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Abstract: Streptococcus pyogenes (S. pyogenes) bacteria cause almost all primary skin infections in
humans. Bee venom (BV) and melittin (Mel) have multiple effects, including antibacterial and
anti-inflammatory activities. This study aims to demonstrate their effects on bacterial mouse skin
infection using S. pyogenes. The dorsal skin was tape-stripped, then S. pyogenes was topically applied.
BV or Mel were topically applied to the lesion. The tissues were stained with hematoxylin and
eosin, while immunohistochemical staining was performed with anti-neutrophil. S. pyogenes-infected
skin revealed increased epidermal and dermal layers, but it was reduced in the BV and Mel groups.
Finding increased neutrophils in the mice infected with S. pyogenes, but the BV and Mel mice
showed decreased expression. These results suggest that BV and Mel treatments could reduce the
inflammatory reactions and help improve lesions induced by S. pyogenes skin infection. This study
provides additional assessment of the potential therapeutic effects of BV and Mel in managing skin
infection caused by S. pyogenes, further suggesting that it could be a candidate for developing novel
treatment alternative for streptococcal skin infections.

Keywords: bee venom; melittin; skin infection; Streptococcus pyogenes

Key Contribution: This study provides additional assessment of the potential therapeutic effects of
BV and Mel in managing skin infection caused by S. pyogenes, further suggesting that it could be a
candidates for developing novel treatment alternative for streptococcal skin infections.

1. Introduction

As the largest organ in the human body, the skin is colonized by many beneficial
microorganisms. It serves as a physical barrier preventing the invasion of foreign pathogens
while also providing a home to these commensal microbiota [1]. In circumstances where
the barrier is broken or the balance between commensals and pathogens is disturbed, skin
or even systemic disease can result [1]. In particular, skin infections are frequently found in
community and hospital settings, and these can be caused by bacteria, fungi, viruses, and
parasites [2].

Streptococcus pyogenes (S. pyogenes) and Staphylococcus aureus (S. aureus) bacteria cause
almost all primary skin infections in humans [3]. S. pyogenes, or group A streptococcus, is a
Gram-positive bacterium that expresses the Lancefield group A carbohydrate [4], leading
to diverse clinical manifestations ranging from superficial epithelial to extremely invasive
infections [5]. S. pyogenes also express a variety of virulence factors that are crucial for
adherence, colonization, dissemination of infection and immune evasion [6]. The various
toxic factors are expressed with different functions depending on infection site and stage [5].
S. pyogenes infections are commonly associated with an intense inflammatory state, and
exhibit an increased vascular permeability and recruitment of neutrophils to the site of

Toxins 2022, 14, 663. https://doi.org/10.3390/toxins14100663 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins14100663
https://doi.org/10.3390/toxins14100663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0001-8692-1908
https://orcid.org/0000-0003-3038-719X
https://orcid.org/0000-0002-6840-4509
https://orcid.org/0000-0002-8552-6049
https://orcid.org/0000-0003-2329-4374
https://doi.org/10.3390/toxins14100663
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins14100663?type=check_update&version=2


Toxins 2022, 14, 663 2 of 13

infection [7]. Certain S. pyogenes strains acquire access to the skin through abrasions and
skin lesions [8], with epidermal infections including impetigo and ecthyma and dermal
infections such as erysipelas, cellulitis, and necrotizing fasciitis [9].

Current treatment of S. pyogenes infections is based on conventional antibiotics and
symptom management [9], with penicillin and clindamycin being the main antibacterial
treatments for streptococcal skin infections [10]. Although antibiotics such as penicillin
have long been effective in treating S. pyogenes, there are reports of several issues associ-
ated with this therapy, including a weakening of the antibiotic effect [11]. Moreover, the
side effects of penicillin in terms of allergic reaction and high immunogenicity cannot be
ignored [12]. Clindamycin-resistant S. pyogenes have also been reported with increasing
frequency throughout the world [13]. As this bacteria steadily evolves to develop resistance
against various antibiotics, it is necessary to establish new treatments or different strategies
to promote the careful use of existing drugs. Exploring effective alternative substances
without risk of resistance and with fewer side effects for application in the treatments of S.
pyogenes skin infections are consequently of great importance.

