone geometry was generated from these weightings and the mean mesh from the PCA 
(refer to “Principal component analysis” section) (Fig. 1E).

Scaled shape model.  A second shape model was created to remove the large influence of size from the 
PCA. This was done by uniformly scaling all the bones in the dataset by 100/x where x was the length measure-
ment for each bone (ASIS width, femoral length, and tibial length). PCA was then performed on these length-
scaled bones. Subsequently, when these bones were predicted by the shape model, they were scaled back to their 
original size by x/100. This shape model required the additional knowledge of bone length measurements to 
reconstruct the bone morphology.

Accuracy of the statistical shape models.  To quantify the accuracy of our shape model, we calculated 
the following metrics, as suggested by Ref.26.

Fitting error.  Measures the surface distance between the non-rigidly registered fitted mesh and the originally 
segmented mesh. This was conducted using the cloud-to-mesh distance function on CloudCompare27, which 
provides the node-to-surface distance for each node on the originally segmented mesh. The root mean squared 
error (RMSE) was then calculated using these distances.

Compactness.  Measures the ability of the model to accurately capture the variation in the data while using the 
minimum number of principal components. This was assessed by iteratively increasing the number of principal 
components used in the shape model to predict bone geometry. Then comparing mesh distances between the 
predicted mesh and the corresponding segmented and aligned mesh. The number of PCs was increased to n−1 
(where n = number of bones) and a testing set of 10% of the dataset was used for prediction in the interest of 
computational time.

Specificity/prediction error.  Measures the ability of the model to predict bone shapes within the dataset. This 
was performed using a number of principal components determined by the compactness analysis, to predict 
each case in the training set based on the weighting output by the PCA. For each case the corresponding princi-
pal component weightings were input into the shape model and a predicted mesh was calculated. The predicted 
mesh was compared to the corresponding segmented and aligned mesh using node to node distances and RMSE 
was then calculated using these distances.

Figure 1.   Workflow for the development of PCA (A, B and C) and modelling and testing of the statistical shape 
model (D, E and F).
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Generality.  Measures the ability of the model to predict bone shapes which are outside of the dataset. This was 
performed using a leave one out analysis (LOO), where we trained the shape model using N−1 participants and 
predicted the bone geometry of the one ‘left out’ participant (Fig. 1F). Next, predicted meshes were compared 
to the ground truth (segmented meshes) to assess the accuracy of the prediction. The mesh-to-mesh distances 
were quantified using RMSE distances, volume differences, and dice scores. This was conducted using a custom 
python script. To quantify the predictive power of the factors used in the shape model, a multiple comparison 
analysis was performed to find the coefficient of determination (R2) between each principal component and pre-
dictive factor. The best predictive factors were also determined for each bone using PLSR between all principal 
components and different combinations of predictive factors. This was used to determine the relevance of the 
predictive factor in the shape model and whether it should be included for prediction. LOO analysis was per-
formed for the shape model using the best predictive factors and the best demographic factors and for the scaled 
shape model using the best predictive factors.

Comparison to linear scaling.  To understand the advantage of using a shape model to predict bone geom-
etry, various types of geometry creation were compared.

1.	 Gold-standard geometry bone geometry segmented from the CT scans.
2.	 Shape model predicted geometry generated from the best predictive shape model for each bone using the best 

predictive factors.
3.	 Linearly scaled mean paediatric geometry found by using the mean mesh from the standard shape model and 

linearly scaling this mesh by the relative bone length measurement between the mean mesh and the mesh 
to be predicted.

4.	 Linearly scaled adult geometry found by using the adult bone geometry from OpenSim4 and linearly scaling 
this mesh by the relative bone length measurement between the adult mesh and the mesh to be predicted.

The gold standard geometry was compared to each of the different predicted meshes using RMSE distances 
and dice scores. The bone length measurements for the pelvis, femur and tibia/fibula were ASIS width, femoral 
length, and tibial length respectively.

Results
Principal component analysis.  The percentage of variation accounted for by the PCA of the pelvis, femur, 
and tibia/fibula showed most of the variation was captured in the first principal component, accounting for 
overall size. This was 92% for the pelvis, 98% for the femur, and 97% for the tibia/fibula (refer to supplementary 
material Fig. S1 for visualisations).

