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Abstract: When applied to classification problems, Bayesian networks are often used to infer a
class variable when given feature variables. Earlier reports have described that the classification
accuracy of Bayesian network structures achieved by maximizing the marginal likelihood (ML) is
lower than that achieved by maximizing the conditional log likelihood (CLL) of a class variable given
the feature variables. Nevertheless, because ML has asymptotic consistency, the performance of
Bayesian network structures achieved by maximizing ML is not necessarily worse than that achieved
by maximizing CLL for large data. However, the error of learning structures by maximizing the ML
becomes much larger for small sample sizes. That large error degrades the classification accuracy.
As a method to resolve this shortcoming, model averaging has been proposed to marginalize the
class variable posterior over all structures. However, the posterior standard error of each structure
in the model averaging becomes large as the sample size becomes small; it subsequently degrades
the classification accuracy. The main idea of this study is to improve the classification accuracy
using subbagging, which is modified bagging using random sampling without replacement, to
reduce the posterior standard error of each structure in model averaging. Moreover, to guarantee
asymptotic consistency, we use the K-best method with the ML score. The experimentally obtained
results demonstrate that our proposed method provides more accurate classification than earlier BNC
methods and the other state-of-the-art ensemble methods do.

Keywords: Bayesian networks; classification; model averaging; structure learning

1. Introduction

A Bayesian network is a graphical model that represents probabilistic relations among
random variables as a directed acyclic graph (DAG). The Bayesian network provides a good
approximation of a joint probability distribution because it decomposes the distribution
exactly into a product of the conditional probabilities for each variable when the probability
distribution has a DAG structure, depicted in Figure 1.

Bayesian network structures are generally unknown. For that reason, they must
be estimated from observed data. This estimation problem is called Learning Bayesian
networks. The most common learning approach is a score-based approach, which seeks
the best structure that maximizes a score function. The most widely used score is the
marginal likelihood for finding a maximum a posteriori structure [1,2]. The marginal
likelihood (ML) score based on the Dirichlet prior ensuring likelihood equivalence is called
Bayesian Dirichlet equivalence [2]. Given no prior knowledge, the Bayesian Dirichlet
equivalence uniform (BDeu), as proposed by Buntine [1], is often used. These scores
require an equivalent sample size (ESS), which is the value of a user-determined free
parameter. As demonstrated in recent studies, ESS plays an important role in resulting
network structure estimated using BDeu [3–6]. However, this approach has an associated
NP-hard problem [7]: the number of structure searches increases exponentially with the
number of variables.
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Figure 1. Example of a Bayesian network.

Bayesian network classifiers (BNC), which are special cases of Bayesian networks
designed for classification problems, have yielded good results in real-world applications,
such as facial recognition [8] and medical data analysis [9]. The most common score for
BNC structures is conditional log likelihood (CLL) of the class variable given all the feature
variables [10–12]. Friedman et al. [10] claimed that the structure maximizing CLL, called a
discriminative model, provides a more accurate classification than that maximizing the ML.
The reason is that the CLL reflects only the class variable posterior, whereas the ML reflects
the posteriors of all the variables.

Nevertheless, ML is known to have asymptotic consistency, which guarantees that the
structure which maximizes the ML converges to the true structure when the sample size is
sufficiently large. Therefore, Sugahara et al. [13], Sugahara and Ueno [14] demonstrated
experimentally that the BNC performance achieved by maximizing the ML is not neces-
sarily worse than that achieved by maximizing CLL for large data. Unfortunately, their
experiments also demonstrated that the classification accuracy of the structure maximizing
the ML rapidly worsens as the sample size becomes small. They explained the reason: the
class variable tends to have numerous parents when the sample size is small. Therefore,
the conditional probability parameter estimation of the class variable becomes unstable
because the number of parent configurations becomes large. Then the sample size for
learning a parameter becomes sparse. This analysis suggests that exact learning BNC by
maximizing the ML to have no parents of the class variable might improve the classification
accuracy. Consequently, they proposed exact learning augmented naive Bayes classifier
(ANB), in which the class variable has no parent and in which all feature variables have
the class variable as a parent. Additionally, they demonstrated the effectiveness of their
method empirically.

The salient reason for difficulties with this method is that the error of learning struc-
tures becomes large when the sample size becomes small. Model averaging, which
marginalizes the class variable posterior over all structures, has been regarded as a method
to alleviate this shortcoming [15–18]. However, the model averaging approach confronts
the difficulty that the number of structures increases super-exponentially for the network
size. Therefore, averaging all structures with numerous variables is computationally infea-
sible. The most common approach to this difficulty is the K-best method [19–25], which
considers only the K-best scoring structures.

Another point of difficulty is that the posterior standard error of each structure in the
model averaging becomes large for a small sample size; it then decreases the classification
accuracy. As methods to reduce the posterior standard error, resampling methods such
as the adaboost (adaptive boosting) [26], bagging (bootstrap aggregating) [27], and sub-
bagging (subsampling aggregating) [28] are known. In addition, Jing et al. [29] proposed
ensemble class variable prediction using adaboost. That study demonstrated its effective-
ness empirically. However, this method tends to cause overfitting for small data because
adaboost tends to be sensitive to noisy data [30]. Later, Rohekar et al. [31] proposed B-RAI,
a model averaging method with bagging, based on the RAI algorithm [32], which learns a
structure by recursively conducting conditional independence (CI) tests, edge direction,
and structure decomposition into smaller substructures. The B-RAI increases the number
of models for model averaging using multiple bootstrapped datasets. However, B-RAI is
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inapplicable for bagging to the posterior of the structures. Therefore, the posterior standard
error of the structures is not expected to decrease. In addition, the CI tests of the B-RAI are
not guaranteed to have asymptotic consistency. Although B-RAI reduces the computational
costs, it degrades the classification accuracy for large data.

The main idea of this study is to improve the classification accuracy using the subbag-
ging to reduce the posterior standard error of structures in model averaging. Moreover,
to guarantee asymptotic consistency, we use the K-best method with the ML score. The
proposed method, which we call Subbagging K-best method (SubbKB), is expected to
present the following benefits: (1) Because the SubbKB has an asymptotic consistency
for the true class variable classification, the class variable posterior converges to the true
value when the sample size becomes sufficiently large; (2) even for small data, subbag-
ging reduces the posterior standard error of each structure in the K-best structures and
improves the classification accuracy. For this study, we conducted experiments to compare
the respective classification performances of our method and earlier methods. Results of
those experiments demonstrate that SubbKB provides more accurate classification than
the earlier BNC methods do. Furthermore, our experiments compare SubbKB and the
other state-of-the-art ensemble methods. Results indicate that SubbKB outperforms the
state-of-the-art ensemble methods.