Among the various products of natural origin, bee venom (BV) is particularly rich
in bioactive compounds and supports a variety of activities for various causes of dis-
ease [14,15]. BV contains a number of bioactive proteins, including melittin (Mel), apamin,
adolapin, phospholipases A2 and B, hyaluronidase, serotonin, histamine, dopamine, and
noradrenaline [16], and it has traditionally been used to treat many conditions, including
arthritis, rheumatism, cancerous tumors, skin diseases, and multiple sclerosis [17]. BV
has proven to be an active anti-inflammatory [18] and antibacterial agent against several
Gram-positive/negative bacteria strains [14].

Mel is a principal component of BV, accounting for between 40 and 60% of its com-
position [19]. Mel contains mast cell degranulating peptide, secapin, adolapin, tertiapin,
apamin, and enzymes [20]. Many studies have demonstrated Mel’s potential for treating
various cancer types and broad spectrum microorganisms [21,22]. Its anti-inflammatory
and antimicrobial activities are well-known and have been exploited in complementary
anti-bacterial agents [23,24].

Although BV and Mel have been found to inhibit the expression of pro-inflammatory
cytokines and to exert anti-inflammatory activity in various skin diseases [25,26], their
therapeutic effects on inflammatory skin diseases caused by S. pyogenes have not been
sufficiently studied. Therefore, this study aims to investigate these effects.

2. Results
2.1. Effects of BV and Mel Application on Superficial Skin Lesions Caused by S. pyogenes Infection

After topical treatment of S. pyogenes infection with BV or Mel, histological analysis
was performed on the dorsal skin specimens. Lesions were observed (Figure 1), beginning
with a single erythematous macule that evolved into a pustule, typically leaving a honey-
colored crust. In comparison with the skin of the mice in the untreated group, the severity
of the lesion improved after BV treatment. A similar improvement was observed in the
mice treated with Mel. Whether the infection was treated with BV or Mel, scab severity
improved compared with the placebo (Pla) groups. Moreover, hematoxylin and eosin
(H&E) staining of the S. pyogenes-infected skin revealed increased epidermal and dermal
layers (Figures 2 and 3). The Pla mice also showed increased thickness, whereas the BV
and Mel mice showed reduced thickness. However, Masson trichrome staining did not
show significant skin fibrosis in the mice infected with S. pyogenes (data not shown). These
results, suggest that topical treatment with BV or Mel helped improve lesions induced by S.
pyogenes skin infection.
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× 108 CFU/50 μL) and subsequently treated with BV or Mel, with the first application 48 h after 
infection and the second and final application 6 h later. At 18 h after the last treatment, the repre-
sentative images of the back were photographed. Lesions appeared on the skin of all infected mice 
with a vesicle on an easily ruptured erythematous base, resulting in superficial ulceration covered 
with purulent discharge that then dried as an adherent yellow crust. Negative control (NC); infected 
with S. pyogenes (IN); vaseline treatment as placebo after infection (Pla); S. pyogenes infection with 1, 
100, and 500 μg/mL BV cream (BV1, BV100, and BV500); S. pyogenes infection with 1, 100, and 500 
μg/mL Mel cream (Mel1, Mel100, and Mel500). 

 
Figure 2. Effect of BV in S. pyogenes skin infection models. At 18 h after the last topical application, 
biopsy specimens were taken and immediately fixed in 10% formalin, embedded in paraffin, and 
then stained with hematoxylin and eosin (H&E). (a) An increase in skin thickness and epidermal 
hyperplasia surrounding the infection site of S. pyogenes was observed by H&E staining. (b) Numer-
ical value of epidermis thickness. (c) Numerical value of dermis thickness. The graphs are the sta-
tistical analysis for each staining. The results are expressed as mean ± SEM of three independent 
determinations. * p < 0.05 compared with the NC group; † p < 0.05 compared with the IN group. 
Magnification ×200, scale bar 50 μm. Negative control (NC); infected with S. pyogenes (IN); vaseline 
treatment as placebo after infection (Pla); S. pyogenes infection with 1, 100, and 500 μg/mL BV cream 
(BV1, BV100, and BV500). 