Procrustes analysis (shape variation only).  The percentage of variation accounted for in the Procrustes 
PCA for the pelvis, femur, and tibia/fibula showed a reduction in the variation accounted for by the first principal 
component as size differences were removed (Fig. 2). 90% of the variation was captured in the first 41 PCs for the 
pelvis, 60 PCs for the femur, and 39 PCs for the tibia/fibula.

Pelvis.  The first PC represented rotation of the ilia and a subtle change in width at the bottom of the pelvis. 
Shape changes in the acetabulum were also captured by the first PC. The second PC represented changes in the 
width of the pelvis, changes in the pubic arches and the definition of the PSIS’. The third PC represented inward 
growth in the PSIS’ and formation of the acetabular socket (Fig. 2).

Femur.  The first PC captured variations in the greater and lesser trochanter, epicondylar width, diaphysis width 
and definition of the condyles. The second PC represented the variation in width of the femur and the change 
in neck shaft angle. The third PC captured femoral anteversion and definition of the lesser trochanter (Fig. 2).

Tibia/fibula.  The first PC represented the width of the tibia/fibula, the definition of the tibial tuberosity, inter-
condylar tibial tubercles, the fibular notch, the proximal tibiofibular joint, the formation of the medial malleolus, 
and growth changes at the epiphyses. The second PC of tibia/fibula captured the space between the tibia and 
fibula, and definition of the proximal tibiofibular joint. The third PC of the tibia/fibula represented the width 
of the fibula, the size of the head of the fibula and lateral malleolus, and definition of the tibia condyles (Fig. 2).

Scaled model analysis.  The percentage of variation accounted for in the scaled PCA for the pelvis, femur, 
and tibia/fibula showed a reduction in the variation accounted for by the first PC compared to the standard PCA. 
90% of the variation was captured in the first 9 PCs for the pelvis, 36 PCs for the femur, and 15 PCs for the tibia/
fibula.

Accuracy of the shape models.  Fitting and prediction errors.  The fitting errors were low for all bones, 
for the pelvis this was 0.35 ± 0.08 mm, the femur 0.20 ± 0.04 mm, and the tibia/fibula 0.16 ± 0.04 mm. The predic-
tion errors for the shape model for the femur, tibia/fibula, and pelvis decreased for increasing PCs for all bones 
(Fig. S2). The first 100 PCs were used to reconstruct the bones as this provided average RMSE < 1 mm for all 
bones. Prediction errors in the initial shape model (including size and shape) were similar to the Procrustes 
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model. However, prediction errors in the scaled model were lower by between 0.23 and 0.28 mm (Table 1). Fur-
ther comparisons were therefore made using this scaled model.

Multiple comparison analysis.  The multiple comparison analyses between the first principal component and 
each of the predictive factors for the standard and scaled shape models are shown in Table 2. In the standard 
shape model the pelvis had high percentage variation explained by all predictive factors besides sex. The femur 
and tibia/fibula had moderate percentage variation explained by mass and high percentage variation explained 
by all other factors apart from sex. There were no significant variations explained by any of the predictive fac-
tors in the scaled shape model. This may imply the ability for this model to predict new geometries from these 
predictive factors is limited.

Table 3 demonstrates the best predictive factors for each bone based on the highest R2 value for both the 
standard and scaled shape models. In the standard shape model pelvis shape was best explained by the com-
bination of all predictive factors whereas the femur and tibia/fibula were best explained by height and femoral 
and tibial length. If length measurements are not available the pelvis shape was best explained by all factors, 
the femur by age and height, and the tibia/fibula by height and mass. The best predictive factors in the scaled 
model for the pelvis were age, height, ASIS width, and PSIS width. For the femur these were height, epicondylar 

Figure 2.   Coloured distance differences of mean meshes (cream) and ± 2SD for first three principal components 
following Procrustes analysis (i.e. shape variation only). Anterior (left) and posterior (right) viewpoints are 
shown and red ellipses and red arrows highlight main features of difference to the mean mesh.

Table 1.   Prediction errors for the pelvis, femur, and tibia/fibula from the three types of statistical shape model. 
Prediction errors are calculated using the first 100 principal components and displayed as RMSE.