This paper is organized as follows. In Section 2 we review Bayesian networks and
BNCs. In Section 3 we review model averaging of BNCs. In Section 4 we describe SubbKB
and prove that SubbKB asymptotically estimates a true conditional probability. In Section 5
we describe in detail the experimental setup and results. Finally, we conclude in Section 6.

2. Bayesian Network Classifier
2.1. Bayesian Network

Letting {X0, X1, · · · , Xn} be a set of n + 1 discrete variables, then Xi, (i = 0, · · · , n)
can take values in the set of states {1, · · · , ri}. One can write Xi = k when observing
that an Xi is state k. According to the Bayesian network structure G, the joint probability
distribution is P(X0, X1, · · · , Xn) = ∏n

i=0 P(Xi | Πi, G), where Πi is the parent variable set
of Xi. Letting θijk be a conditional probability parameter of Xi = k when the j-th instance
of the parents of Xi is observed (we write Πi = j), we define Θ = {θijk} (i = 0, · · · , n; j =
1, · · · , qi; k = 1, · · · , ri). A Bayesian network is a pair B = (G, Θ).

The Bayesian network (BN) structure represents conditional independence assertions
in the probability distribution by d-separation. First, we define collider, for which we need to
define the d-separation. Letting path denote a sequence of adjacent variables, the collider is
defined as shown below.

Definition 1. Assuming a structure G = (V, E), a variable Z ∈ V on a path ρ is a collider if and
only if there exist two distinct incoming edges into Z from non-adjacent variables.

We then define d-separation as explained below.

Definition 2. Assuming we have a structure G = (V, E), X, Y ∈ V, and Z ⊆ V \ {X, Y}, the
two variables X and Y are d-separated, given Z in G, if and only if every path ρ between X and Y
satisfies either of the following two conditions:

• Z includes a non-collider on ρ.
• There is a collider Z on ρ, and Z does not include Z or its descendants.

We denote the d-separation between X and Y given Z in the structure G as DsepG(X, Y | Z). Two
variables are d-connected if they are not d-separated.

Let I(X, Y | Z) denote that X and Y are conditionally independent given Z in the
true joint probability distribution. A BN structure G is an independence map (I-map) if
all d-separations in G are entailed by conditional independence in the true probability
distribution.
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Definition 3. Assuming a structure G = (V, E), X, Y ∈ V, and Z ⊆ V \ {X, Y}, then G is an
I-map if the following proposition holds:

∀X, Y ∈ V, ∀Z ⊆ V \ {X, Y}, DsepG(X, Y | Z)⇒ I(X, Y | Z).

Probability distributions represented by an I-map converge to the true probability
distribution when the sample size becomes sufficiently large.

For an earlier study, Buntine [1] assumed the Dirichlet prior and used an expected a
posteriori (EAP) estimator θ̂ijk = (αijk + Nijk)/(αij + Nij). In that equation, Nijk represents
the number of samples of Xi = k when Πi = j, Nij = ∑ri

k=1 Nijk. Additionally, αijk
denotes the hyperparameters of the Dirichlet prior distributions (αijk as a pseudo-sample
corresponding to Nijk); αij = ∑ri

k=1 αijk.
The first learning task of the Bayesian network is to seek a structure G that optimizes

a given score. Let D = {u1, · · · , ud, · · · , uN} be training dataset. In addition, let each ud

be a tuple of the form 〈xd
0 , xd

1 , · · · , xd
n〉. The most popular marginal likelihood (ML) score,

P(D | G), of the Bayesian network finds the maximum a posteriori (MAP) structure G∗

when we assume a uniform prior P(G) over structures, as presented below.

G∗ = arg max
G

P(G | D) = arg max
G

P(D | G)P(G)

P(D)
= arg max

G
P(D | G).

The ML has an asymptotic consistency [33], i.e., the structure which maximizes ML con-
verges to the true structure when the sample is large. In addition, the Dirichlet prior
is known as a distribution that ensures likelihood equivalence. This score is known as
Bayesian Dirichlet equivalence [2]. Given no prior knowledge, the Bayesian Dirichlet
equivalence uniform (BDeu), as proposed earlier by Buntine [1], is often used. The BDeu
score is represented as:

P(D | G) =
n

∏
i=0

qi

∏
j=1

Γ( α
qi
)

Γ( α
qi
+ Nij)

ri

∏
k=1

Γ( α
riqi

+ Nijk)

Γ( α
riqi

)
,

where α denotes a hyperparameter. Earlier studies [5,6,34,35] have demonstrated that
learning structures are highly sensitive to α. Those studies demonstrated α = 1.0 as the
best method to mitigate the influence of α for parameter estimation.

2.2. Bayesian Network Classifiers

A Bayesian network classifier (BNC) can be interpreted as a Bayesian network for
which X0 is the class variable and for which X1, · · · , Xn are feature variables. Given
an instance x = 〈x1, · · · , xn〉 for feature variables X1, . . . , Xn, BNC B predicts the class
variable’s value by maximizing the posterior as ĉ = argmaxc∈{1,··· ,r0}P(c | x, B).

However, Friedman et al. [10] reported the BNC maximizing ML as unable to optimize
the classification performance. They proposed the sole use of the conditional log likelihood
(CLL) of the class variable given the feature variables instead of the log likelihood for
learning BNC structures.

Unfortunately, no closed-form formula exists for optimal parameter estimates to
maximize CLL. Therefore, for each structure candidate, learning the network structure
maximizing CLL requires the use of some search methods such as gradient descent over
the space of parameters. For that reason, the exact learning of network structures by
maximizing CLL is computationally infeasible.

As a simple means of resolving this difficulty, Friedman et al. [10] proposed the tree-
augmented naive Bayes (TAN) classifier, for which the class variable has no parent and for
which each feature variable has a class variable and at most one other feature variable as a
parent variable.