Figure 1. Skin lesions after S. pyogenes infection. Mice were superficially infected with S. pyogenes
(1 × 108 CFU/50 µL) and subsequently treated with BV or Mel, with the first application 48 h
after infection and the second and final application 6 h later. At 18 h after the last treatment, the
representative images of the back were photographed. Lesions appeared on the skin of all infected
mice with a vesicle on an easily ruptured erythematous base, resulting in superficial ulceration
covered with purulent discharge that then dried as an adherent yellow crust. Negative control (NC);
infected with S. pyogenes (IN); vaseline treatment as placebo after infection (Pla); S. pyogenes infection
with 1, 100, and 500 µg/mL BV cream (BV1, BV100, and BV500); S. pyogenes infection with 1, 100, and
500 µg/mL Mel cream (Mel1, Mel100, and Mel500).
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Figure 2. Effect of BV in S. pyogenes skin infection models. At 18 h after the last topical application,
biopsy specimens were taken and immediately fixed in 10% formalin, embedded in paraffin, and
then stained with hematoxylin and eosin (H&E). (a) An increase in skin thickness and epidermal
hyperplasia surrounding the infection site of S. pyogenes was observed by H&E staining. (b) Nu-
merical value of epidermis thickness. (c) Numerical value of dermis thickness. The graphs are the
statistical analysis for each staining. The results are expressed as mean ± SEM of three independent
determinations. * p < 0.05 compared with the NC group; † p < 0.05 compared with the IN group.
Magnification ×200, scale bar 50 µm. Negative control (NC); infected with S. pyogenes (IN); vaseline
treatment as placebo after infection (Pla); S. pyogenes infection with 1, 100, and 500 µg/mL BV cream
(BV1, BV100, and BV500).
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2.2. BV and Mel Attenuate S. Pyogenes–Induced Skin Inflammation in Mice 
The distribution and composition of cellular infiltrates in the skin biopsies were de-

termined. There was a dense mix of inflammatory infiltrates composed of mononuclear 
cells, macrophages, mast cells, and abundant neutrophilic granulocytes. Neutrophils are 
the primary innate immune cells that defend against bacterial pathogens, and their pres-
ence contributes to the overall inflammatory response [27]. Immunohistochemical analy-
sis showed that the dermal layer of S. pyogenes-infected skin contained more neutrophils 
than that of the NC mice. In contrast, low neutrophil levels were observed in the skin of 
BV- and Mel-treated animals, indicating the inhibition of local neutrophils recruitment 
(Figures 4a,b and 5a,b). In line with the immunohistochemical analysis results, in Western 
blotting, the Pla mice showed expression levels similar to those of the IN mice, whereas 
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gests that the BV and Mel treatments could reduce the inflammatory response induced by 
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Figure 3. Effect of Mel in S. pyogenes skin infection models. At 18 h after the last topical application,
biopsy specimens were taken and immediately fixed in 10% formalin, embedded in paraffin, and
then stained with hematoxylin and eosin (H&E). (a) An increase in skin thickness and epidermal
hyperplasia surrounding the infection site of S. pyogenes was observed by H&E staining. (b) Nu-
merical value of epidermis thickness. (c) Numerical value of dermis thickness. The graphs are the
statistical analysis for each staining. The results are expressed as mean ± SEM of three independent
determinations. * p < 0.05 compared with the NC group; † p < 0.05 compared with the IN group.
Magnification ×200, scale bar 50 µm. Negative control (NC); infected with S. pyogenes (IN); vaseline
treatment as placebo after infection (Pla); S. pyogenes infection with 1, 100, and 500 µg/mL Mel cream
(Mel1, Mel100, and Mel500).