Prediction error standard model (mm) Prediction error procrustes (mm) Prediction error scaled model (mm)

Pelvis 0.47 ± 0.05 0.47 ± 0.04 0.24 ± 0.02

Femur 0.38 ± 0.05 0.41 ± 0.04 0.13 ± 0.01

Tibia/fibula 0.41 ± 0.05 0.41 ± 0.04 0.13 ± 0.01
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width, and femoral length. And for the tibia/fibula these were height and tibial length. Using only demographic 
measurements for prediction can be disregarded as this model requires length measurements as input for scaling.

Leave one out analysis.  The RMSE was lower in the standard shape model when length measurements were 
included, however the errors were still low when only demographic measurements were available (Table  4). 
When comparing between the standard shape model and the scaled shape model, the scaled shape model showed 
higher errors in the pelvis and similar errors for the femur and tibia/fibula. The same conclusions were found 
when looking at the volume errors and the dice scores. Further comparison of the standard shape model to the 
scaled shape model showed a larger range of values for the pelvis in the scaled model (Fig. 3). For the femur, the 
two models were similar. In the tibia/fibula, the scaled model gave a slightly lower spread of values. The scaled 
model had no added benefit over the standard shape model, and performed worse in the pelvis, therefore, the 
standard shape model was chosen as our final model.

Table 2.   Multiple comparison analysis results for the standard and scaled shape models showing the R2 scores 
for each predictive factor for the pelvis, femur, and tibia/fibula. Bold shows high percentage variation explained 
by that factor, and italics shows moderate percentage variation explained.

R2 Model Age Height Mass Sex ASIS width PSIS width
Epicondylar 
width

Femoral 
length Condyle width

Malleolar 
width Tibial length

Pelvis
Standard 0.881 0.926 0.737 0.025 0.823 0.782

Scaled 0.263 0.238 0.132 0.048 0.006 0.277

Femur
Standard 0.837 0.969 0.689 0.002 0.895 0.995

Scaled 0.072 0.070 0.015 0.087 0.032 0.145

Tibia/fibula
Standard 0.805 0.966 0.689 0.001 0.868 0.885 0.985

Scaled 0.237 0.304 0.158 0.006 0.217 0.319 0.441

Table 3.   The combination of predictive factors which produced the highest R2 score in a partial least squares 
regression of the standard and scaled shape models. Where best predictive factors considered all factors: age, 
height, mass, sex, and length measurements. Best predictive demographic considered only age, height, mass, 
and sex for predictive factors.

Standard model Scaled model

Best predictive factors Best predictive demographic Best predictive factors

Pelvis All factors
0.976

All factors
0.951

Age, height, ASIS width, PSIS width
0.825

Femur Height, femoral length
0.997

Age, height
0.970

Height, epicondylar width, femoral length
0.419

Tibia/fibula Height, tibial Length
0.990

Height, mass
0.966

Height, tibial length
0.611

Table 4.   Results from the leave one out analysis showing the average RMSE (mm) ± 1SD, percentage volume 
error ± 1SD, and dice score ± 1SD. The errors represent the difference between shape model generated bone 
geometries and the segmented geometries (gold standard). “All factors” uses the best demographic and length 
measurements for prediction. Where demographic factors are age, height, mass, and sex. Shown are the results 
for the standard shape model and the scaled shape model.

Bone Standard model all factors Scaled model all factors Standard model demographic factors

RMSE (mm)

Pelvis 2.91 ± 0.99 3.28 ± 1.54 3.23 ± 1.22

Femur 2.01 ± 0.62 1.98 ± 0.61 2.72 ± 1.24

Tibia/fibula 1.85 ± 0.54 1.89 ± 0.54 2.25 ± 0.96

Volume Error (%)