In addition, Carvalho et al. [12,36] proposed an approximated conditional log like-
lihood (aCLL) score, which is both decomposable and computationally efficient. Let-
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ting GANB be an ANB structure, we define Π∗i = Πi \ {X0} based on GANB. Addi-
tionally, we let Nijck be the number of samples of Xi = k when X0 = c and Π∗i = j
(i = 1, · · · , n; j = 1, · · · , q∗i ; c = 1, · · · , r0; k = 1, · · · , ri). Moreover, we let N′ > 0 represent
the number of pseudo-counts. Under several assumptions, aCLL can be represented as:

aCLL(GANB | D) ∝
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

r0

∑
c=1

(
Nijck + β

r0

∑
c′=1

Nijc′k

)
log

Nij+ck

Nij+c
,

where

Nij+ck =

Nijck + β ∑r0
c′=1 Nijc′k if Nijck + β ∑r0

c′=1 Nijc′k ≥ N′

N′ otherwise,

Nij+c =
ri

∑
k=1

Nij+ck.

The value of β is found using Monte Carlo method to approximate CLL. When the value of
β is optimal, then aCLL is a minimum-variance unbiased approximation of CLL. A report
of an earlier study described that the classifier maximizing the approximated CLL provides
a better performance than that maximizing the approximated ML.

Unfortunately, they stated no reason for why CLL outperformed ML. Differences
of performance between ML and CLL in earlier studies might depend on the learning
algorithms which were employed because they used not exact but approximate learning
algorithms. Therefore, Sugahara et al. [13], Sugahara and Ueno [14] demonstrated by exper-
imentation that the BNC performance achieved by maximizing the ML is not necessarily
worse than that achieved by maximizing CLL for large data, although both performances
may depend on the nature of the dataset. However, the classification accuracy of the
structure maximizing the ML becomes rapidly worse as the sample size becomes small.

3. Model Averaging of Bayesian Network Classifiers

The less accurate classification of BNCs for small data results from learning structure
errors. As a method to alleviate this shortcoming, model averaging, which marginalizes
the class variable posterior over all structures, is reportedly effective [15–18]. Using model
averaging, the class variable’s value c is estimated as:

ĉ = arg max
c∈{1,··· ,r0}

P(c | x, D)

= arg max
c∈{1,··· ,r0}

∑
G∈G

P(G | D)P(c | x, G, D)

= arg max
c∈{1,··· ,r0}

∑
G∈G

P(D | G)P(c | x, G, D),

where G is a set of all structures. However, the number of structures increases super-
exponentially for the network size. Therefore, averaging all the structures with numerous
variables is computationally infeasible. The most commonly used approach to resolve this
problem is a K-best structures method [19,21–25], which considers only the K-best scoring
structures. However, the K-best structures method finds the best K individual structures
included in Markov equivalence classes, where the structures within each class represent
the same set of conditional independence assertions and determine the same statistical
model. To address the difficulty, Chen and Tian [20] proposed the K-best EC method,
which can be used to ascertain the K best equivalence classes directly. These methods have
asymptotic consistency if they use an exact learning algorithm. Using the K-best scoring
structures, {Gk}K

k=1, the class variable posterior can be approximated as:

P(X0 | x, D) ≈
K

∑
k=1

P(D | Gk)

∑K
k′=1 P(D | Gk′)

P(X0 | x, Gk, D).
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The posterior standard error of each structure in the model averaging becomes large
as the sample size becomes small; as it does so, it decreases the classification accuracy.
However, resampling methods such as adaboost [26] and bagging [27] are known to reduce
the standard error of estimation. Actually, Jing et al. [29] proposed the bANmix boosting
method, which predicts the class variable using adaboost. Nevertheless, this method is not
a model averaging method. It tends to cause overfitting for small data because adaboost
tends to be sensitive to noisy data [30].

Rohekar et al. [31] proposed a model averaging method named B-RAI, based on the
RAI algorithm [32]. The method learns the structure by sequential application of condi-
tional independence (CI) tests, edge direction and structure decomposition into smaller
substructures. This sequence of operations is performed recursively for each substructure,
along with increasing order of the CI tests. At each level of recursion, the current structure
is first refined by removing edges between variables that are independently conditioned on
a set of size nz, with subsequent directing of the edges. Then, the structure is decomposed
into ancestors and descendant groups. Each group is autonomous: it includes the parents
of its members [32]. Furthermore, each autonomous group from the nz-th recursion level
is partitioned independently, resulting in a new level of nz + 1. Each such structure (a
substructure over the autonomous set) is partitioned progressively (in a recursive manner)
until a termination condition is satisfied (independence tests with condition set size nz
cannot be performed), at which point the resulting structure (a substructure) at that level
is returned to its parent (the previous recursive call). Similarly, each group in its turn, at
each recursion level, gathers back the structures (substructures) from the recursion level
that followed it; it then returns itself to the recursion level that precedes it until the highest
recursion level nz = 0 is reached and the final structure is fully constructed. Consequently,
RAI constructs a tree in which each node represents a substructure and for which the level
of the node corresponds to the maximal order of conditional independence that is encoded
in the structure. Based on the RAI algorithm, B-RAI constructs a structure tree from which
structures can be sampled. In essence, it replaces each node in the execution tree of the RAI
with a bootstrap node. In the bootstrap node, for each autonomous group, s datasets are
sampled with replacement from training data D. They calculate log[P(D | G)] for each leaf
node in the tree (G is the structure in the leaf) using the BDeu score. For each autonomous
group, given s sampled structures and their scores returned from s recursive calls, the
B-RAI samples one of the s results proportionally to their (log) score. Finally, the sampled
structures are merged. The sum of scores of all autonomous sets is the score of the merged
structure.

However, B-RAI does not apply bagging to the posterior of the structures. Therefore,
the posterior standard error of each structure is not expected to decrease. In addition, the
B-RAI is not guaranteed to have asymptotic consistency. This lack of consistency engenders
the reduction of the computational costs, but degradation of the classification accuracy.

4. Proposed Method

This section presents the proposed method, SubbKB, which improves the classification
accuracy using resampling methods to reduce the posterior standard error of each structure
in model averaging. As described in Section 3, the existing resampling methods are not
expected to reduce the posterior standard error of each structure in model averaging
sufficiently. A simple method to resolve this difficulty might be a bagging using random
sampling with replacement. However, sampling with replacement might increase the
standard error of estimation as the sample size becomes small because of duplicated
sampling [37]. To avoid this difficulty, we use subbagging [28], which is modified bagging
using random sampling without replacement.