2.2. BV and Mel Attenuate S. pyogenes–Induced Skin Inflammation in Mice

The distribution and composition of cellular infiltrates in the skin biopsies were
determined. There was a dense mix of inflammatory infiltrates composed of mononuclear
cells, macrophages, mast cells, and abundant neutrophilic granulocytes. Neutrophils are the
primary innate immune cells that defend against bacterial pathogens, and their presence
contributes to the overall inflammatory response [27]. Immunohistochemical analysis
showed that the dermal layer of S. pyogenes-infected skin contained more neutrophils
than that of the NC mice. In contrast, low neutrophil levels were observed in the skin of
BV- and Mel-treated animals, indicating the inhibition of local neutrophils recruitment
(Figure 4a,b and Figure 5a,b). In line with the immunohistochemical analysis results, in
Western blotting, the Pla mice showed expression levels similar to those of the IN mice,
whereas the BV and Mel mice showed significantly lower expression (Figures 4c and 5c).
This suggests that the BV and Mel treatments could reduce the inflammatory response
induced by S. pyogenes infection of the skin.
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Figure 4. Effects of BV on neutrophil expression in S. pyogenes skin infection. (a) The representa-
tive immunohistochemical analysis images show that treatment with BV suppressed neutrophil
expression in S. pyogenes-infected skin. (b) The graph shows the percentage of neutrophil-positive
area. (c) Western-blot analysis shows the protein expressions of neutrophil in the skin tissues of each
group. The results are expressed as means ± SEM. * p < 0.05 compared with the NC group; † p < 0.05
compared with the IN group. Magnification ×400, scale bar 40µm. Negative control (NC); infected
with S. pyogenes (IN); vaseline treatment as placebo after infection (Pla); S. pyogenes infection with 1,
100, and 500 µg/mL BV cream (BV1, BV100, and BV500).
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Figure 5. Effects of Mel on neutrophil expression in S. pyogenes skin infection. (a) The representa-
tive immunohistochemical analysis images show that treatment with Mel suppressed neutrophil
expression in S. pyogenes-infected skin. (b) The graph shows the percentage of neutrophil-positive
area. (c) Western-blot analysis shows the protein expressions of neutrophil in the skin tissues of each
group. The results are expressed as means ± SEM. * p < 0.05 compared with the NC group; † p < 0.05
compared with the IN group. Magnification ×400, scale bar 40µm. Negative control (NC); infected
with S. pyogenes (IN); vaseline treatment as placebo after infection (Pla); S. pyogenes infection with 1,
100, and 500 µg/mL Mel cream (Mel1, Mel100, and Mel500).

2.3. BV and Mel Inhibit Pro-Inflammatory Cytokines in S. pyogenes–Infected Mouse Skin

The expression of IL-17A increased in mice infected with S. pyogenes and decreased
in those treated with BV (Figure 6a,b) or Mel (Figure 6c,d). Similarly, Western-blot was
performed to determine the effects of topical BV and Mel application on the production
of inflammatory cytokines. The expression of IL-1β and TNF-α in mice infected with S.
pyogenes significantly increased compared to the NC group, and the mice treated with a
placebo showed little difference (Figure 7). Conversely, expression decreased in the BV
and Mel groups, suggesting an association with the anti-inflammatory effects of BV and
Mel. BV and Mel can therefore be said to inhibit the production of important inflammatory
cytokines, involved in S. pyogenes skin infection.
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filaggrin in the skin tissues. Filaggrin deficiency means that skin will not function properly 
as a barrier [28]. In mice infected with S. pyogenes, the expression of filaggrin was signifi-
cantly decreased in comparison to the NC group, and the Pla group showed similar ex-
pression. On the other hand, filaggrin expression in the BV-treated mice showed a dose-
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Figure 6. Effects of BV and Mel on the expression of IL-17A in S. pyogenes skin infection.
(a,c) Immunochemical staining was performed to confirm the expression of IL-17A. (b,d) The graphs
show the percentage of IL-17A-positive area. * p < 0.05 compared with the NC group; † p < 0.05
compared with the IN group. Magnification ×400, scale bar 40µm. Negative control (NC); infected
with S. pyogenes (IN); vaseline treatment as placebo after infection (Pla); S. pyogenes infection with
1, 100, and 500 µg/mL BV cream (BV1, BV100, and BV500); S. pyogenes infection with 1, 100, and
500 µg/mL Mel cream (Mel1, Mel100, and Mel500).
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were analyzed by Western-blot, and GAPDH was used to confirm equal loading of all protein samples.
BV and Mel inhibit the expression of pro-inflammatory cytokines in S. pyogenes-infected skin tissues.
Negative control (NC); infected with S. pyogenes (IN); vaseline treatment as placebo after infection
(Pla); S. pyogenes infection with 1, 100, and 500 µg/mL BV cream (BV1, BV100, and BV500); S. pyogenes
infection with 1, 100, and 500 µg/mL Mel cream (Mel1, Mel100, and Mel500).