Pelvis 9.90 ± 8.29 16.62 ± 13.90 10.76 ± 9.18

Femur 8.62 ± 8.09 8.60 ± 6.60 8.90 ± 9.20

Tibia/fibula 9.95 ± 9.86 10.07 ± 9.03 11.17 ± 12.47

Dice Score

Pelvis 0.77 ± 0.07 0.75 ± 0.10 0.74 ± 0.09

Femur 0.89 ± 0.03 0.89 ± 0.03 0.86 ± 0.06

Tibia/fibula 0.86 ± 0.04 0.86 ± 0.04 0.84 ± 0.05
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Comparison to linear scaling.  Comparison of the shape model to linear scaling methods showed the 
advantage of using a shape model over linear scaling. RMSE distances demonstrated that linear scaling using 
the mean shape model mesh had slightly higher errors on average (< 1 mm) for the femur and tibia/fibula and 
larger errors for the pelvis (> 1 mm) compared to bone predicted using the shape model. Linear scaling of an 
adult mesh produced, on average, higher errors compared to the shape model predicted meshes; 1.88 mm in the 
pelvis, 2.37 mm in the femur, and 2.54 mm in the tibia/fibula. RMSE results are displayed in Fig. 4 and RMSE 

Figure 3.   Results from the leave one out analysis of the Pelvis, femur and tibia/fibula (tibfib) for the standard 
shape model and the scaled shape model (scaled) using all predictive factors.

Figure 4.   Results for the pelvis, femur, and tibia/fibula (tibfib) showing the RMSE (mm) for bone geometry 
predicted using the standard shape model (_predicted), linearly scaled geometry from the mean mesh of the 
shape model (_linear_scaled), and linearly scaled geometry from adult OpenSim geometry (_linear_scaled_
adult).
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values and dice scores are shown in supplementary material (Table S2). Dice scores showed similar results with 
low dice scores in the linearly scaled adult cases (0.56–0.7) compared to shape model predicted (0.77–0.89) and 
linearly scaling the mean shape model mesh (0.66–0.87). We can see a large shift in the results from the linearly 
scaled adult mesh for all bones and a smaller shift in the linearly scaled paediatric mesh (Fig. 4). Visualisation 
of the effects of linear scaling are shown in the supplementary material. Figure S3 shows an average case in the 
dataset which has lower but visible differences. Figure S4 shows the highest error cases when scaling adult bone 
geometry, which has marked differences in all bones, especially for the pelvis.

Discussion
Statistical shape modelling is a common method used to capture bone geometry in an adult population14,21, but 
has not been widely explored in a paediatric population. We presented a statistical shape model of the pelvis, 
femur, and tibia/fibula surface geometry in a paediatric population. The aims of this study were to understand 
the differences in bone shape in children, predict unknown bone geometries using clinically available measure-
ments, and compare the performance of the shape model to traditional linear scaling.

The results gathered showed the justification of using a shape model to understand and predict the bone 
geometry of children. The variation seen in the principal components and the high percentage captured by 
the first component are indicative of the great range of bone sizes seen in this dataset and capture the variation 
in bone shape with growth. In this study, the percentage variation captured by the first principal component 
was above 90% for all bones. Comparing to similar adult studies, this value is around 24% for the pelvis13, and 
35–45% for the femur14,18,19. Other studies in adults found 95% of the variation was found in the first 20 (for 
the pelvis), 4–10 (for the femur), and 8 (for the tibia) principal components12,20. Another PCA created for the 
tibia captured 96% of variation in the first principal component28. This shows a large variation in the percentage 
between studies, mostly due to the population used and size variation within the dataset. While the percentage 
variation captured in the first principal component seems too large for the model to capture non-size related 
changes in the bone, we can see changes in the first principal component other than size, such as the emergence 
of the greater and lesser trochanters in the femur.

The shape changes captured by the first three principal components are comparable to existing adult studies. 
For example, in a study of the adult pelvis; PC1 captured changes in size variation, PC2 captured changes in the 
size of the ilia and pubic arches, and PC3 captured changes in width and rotation of the ilia13. This is similar to 
the current study with PC2 and PC3 swapped. Across various studies in the adult femur; PC1 captured length/
scale changes, PC2 captured anteversion angle, neck shaft angle, and width changes, and PC3 captured shaft 
width, anteversion angle, neck shaft angle, and head diameter changes14,18,19. These findings are similar to those 
obtained in this study. In the adult tibia; PC1 captured length/scale changes, PC2 captured slope changes in the 
medial tibial plateau and valgus deformities, and PC3 captured bowing of the shaft28. We had similar findings, 
with the addition of width changes and the interaction with the fibula. In general, the principal components 
obtained in this study were consistent with those obtained in the same bones in adult studies, with the exception 
of the emergence of growth-related changes, such as the greater trochanter in the femur and the tibial tuberosity, 
in the paediatric dataset.