Consequently, SubbKB includes the following four steps: (1) Sample T datasets
{Dt}T

t=1 without replacement from training data D, where |Dt| = δ|D|, (0 < δ < 1);
(2) Learn the K-best BDeu scoring structures {Gk

t }K
k=1, representing the K-best equivalence

classes for each dataset Dt; (3) Compute the T class variable posteriors using each dataset
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Dt and each set of K-best structures to model averaging; (4) By averaging the computed T
class variable posteriors, the resulting conditional probability of the class variable given
the feature variables is estimated as:

P(X0 | x, D) ≈ 1
T

T

∑
t=1

K

∑
k=1

P(Dt | Gk
t )

∑K
k′=1 P(Dt | Gk′

t )
P(X0 | x, Gk

t , Dt). (1)

The following theorem about SubbKB can be proved.

Theorem 1. The SubbKB asymptotically estimates the true conditional probability of the class
variable given the feature variables.

Proof. From the asymptotic consistency of BDeu [38], the highest BDeu scoring structure
converges asymptotically to the I-map with the fewest parameters denoted by G∗. More-
over, the ratio P(Dt | G∗)/ ∑K

k=1 P(Dt | Gk
t ) asymptotically approaches 1.0. Therefore,

Equation (1) converges asymptotically to

1
T

T

∑
t=1

P(X0 | x, G∗, Dt). (2)

It is guaranteed that P(X0 | x, G∗, Dt) converges asymptotically to the true conditional
probability of the class variable given the feature variables denoted by P∗(X0 | x). Conse-
quently, formula (2) converges asymptotically to P∗(X0 | x), i.e., SubbKB asymptotically
estimates P∗(X0 | x).

The SubbKB is expected to provide the following benefits: (1) From Theorem 1, SubbKB
asymptotically estimates the true conditional probability of the class variable given the
feature variables; (2) For small data, subbagging reduces the posterior standard error of
each structure learned using the K-best EC method and improves the classification accuracy.
The next section explains experiments conducted to compare the respective classification
performances of SubbKB and earlier methods.

5. Experiments

This section presents experiments comparing SubbKB and other existing methods.

5.1. Comparison of the SubbKB and Other Learning BNC Methods

First, we compare the classification accuracy of the following 14 methods:

• NB: Naive Bayes;
• TAN [10]: Tree-augmented naive Bayes;
• aCLL-TAN [12]: Exact learning TAN method by maximizing aCLL;
• EBN: Exact learning Bayesian network method by maximizing BDeu;
• EANB: Exact learning ANB method by maximizing BDeu;
• bANmix [29]: Ensemble method using adaboost, which starts with naive Bayes and

greedily augments the current structure at iteration j with the j-th edge having the
highest conditional mutual information;

• Adaboost(EBN): Ensemble method of 10 structures learned using adaboost to EBN;
• B-RAI [31]: Model averaging method over 100 structures sampled using B-RAI with

s = 3;
• Bagging(EBN): Ensemble method of 10 structures learned using bagging to EBN;
• Bagging(EANB): Ensemble method of 10 structures learned using bagging to EANB;
• KB10 [20]: K-best EC method using the BDeu score with K = 10;
• KB10(EANB): K-best EC method under ANB constraints using the BDeu score with

K = 10;
• KB20 [20]: K-best EC method using the BDeu score with K = 20;
• KB50 [20]: K-best EC method using the BDeu score with K = 50;
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• KB100 [20]: K-best EC method using the BDeu score with K = 100;
• SubbKB10: SubbKB with K = 10 and T = 10;
• SubbKB10(MDL): the modified SubbKB10 to use MDL score.

Here, the classification accuracy represents the average percentage correct among all classi-
fications from ten-fold cross validation. Although determination of hyperparameter α of
BDeu is difficult, we used α = 1.0, which allows the data to reflect the estimated parameters
to the greatest degree possible [5,6,34,35]. Note that α = 1.0 is not guaranteed to provide
optimal classification. We also used EAP estimators with αijk = 1/(riqi) as conditional
probability parameters of the respective classifiers. Using SubbKB10, Bagging(EBN), and
Bagging(EANB), the size of the sampled data is 90% of the training data. Our experiments
were conducted entirely using a computational environment, as shown in Table 1. We
used 26 classification benchmark datasets from the UCI repository, as shown in Table 2.
Continuous variables were discretized into two bins using the median value as cut-off. Fur-
thermore, data with missing values were removed from the datasets. Table 2 also presents
the entropy of the class variable, H(X0), for each dataset. For the discussion presented
in this section, we define small datasets as datasets with less than 1000 sample size. In
addition, we define large datasets as datasets with 1000 and more sample size. Throughout
our experiments, we employ the ten-fold cross validation to evaluate methods.

Table 1. Computational environment.

CPU Intel(R) Xeon(R) E5-2630 v4 10 Cores,
2.20 GHz

System Memory 128 GB
Software Java 1.8

Table 2. Datasets for the experiments.

No. Datasets Sample Size Variables Entropy H(X0)

1 lenses 24 5 0.9192
2 mux6 64 7 0.6931
3 post 87 9 0.6480
4 zoo 101 17 1.2137
5 HayesRoth 132 5 1.0716
6 iris 150 5 1.0986
7 wine 178 14 1.0860
8 glass 214 10 1.5087
9 CVR 232 17 0.6908
10 heart 270 14 0.6870
11 BreastCancer 277 10 0.6043
12 cleve 296 14 0.6899
13 liver 345 7 0.6804
14 threeOf9 512 10 0.6907
15 crx 653 16 0.6888
16 Australian 690 15 0.6871
17 pima 768 9 0.6468
18 TicTacToe 958 10 0.6453
19 banknote 1372 5 0.6870
20 Solar Flare 1389 11 0.6073
21 CMC 1473 10 1.0668
22 led7 3200 8 2.3006
23 shuttle-small 5800 10 0.6606
24 EEG 14980 15 0.6879
25 HTRU2 17898 9 0.3062
26 MAGICGT 19020 11 0.6484
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Table 3 presents the classification accuracies of each method. The values shown in
bold in Table 3 represent the best classification accuracies for each dataset. Moreover, we
highlight the results obtained by the SubbKB10 using a blue color. To confirm significance of
the differences that arise when using SubbKB10 and other methods, we applied the Hommel
test [39], which is a non-parametric post hoc test used as a standard in machine learning
studies [40]. Table 4 presents the p-values obtained using Hommel tests. From Table 3,
results show that, among the methods explained above, the SubbKB10 yields the best
average accuracy. Moreover, from Table 4, SubbKB10 outperforms all the model selection
methods at the p < 0.10 significance level. Particularly NB, TAN, and aCLL-TAN provide
lower classification accuracy than the SubbKB10 does for the No. 1, No. 20, and No. 24
datasets. The reason is that those methods have a small upper bound of maximum number
of parents. Such a small upper bound is known to cause poor representational power of
the structure [41]. The classification accuracy of EBN is the same as, or almost identical to,
that of SubbKB10 for large datasets such as No. 20, No. 23, No. 25, and No. 26 datasets
because both methods have asymptotic consistency. However, the classification accuracy
of SubbKB10 is equal to or greater than that of EBN for small datasets from No. 1 to No. 15.
As described previously, the classification accuracy of EBN is worse than that of the model
averaging methods because the error of learning structure by EBN becomes large as the
sample size becomes small.