2.4. BV and Mel Help Restore Skin Barrier Function in S. pyogenes–Infected Skin

Immunofluorescent staining was performed to confirm the epidermal expression
of filaggrin in the skin tissues. Filaggrin deficiency means that skin will not function
properly as a barrier [28]. In mice infected with S. pyogenes, the expression of filaggrin
was significantly decreased in comparison to the NC group, and the Pla group showed
similar expression. On the other hand, filaggrin expression in the BV-treated mice showed
a dose-dependent recovery pattern (Figure 8a), and Mel treatment also helped in recovery
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(Figure 8b). This result suggests that BV and Mel contribute to restoring skin barrier
function in S. pyogenes-infected mouse skin.
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3. Discussion

The skin is an organ that functions as a barrier to limit the invasion and growth of
various pathogens in the body [29]. The skin protects the body from bacteria through a
range of inherent defense mechanisms, but it can support the growth of bacterial pathogens
under breached or moist occlusive conditions [29]. Most skin infections in the community
are caused by S. pyogenes and S. aureus [30]. Infection can occur with localized clinical
findings, and may indicate systemic inflammatory response syndrome when infected with
a single or multiple bacterial combination [31].

Gram-positive bacteria are the most prevalent infectious agents in humans, causing a
strong inflammatory response to the bacterial cell wall components and toxins secreted by
some pathogenic species [32]. One such bacteria, S. pyogenes, releases toxins that seriously
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affect immune response, including peptidoglycan and lipoteichoic acid, which are cell wall
components [32]. As a result of these toxic factors, superantigen activate a large proportion
of the circulating T cells in the resting T cells, and the inflammatory response is further
exacerbated by the cell wall components, leading to the mass production of inflammatory
cytokines [32].

In traditional oriental medicine, BV is applied to the body to treat various diseases, and
many studies have reported that BV, and particularly Mel, has multiple effects, including
antibacterial and anti-inflammatory activities in various cell types [33]. Han et al. [34]
demonstrate that BV has a sterilizing effect on S. pyogenes, and several other studies have
shown that BV reduces the secretion of inflammatory cytokines induced by Propionibac-
terium acnes [26,35]. However, very few in vivo studies have applied BV and Mel in cases
of skin disease caused by streptococcal infection, and this study, therefore, aimed to demon-
strate their effects on bacterial mouse skin infection using S. pyogenes.

In this study, lesion severity improved with BV and Mel treatments. With similar
results, an examination of the therapeutic effect of BV on acne showed a noticeable im-
provement in grade based on the number of inflammatory and non-inflammatory lesions as
compared to the control group [36]. Moreover, our results showed a significant reduction in
the thickness of both the epidermis and the dermis in the treatment groups compared with
the placebo group. Likewise, Kim et al. [37] observed reduced inflammatory symptoms,
such as increased thickness, edema and erythema in mice treated with BV. Similarly, An
et al. [38] found that BV and Mel treatments significantly reduced dorsal skin thickness in
mice with atopic dermatitis. Taken together, these findings confirm that BV and Mel have
therapeutic effects on the symptoms of acute streptococcal skin infection.

Neutrophils are the main effector cells in acute inflammatory responses caused by
infections [39]. IL-17A plays an important role in neutrophilic activation and induction,
and produces powerful chemokines, the main chemicals attracting neutrophils [39]. These
chemokines act synergistically with TNF-α, inducing and maintaining pro-inflammatory
states [40]. In this study, immunochemical staining showed that IL-17A increased in skin
tissues infected with S. pyogenes and decreased after BV and Mel treatment.

TNF-α is a multifunctional cytokine that plays an important role in the pathology
of many infectious diseases through its involvement in immune regulation and inflam-
mation [41]. IL-1 is a pro-inflammatory cytokine activated in acute inflammation. It has
been shown that IL-1 is highly expressed in inflamed skin and scars [42]. IL-1β is closely
related to the severity of inflammatory diseases and is beneficial for the elimination of
infectious agents [43,44]. A previous study demonstrated that IL-1 signaling is significantly
associated with the eradication of neutrophil-mediated S. aureus infection [45].