The large size variation captured by the first principal component across all bones showed the need for a 
Procrustes analysis, where the shape variation of the dataset could be viewed by removing size variation to 
better understand and visualise the changes in bone shape. The Procrustes analysis showed the emergence of 
different shape variations in each principal component, which were difficult to visualise when size variation was 
included (Fig. 2). Growth-related changes seen in the pelvis included the spherical formation of the acetabulum, 
the rounding of the ilia, and the thickening of the pubic arches. The growth-related changes seen in the femur 
included the formation of the greater and lesser trochanter, and the formation of the femoral condyles. The 
growth-related changes seen in the tibia/fibula included the formation of the tibial tuberosity, the intercondylar 
tibial tubercles, the emergence of the medial malleolus, and merging of the tibiofibular joint. The emergence of 
these features is consistent with knowledge of bone growth29. Many growth-related changes occur due to forces 
exerted on the bone by muscles, which increase during growth30. The Procrustes analysis was able to show these 
potential growth-related changes in the pelvis, femur, and tibia/fibula in a way that has not been seen before in a 
paediatric population. However, the Procrustes analysis cannot be used to predict unknown bone geometries as 
the scaling factor is not known. Therefore, the standard and scaled shape models were compared to determine 
the best predictive model.

The best predictive factors for each bone were similar in the femur and tibia/fibula but different for the pelvis. 
This is likely due to the complex geometry of the pelvis, which is less influenced by height compared to the long 
bones. In the case of the long bones, sex was not found to be an important predictive factor, while in the pelvis, 
sex was shown to be important. For the femur and tibia/fibula height and length measurements were the most 
important for predicting unknown bone geometries. This indicates that age does not contribute to the prediction 
of long bone shape as much as height and length. This can be accounted for by considering bone remodels to the 
strains it experiences (i.e. Wolff ’s law); bone length affects the moment arms of the muscles and consequently 
the torques produced by the musculoskeletal system. Therefore, typically developed children of a similar height 
and bone lengths are likely to have similar bone morphology, regardless of biological age. This statement may 
not hold true for children with bony deformities as this study has been conducted on a typically developed 
population of children. This is not to say that the bone morphology is predicted only by linear scaling, as the 
statistical nature of the principal component analysis accounts for other variations in the bone beyond simple 
linear length scaling. In the absence of bone length measurements, height along with age was shown to be an 
important predictive factor for the femur, and along with mass for the tibia/fibula, showing that age and mass 
are redundant when length measurements are available.
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A leave one out analysis was performed to predict bone shape using only demographic and length measure-
ments. The results of this analysis showed low prediction errors across all bones, with average RMSE of 2.91 mm 
in the pelvis, 2.01 mm in the femur, and 1.85 mm in the tibia/fibula. Comparing to a similar study on the adult 
femur, bone shape was predicted with an RMS error of 2.3 mm using the same demographic and linear bone 
measurements, however, the best predictive factors were not determined in that study14. Other studies have 
predicted bone geometry using anatomical landmarks, finding errors in the pelvis of 4.23–5.4 mm, the femur 
of 2.6–4.8 mm, and the tibia/fibula of 2.88–3.63 mm12,22,23. Each study used different bone landmarks, which in 
some cases are only available using medical imaging. Most of these studies had a small sample size in comparison 
to the current study, which may have led to greater errors. Our errors fall within a similar range compared to 
existing adult studies for bone shape prediction from clinical measurements.

The leave one out analysis of the shape model has some cases of higher error than others, these cases were 
found to be shape outliers in the dataset when compared to other cases of similar predictive factor values. These 
cases were minimal but will be improved upon when using an articulated shape model, which will be informed 
by marker data and medical imaging and therefore should be more likely to capture these outliers.