For almost small datasets such as datasets from No. 6 to No. 9 and from No. 11 to
No. 13, SubbKB10 provides higher classification accuracy than EANB does because the error
of learning ANB structures becomes large. However, for the No. 4 and No. 5 datasets,
the classification accuracy of EANB is much higher than that obtained using SubbKB10.
To analyze this phenomenon, we investigate the average number of the class variable’s
parents in the structures learned by EBN and that by SubbKB10. The results displayed in
Table 5 highlight that the average number of the class variable’s parents in the structures
learned by EBN and that by SubbKB10 tends to be large in the No. 4 and No. 5 datasets.
Consequently, estimation of the conditional probability parameters of the class variable
becomes unstable because the number of parent configurations becomes large. Then the
sample size for learning a parameter becomes sparse. Actually, the ANB constraint prevents
numerous parents of the class variable. Moreover, it improves the classification accuracy.

The SubbKB10 outperforms bANmix, Adaboost(EBN), B-RAI, Bagging(EBN), KB10, KB20,
and KB50 at the p < 0.10 significance level. Actually, bANmix provides much lower accuracy
than SubbKB10 does for the No. 1, No. 20, and No. 24 datasets because it has a small upper
bound of a maximum number of parents, similar to NB, TAN, and aCLL-TAN. For almost all
large datasets, the classification accuracy of SubbKB10 is higher than that of B-RAI because
SubbKB10 has an asymptotic consistency, whereas B-RAI does not. The SubbKB10 provides
higher classification accuracy than Adaboost(EBN) does for small datasets, such as No. 5 and
No. 10 datasets, because Adaboost(EBN) tends to cause overfitting, as described in section 3.
The classification accuracy of Bagging(EBN) is much worse than that of SubbKB10 in the
No. 5 dataset because the error of learning structures using each sampled data becomes
large as the sample size becomes small. The SubbKB10 alleviates this difficulty somewhat
using model averaging for sampled data.

The K-best EC method using the BDeu score provides higher average classification
accuracy as K increases, as shown by EBN, KB10, KB20, KB50, and KB100. Although the
difference between SubbKB10 and KB100 is not statistically significant, SubbKB10 provides
higher average classification accuracy than KB100 does. Moreover, we compare the classifi-
cation accuracy of SubbKB10 and the K-best EC methods using 1/100-sized subsamples
from MAGICGT (No.26 of datasets) to confirm the robustness of SubbKB10. The results
presented in Table 6 show that SubbKB10 provides higher classification accuracy than the
other K-best EC methods do.
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Table 3. Classification accuracies of each BNC.

aCLL- Adaboost Bagging Bagging KB10 SubbKB10
No. H(X0) NB TAN TAN EBN EANB bANmix (EBN) B-RAI (EBN) (EANB) KB10 (EANB) KB20 KB50 KB100 (MDL) SubbKB10

1 0.9192 0.6250 0.7083 0.7083 0.8125 0.8750 0.6667 0.8125 0.8500 0.8333 0.8750 0.8333 0.6250 0.8333 0.8333 0.8333 0.8750 0.8333
2 0.6931 0.5469 0.6094 0.5938 0.4531 0.5469 0.5938 0.4531 0.3238 0.6094 0.4063 0.3594 0.5781 0.4219 0.4219 0.4219 0.3906 0.6250
3 0.6480 0.6552 0.6322 0.5977 0.7126 0.7126 0.6552 0.7126 0.7139 0.7126 0.7126 0.7126 0.6552 0.7126 0.7126 0.7126 0.7126 0.7126
4 1.2137 0.9901 0.9406 0.9505 0.9426 0.9604 0.9901 0.9406 0.9435 0.9604 0.9604 0.9505 0.9703 0.9505 0.9505 0.9505 0.9307 0.9505
5 1.0716 0.8106 0.6439 0.6742 0.6136 0.8333 0.6970 0.6136 0.6143 0.6136 0.8333 0.8182 0.7955 0.8182 0.8182 0.7803 0.8182 0.7727
6 1.0986 0.7133 0.8267 0.8200 0.8267 0.8067 0.8267 0.8200 0.8133 0.8267 0.8267 0.8267 0.8267 0.8267 0.8267 0.8200 0.8000 0.8267
7 1.0860 0.9270 0.9213 0.9157 0.9438 0.9270 0.9326 0.9213 0.8941 0.9551 0.9213 0.9438 0.9270 0.9438 0.9438 0.9438 0.9551 0.9438
8 1.5087 0.5421 0.5467 0.6215 0.5607 0.5280 0.5981 0.5701 0.5470 0.5701 0.5234 0.5701 0.5888 0.5748 0.5748 0.5748 0.5607 0.5748
9 0.6908 0.9095 0.9526 0.9224 0.9612 0.9526 0.9310 0.9655 0.9697 0.9698 0.9569 0.9612 0.9569 0.9655 0.9655 0.9655 0.9612 0.9698