The scaled shape model was developed to understand if including the size variation in the shape model 
affected the prediction of new bone geometries. Using a scaled shape model provided similar performance in the 
femur and tibia/fibula but higher errors in the pelvis. Therefore, this model did not provide additional benefit for 
bone prediction, compared to the non-scaled standard model. This model also required linear length measure-
ments, which may not always be available clinically and is more time-consuming to implement. The standard 
shape model was chosen as the final model for this dataset.

Investigating effects of linear scaling on bone geometry showed that by linearly scaling the average paediatric 
mesh from the shape model produced slightly less accurate results than using the shape model predicted bone 
geometry. However, the average paediatric mesh (informed by the current shape model and population data) 
is not currently available to the wider community. To compare current scaling methods for bone geometry in 
children, adult bone geometry4 was linearly scaled, which produced less accurate predictions of all bones. This 
shows the advantage of using a statistical shape model to predict bone geometry in a paediatric population when 
medical imaging is unavailable. Additionally, linear scaling had a greater effect on the accuracy of the pelvis 
than the femur and tibia/fibula. This is due to the more complex geometry of the pelvis and shows the need to 
predict the pelvis rather than scale the pelvis to obtain more accurate hip joint centre locations31. Similar studies 
have examined the effect of linear scaling on adult bones finding differences in the errors between shape model 
predicted bone and linear scaling when comparing to the gold-standard model segmented from medical imag-
ing. Average differences in the pelvis of 1.23 mm, femur of 0.84–1.06 mm, and tibia/fibula of 0.04–0.99 mm were 
found22,23. In a paediatric population RMSE from linear scaling were found to be 12.57 mm in the pelvis, 7.43 mm 
in the femur, and 8.16 mm in the tibia/fibula5. These errors are larger than obtained in this study and may be 
due to our dataset being much larger. This shows that the effects of linear scaling of adult bone in a paediatric 
population is much greater than linear scaling adult bone, highlighting the importance of a musculoskeletal atlas 
for a paediatric population which can predict bone geometry without the need for medical imaging.

Limitations in the current study include bone measurements being taken from the bone surface rather than 
the skin surface. Real world measurements might include soft tissue artefact when estimating anatomical land-
marks, which might lead to less accurate predictions. The dataset was obtained from an urban Australian popula-
tion and therefore, the shape model may not represent a global or specific indigenous population. Additionally, 
some age groups had fewer number of CT scans available (e.g. 7 to 10 years old) meaning these age groups may 
not yet be fully represented. Inferences regarding morphological bone changes due to growth should be made 
with caution, as these data are cross-sectional, rather than longitudinal. Creation of lower limb musculoskeletal 
models also requires addition of the patellae and feet, which were not included in this study and could limit 
accuracy of future models. This was due to the patella not being formed yet in many young children and the feet 
being cut off in many of the CT scans. The shape models generated here were created for each bone indepen-
dently, ignoring structure–function relationships that could improve the prediction of bone morphology across 
multiple bones. An articulated shape model that includes pose as well as combined bone morphology could 
improve the robustness of bone morphology prediction, as demonstrated by Zhang et al.22 and will be the focus 
of future work. As will be the integration of this model into the opensource software MAP client32 to provide 
the ability to create musculoskeletal models in a paediatric population. The articulated shape model will include 
prediction of muscle attachment sites for use in musculoskeletal modelling software. More paediatric MRI scans 
will be obtained in longitudinal study in children starting at age 7. This will be able to test the ability of the model 
to capture bone shape changes with growth and capture a more diverse population. Finally, the shape model 
created for this study and future musculoskeletal model prediction will be available on the opensource platform 
SimTK.org (https://​simtk.​org/​proje​cts/​paed_​ssm).

Conclusions
This work has shown that morphological variation of typically developed paediatric bone can be captured in 
a statistical shape model. Unknown bone geometries can be predicted to 1.85–2.91 mm accuracy using only 
demographic and linear bone measurements with performance superior to linear scaling of bone geometry. This 
statistical shape model provides an accurate and repeatable method for predicting lower limb bone geometry 
in typically developed children aged 4–18 years and provides a foundation for creating lower limb paediatric 
musculoskeletal models. This dataset will also be useful to the clinical community to quantify bone morphology 
across a large typically developed paediatric cohort.

https://simtk.org/projects/paed_ssm
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