10 0.6870 0.8296 0.8333 0.8148 0.8296 0.8444 0.8333 0.8074 0.7611 0.8407 0.8407 0.8259 0.8222 0.8333 0.8333 0.8333 0.8333 0.8370
11 0.6043 0.7365 0.7220 0.6968 0.7076 0.6751 0.7148 0.7509 0.6888 0.7004 0.6787 0.7040 0.7148 0.7040 0.7076 0.7329 0.7004 0.7220
12 0.6899 0.8311 0.8243 0.8446 0.8074 0.8142 0.8176 0.7939 0.7771 0.8108 0.8142 0.8074 0.8209 0.8041 0.8074 0.8176 0.8142 0.8176
13 0.6804 0.6464 0.6609 0.6522 0.5768 0.6058 0.6638 0.5971 0.5995 0.6174 0.6261 0.5913 0.6783 0.6087 0.6145 0.6261 0.6087 0.6232
14 0.6907 0.8008 0.8691 0.8906 0.8691 0.8672 0.8789 0.9063 0.7598 0.8906 0.8789 0.9043 0.8926 0.8984 0.8965 0.9434 0.9043 0.9023
15 0.6888 0.8392 0.8515 0.8453 0.8392 0.8622 0.8331 0.8591 0.8590 0.8499 0.8652 0.8392 0.8392 0.8392 0.8499 0.8484 0.8530 0.8499
16 0.6871 0.8348 0.8290 0.8478 0.8565 0.8580 0.8333 0.8638 0.8493 0.8464 0.8594 0.8565 0.8362 0.8565 0.8536 0.8478 0.8565 0.8464
17 0.6468 0.7057 0.7188 0.7031 0.7253 0.7188 0.7083 0.7240 0.7123 0.7227 0.7161 0.7279 0.7201 0.7279 0.7266 0.7331 0.7266 0.7266
18 0.6453 0.6889 0.7599 0.7192 0.8549 0.8445 0.7505 0.9123 0.6994 0.8466 0.8445 0.8539 0.8518 0.8518 0.8528 0.8486 0.8925 0.8518
19 0.6870 0.8433 0.8819 0.8761 0.8812 0.8812 0.8754 0.8776 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812
20 0.6073 0.7804 0.7970 0.8200 0.8431 0.8431 0.8143 0.8431 0.8409 0.8431 0.8431 0.8431 0.8236 0.8431 0.8431 0.8431 0.8431 0.8431
21 1.0668 0.4644 0.4725 0.4650 0.4549 0.4270 0.4779 0.4399 0.4100 0.4521 0.4270 0.4535 0.4623 0.4542 0.4494 0.4616 0.4481 0.4487
22 2.3006 0.7288 0.7309 0.7347 0.7288 0.7288 0.7300 0.7288 0.7228 0.7284 0.7284 0.7288 0.7281 0.7288 0.7288 0.7303 0.7272 0.7309
23 0.6606 0.9383 0.9567 0.9538 0.9693 0.9716 0.9681 0.9662 0.9659 0.9693 0.9702 0.9693 0.9714 0.9693 0.9693 0.9693 0.9393 0.9693
24 0.6879 0.5774 0.6298 0.6138 0.6844 0.6895 0.6031 0.6906 0.6450 0.6881 0.6955 0.6857 0.6931 0.6856 0.6856 0.6885 0.6918 0.6899
25 0.3062 0.8966 0.9141 0.9141 0.9141 0.9141 0.9102 0.9073 0.9066 0.9141 0.9141 0.9141 0.9141 0.9141 0.9141 0.9141 0.9141 0.9141
26 0.6484 0.7447 0.7769 0.7656 0.7859 0.7879 0.7734 0.7849 0.7827 0.7859 0.788 0.7863 0.7877 0.7863 0.7863 0.7871 0.7855 0.7860

Ave 0.7541 0.7696 0.7678 0.7752 0.7875 0.7722 0.7793 0.7512 0.7861 0.7841 0.7826 0.7831 0.7859 0.7864 0.7888 0.7855 0.7942
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Table 4. The p-values of each BNC.

aCLL- Adaboost Bagging
NB TAN TAN EBN EANB bANmix (EBN) B-RAI (EBN) KB10 KB20 KB100

p-
values 0.0016 0.0017 0.0046 0.0013 0.0749 0.0069 0.0197 0.0001 0.0315 0.0655 0.0694 0.0617

Table 5. Average numbers of the class variable’s parents in the structures of the EBN and those of the
SubbKB10.

No. Datasets Sample Size Variables EBN SubbKB10

1 lenses 24 5 0.90 1.37
2 mux6 64 7 5.70 4.68
3 post 87 9 0.00 0.02
4 zoo 101 17 3.70 4.31
5 HayesRoth 132 5 3.00 2.46
6 iris 150 5 1.80 1.89
7 wine 178 14 1.70 1.40
8 glass 214 10 0.40 0.68
9 CVR 232 17 0.90 1.42
10 heart 270 14 1.70 1.54
11 BreastCancer 277 10 0.70 0.82
12 cleve 296 14 1.90 1.69
13 liver 345 7 0.00 0.19
14 threeOf9 512 10 5.00 3.85
15 crx 653 16 1.20 1.08
16 Australian 690 15 1.00 1.14
17 pima 768 9 1.60 1.09
18 TicTacToe 958 10 1.60 0.40
19 banknote 1372 5 0.00 0.69
20 Solar Flare 1389 11 0.80 0.91
21 CMC 1473 10 0.90 0.82
22 led7 3200 8 0.60 0.95
23 shuttle-small 5800 10 2.00 2.12
24 EEG 14980 15 0.50 0.47
25 HTRU2 17898 9 1.50 1.62
26 MAGICGT 19020 11 0.00 0.47

Average 1.50 1.46

Table 6. Classification accuracies of K-best EC methods and SubbKB10 for 1/100-sized subsamples
from MAGICGT.

EBN KB10 KB20 KB50 KB100 SubbKB10

Accuracy 0.7498 0.7509 0.7529 0.7557 0.7563 0.7579

Although EANB provides higher average classification accuracy than EBN does, Bag-
ging(EBN) and KB10 provides higher average accuracy than Bagging(EANB) and KB10(EANB)
do, respectively. These results imply that the ANB constraint might not work effectively in
model averaging because it decreases the diversity of the models; all the ANB structures
necessarily have the edges between the class variable and all the feature variables. To
confirm the diversity of ANB structures in model averaging, we compare the structural
hamming distance (SHD) [42] of structures in each model averaging method. Table 7
presents the average SHDs between all two structures in each model averaging method.
Results show that the average SHDs of Bagging(EBN) and KB10 are higher than those of
Bagging(EANB) and KB10(EANB). That is, model averaging with ANB constraint has less
diverse structures than that without ANB constraint does. Moreover, SubbKB10 provides
the highest average SHD among all the compared methods because the combination of
K-best method and subbagging diversifies structures in the model averaging. SubbKB10
provides higher average classification accuracy than SubbKB10(MDL) does. However, the
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difference between both methods is not statistically significant because the MDL score
asymptotically converges to minus log BDeu score.

SubbKB10 provides the highest accuracy among all the methods for the No. 22 dataset,
which has the most entropy for the class variable among all the datasets. From Theorem 1,
SubbKB10 asymptotically estimates the true conditional probability of the class variable
given the feature variables. Therefore, SubbKB10 guarantees to provide high classification
accuracy when the sample size is sufficiently large regardless of the distribution of the
dataset.

Table 7. Average SHDs of model averaging BNCs.

Bagging Bagging KB10
No. (EBN) (EANB) KB10 (EANB) KB100 SubbKB10

1 1.07 0.33 2.61 2.30 3.09 4.11
2 0.61 0.89 3.24 1.96 4.33 4.56
3 0.42 0.42 2.33 1.92 2.31 3.32
4 32.56 12.98 7.03 7.41 5.43 10.51
5 0.00 0.07 2.35 2.39 2.87 3.78
6 1.87 1.54 5.09 2.86 4.23 6.12
7 11.85 5.50 7.57 2.56 4.04 9.40
8 4.76 5.31 3.71 4.33 3.33 5.36
9 23.27 24.25 6.37 6.60 3.03 8.91

10 7.19 6.42 4.48 2.09 3.61 7.64
11 1.02 1.02 2.36 2.20 0.76 4.67
12 5.95 5.07 3.74 2.16 2.50 7.34
13 4.27 4.17 4.98 2.08 4.45 6.63
14 4.33 3.36 3.16 3.44 2.59 3.79
15 8.68 6.29 9.36 3.70 7.18 10.63
16 10.79 9.39 6.25 3.97 5.60 9.82
17 3.30 1.97 5.05 3.15 4.63 7.10
18 8.06 5.85 7.86 7.18 7.19 10.54
19 0.00 0.00 5.54 3.74 3.77 6.88
20 3.24 2.58 5.20 4.38 4.10 7.19
21 4.64 3.60 5.57 2.79 3.63 6.67
22 0.00 0.00 3.58 1.80 1.21 5.49
23 1.80 5.05 6.23 5.83 5.56 6.87
24 7.99 15.40 9.04 12.07 6.92 10.26
25 0.32 0.32 6.03 5.01 0.80 9.56
26 3.82 1.36 9.02 7.14 4.28 12.47

Ave 4.98 4.16 4.82 3.64 3.72 6.70

Next, to demonstrate the advantages of using SubbKB10 for small data, we compare
the posterior standard error of the structures learned using SubbKB10 with that learned
by KB100. We estimate the posterior standard error of structures learned by the KB100 as
explained below.

1. Generate 10 random structures {Gm}10
m=1;

2. Sample 10 datasets, {D̃i}10
i=1, with replacement from the training dataset D, where

|D̃i| = |D|;
3. Compute the posteriors P(Gm | D̃i) ≈ P(D̃i | Gm)/ ∑10

m′=1 P(D̃i | Gm′), (m =
1, · · · , 10; i = 1, · · · , 10);

4. Estimate the standard error of the posteriors P(Gm | D), (m = 1, · · · , 10) as:√√√√ 1
10(10− 1)

10

∑
i=1

{
P(Gm | D̃i)−

1
10

10

∑
j=1

P(Gm | D̃j)

}2

. (3)

We estimate the posterior standard error of structures learned using SubbKB10 as presented
below.

1. Generate 10 random structures {Gm}10
m=1;

2. Sample 10 datasets, {D̃ti}10
i=1, with replacement from each bootstrapped dataset Dt,

where |D̃ti| = |Dt|;
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3. Compute the posteriors P(Gm | D̃i) ≈
1
T ∑T

t=1[P(D̃it | Gm)/ ∑10
m′=1 P(D̃it | Gm′)], (m =

1, · · · , 10; i = 1, · · · , 10);
4. Estimate the standard error of each of the posteriors P(Gm | D), (m = 1, · · · , 10) using

formula (3).

Average posterior standard errors over 10 structures {Gm}10
m=1 of the SubbKB10 and

those of the KB100 are presented in “APSES” of Table 8. Significance can be assessed
from values obtained using the Wilcoxon signed-rank test. The p-values of the test are
presented at the bottom of Table 8. Moreover, Table 8 presents the classification accuracies
of the KB100 and the SubbKB10. The results demonstrate that the APSES of SubbKB10 is
significantly lower than that of the KB100. Moreover, we investigate the relation between
the APSES and the training data sample size. The APSES values of SubbKB10 and KB100
for the sample size are plotted in Figure 2. As presented in Figure 2, the APSESs of KB100
are large for small sample size. As the sample size becomes large, the APSES of KB100
becomes small and closes to that of SubbKB10. On the other hand, the APSESs of SubbKB10
are constantly small independently of the sample size. As presented particularly in Table 8,
SubbKB10 provides higher classification accuracy than KB100 does when the APSES of
SubbKB10 is lower than that of the KB100, such as that of No. 2, No. 6, and No. 9 datasets.
Consequently, SubbKB10 reduces the posterior standard error of the structures. It therefore
improves the classification accuracy.

Table 8. (1) Average posterior standard errors of structures (APSES) of the KB100 and those of the
SubbKB10 and (2) classification accuracies of KB100 and the SubbKB10.

(1) APSES (2) Classification Accuracy

No. Datasets Sample
Size Variables KB100 SubbKB10 KB100 SubbKB10

1 lenses 24 5 0.0631 0.0425 0.8333 0.8333
2 mux6 64 7 0.0625 0.0600 0.4219 0.6250
3 post 87 9 0.0817 0.0547 0.7126 0.7126
4 zoo 101 17 0.0599 0.0600 0.9505 0.9505
5 HayesRoth 132 5 0.0600 0.0600 0.7803 0.7727
6 iris 150 5 0.0686 0.0564 0.8200 0.8267
7 wine 178 14 0.0702 0.0545 0.9438 0.9438
8 glass 214 10 0.0691 0.0600 0.5748 0.5748
9 CVR 232 17 0.0789 0.0504 0.9655 0.9698
10 heart 270 14 0.0722 0.0600 0.8333 0.8370
11 BreastCancer 277 10 0.0677 0.0600 0.7329 0.7220
12 cleve 296 14 0.0722 0.0547 0.8176 0.8176
13 liver 345 7 0.0697 0.0600 0.6261 0.6232
14 threeOf9 512 10 0.0600 0.0600 0.9434 0.9023
15 crx 653 16 0.0600 0.0600 0.8484 0.8499
16 Australian 690 15 0.0685 0.0600 0.8478 0.8464
17 pima 768 9 0.0649 0.0600 0.7331 0.7266
18 TicTacToe 958 10 0.0674 0.0600 0.8486 0.8518
19 banknote 1372 5 0.0600 0.0600 0.8812 0.8812
20 Solar Flare 1389 11 0.0693 0.0600 0.8431 0.8431
21 CMC 1473 10 0.0600 0.0600 0.4616 0.4487
22 led7 3200 8 0.0651 0.0600 0.7303 0.7309

23 shuttle-
small 5800 10 0.0600 0.0600 0.9693 0.9693

24 EEG 14980 15 0.0600 0.0600 0.6885 0.6899
25 HTRU2 17898 9 0.0600 0.0550 0.9141 0.9141
26 MAGICGT 19020 11 0.0600 0.0600 0.7871 0.7860

Average 0.0658 0.0580 0.7888 0.7942
p-value 0.0001 - - -
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Figure 2. Average posterior standard errors of structures (APSES) of the KB100 and those of SubbKB10.

5.2. Comparison of SubbKB10 and State-of-the-Art Ensemble Methods

This subsection presents a comparison of the classification accuracies of SubbKB10 with
K = 10, T = 10 and state-of-the-art ensemble methods, i.e., XGBoost [23], CatBoost [43],
and LightGBM [44]. Experimental setup and evaluation methods are the same as those
of the previous subsection. We determine the ESS α ∈ {1, 4, 16, 64, 256, 1024} in SubbKB10
using ten-fold cross validation to obtain the highest classification accuracy. The six ESS
values of α are determined according to Heckerman et al. [2]. To assess the significance of
differences of SubbKB10 from the other ensemble methods, we applied multiple Hommel
tests [39]. Table 9 presents the classification accuracy and p-values obtained using Hommel
tests. Results show that the differences between SubbKB10 and any other ensemble methods
are not statistically significant at the p < 0.10 level. However, SubbKB10 provides higher
average accuracy than XGBoost, CatBoost, and LightGBM do. CatBoost and LightGBM
provides much worse accuracies than the other methods do for the No. 3 and No. 2 datasets,
respectively. On the other hand, SubbKB10 avoids to provide much worse accuracy than
the other methods for small data because subbagging in SubbKB10 improves the accuracy
for small data, as previously demonstrated. Moreover, SubbKB10 provides much higher
accuracy than the other methods even for large data, the No. 24 dataset. The reason
is that SubbKB10 asymptotically estimates the true conditional probability of the class
variable given the feature variables from Theorem 1. This property is also highly useful for
developing AI systems based on decision theory because such systems require accurate
probability estimations to calculate expected utility and loss [45,46].



Entropy 2022, 24, 743 15 of 18

Table 9. Classification accuracies of XGBoost, CatBoost, LightGBM, and SubbKB10.

No. Datasets Sample
Size Variables H(X0) XGBoost CatBoost LightGBM SubbKB10

1 lenses 24 5 0.9192 0.7833 0.7833 0.6667 0.8333
2 mux6 64 7 0.6931 0.8333 0.9857 0.5357 0.8281
3 post 87 9 0.6480 0.6806 0.6000 0.7139 0.7011
4 zoo 101 17 1.2137 0.9509 0.9409 0.9309 0.9505
5 HayesRoth 132 5 1.0716 0.7967 0.7956 0.7429 0.8258
6 iris 150 5 1.0986 0.8200 0.8267 0.8200 0.8267
7 wine 178 14 1.0860 0.9268 0.9373 0.9088 0.9157
8 glass 214 10 1.5087 0.6457 0.6604 0.6407 0.6402
9 CVR 232 17 0.6908 0.9656 0.9612 0.9612 0.9612
10 heart 270 14 0.6870 0.8370 0.8111 0.8185 0.8259
11 BreastCancer 277 10 0.6043 0.7390 0.7361 0.7394 0.6931
12 cleve 296 14 0.6899 0.8277 0.7940 0.8172 0.8311
13 liver 345 7 0.6804 0.6635 0.6434 0.6548 0.6174
14 threeOf9 512 10 0.6907 1.0000 1.0000 1.0000 0.9980
15 crx 653 16 0.6888 0.8589 0.8697 0.8513 0.8637
16 Australian 690 15 0.6871 0.8623 0.8565 0.8609 0.8507
17 pima 768 9 0.6468 0.7136 0.7188 0.7149 0.7018
18 TicTacToe 958 10 0.6453 1.0000 1.0000 1.0000 0.9979
19 banknote 1372 5 0.6870 0.8812 0.8812 0.8812 0.8812
20 Solar Flare 1389 11 0.6073 0.8402 0.8359 0.8186 0.8409
21 CMC 1473 10 1.0668 0.4894 0.4684 0.4725 0.4807
22 led7 3200 8 2.3006 0.7297 0.7309 0.7303 0.7281
23 shuttle-small 5800 10 0.6606 0.9721 0.9721 0.9721 0.9722
24 EEG 14980 15 0.6879 0.7376 0.7308 0.7348 0.8901
25 HTRU2 17898 9 0.3062 0.9141 0.9141 0.9141 0.9141
26 MAGICGT 19020 11 0.6484 0.7871 0.7863 0.7870 0.7855

Average 0.8176 0.8169 0.7957 0.8213
p-value p > 0.1 p > 0.1 p > 0.1 -

6. Conclusions

This paper described our proposed subbagging of K-best EC to reduce the posterior
standard error of each structure in model averaging. The class variable posterior of SubbKB
converges to the true value when the sample size becomes sufficiently large because
SubbKB has asymptotic consistency for true class variable classification. In addition, even
for small data, SubbKB reduces the posterior standard error of each structure in the K-best
structures and thereby improves the classification accuracy. Our experiments demonstrated
that SubbKB provided more accurate classification than the K-best EC method and the
other state-of-the-art ensemble methods did.

The SubbKB cannot learn large size of networks because of its large computational
cost. We plan on exploring the following in future work:

• Steck and Jaakkola [47] proposed a conditional independence test with an asymptotic
consistency, a Bayes factor with BDeu; Moreover, Abellán et al. [48], Natori et al. [49,50]
proposed constraint-based learning methods using a Bayes factor, which can learn large
size of networks. We will apply the constraint-based learning methods using a Bayes factor
to SubbKB so as to handle much larger number of variables in our method;

• Liao et al. [25] proposed a novel approach to model averaging Bayesian networks
using a Bayes factor. Their approach is significantly more efficient and scales to much
larger Bayesian networks than existing approaches. We expect to employ their method
to address much larger number of variables in our method.

• Isozaki et al. [51,52], Isozaki and Ueno [53] proposed an effective learning Bayesian
network method by adjusting the hyperparameter for small data. We expect to employ
their method instead of the BDeu to improve the classification accuracy for small data.
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