This study examined the therapeutic effects of BV and Mel on S. pyogenes-infected
mouse skin by investigating neutrophilic expression and pro-inflammatory cytokine TNF-α
and IL-1β production. The results showed that BV and Mel reduced TNF-α and IL-1β
expression. These finding were confirmed by Western blotting. Similarly, a study on the
therapeutic mechanism of BV in atopic dermatitis lesions caused by ovalbumin (a major
egg white protein) found that BV inhibited pro-inflammatory cytokines, such as TNF-α [46].
Another study documented the protective effects of Mel on the inflammatory response
to P. acnes [25]. The results of our study confirm that BV and Mel suppress inflammation,
demonstrating their effectiveness in treating skin lesions caused by S. pyogenes.

Filaggrin, particularly important for the formation of the skin barrier, plays a funda-
mental role in terminal epidermal differentiation and affects a range of general derma-
tological diseases [47]. Kim et al. [37] found that ovalbumin-induced atopic dermatitis
can be improved by decreasing filaggrin levels, while An et al. [38] demonstrate that the
topical application of BV or Mel restores abnormal epidermal differentiation by recovering
filaggrin expression. As with these previous reports, filaggrin expression was found to
be decreased in the streptococcal-infected skin tissue of this study and to recover toward
higher concentrations in the groups treated with BV or Mel. These results show that topical
treatment of BV or Mel can restore the skin’s barrier function when damaged by strepto-
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coccal infection. Consequently, BV or Mel can be said to contribute to the normalization
of damaged barrier function, prevent the occurrence of secondary infection, and avoid
deterioration of the lesion. Taken together, these results confirm that BV and Mel have
therapeutic effects on acute streptococcal skin infection symptoms.

The safety of long-term topical BV and Mel treatments remains uncertain. In this
study, although lesion severity tended to decrease, differences between individuals were
observed. Furthermore, complete recovery was not observed, as this would have required
a longer experimental period than was available. Further investigation is therefore needed
to determine whether long-term BV or Mel treatment can completely heal infection sites
and what side effects it may have.

4. Conclusions

This study investigated the potential of topical BV and Mel treatments for S. pyogenes
skin infection. A tape-stripped mouse infection model was used to induce superficial
skin infection with S. pyogenes. This results show that short-term BV and Mel treatments
can promote wound healing in the superficial skin layer. This study provides further
evidence of the potential therapeutic effects of BV and Mel on skin infection caused by S.
pyogenes, suggesting that with further optimization such as adjusting the application period
or concentrations, they could be used to develop novel treatments for streptococcal skin
infections.

5. Materials and Methods
5.1. Bacterial Strains and Culture Conditions

The S. pyogenes strain (KCCM 11875) was grown aerobically overnight on blood agar
with 5% sheep blood plates at 37 ◦C. The bacterial cells were harvested and resuspended
in phosphate buffered saline then centrifuged at 4000 rpm for 10 min. The process was
repeated three times. The washed bacteria were resuspended in distilled water for use in
the following experiments. S. pyogenes were adjusted to 1.0 × 108 colony-forming units
(CFU)/mL at an absorbance wavelength of 580 nm.

5.2. Animals

Six-week-old female Balb/C mice were purchased (Samtako Inc., Osan, Korea) and
housed at 55% humidity and 22 ± 2 ◦C in a 12-h light-dark cycle and allowed food and
water ad libitum for 7 days. Animal care and all experimental procedures were approved
and conducted in accordance with the guidelines of the Institutional Animal Care and Use
Committee of the Catholic University of Daegu (Approval number: DCIAFCR-210607–08-Y;
Approved date: 7 June 2021).

5.3. Mouse Skin Infection Model

The mice were randomly divided into nine equal groups (n = 6 per group): negative
control (NC); S. pyogenes infection without treatment (IN); S. pyogenes infection with Vaseline
as placebo (Pla); S. pyogenes infection with 1, 100, 500 µg/mL BV (Dongsung Bio Pharm,
Korea; BV1, BV100, and BV500); and S. pyogenes infection with 1, 100, 500 µg/mL Mel
(Chungjin Biotech, Ansan, Korea; Mel1, Mel100, and Mel500). The Pla group was topically
treated only with vaseline as a placebo. The BV and Mel groups were topically treated
with BV and Mel, mixed with vaseline (0.5 g per mouse). The treatment was initiated
48 h post-infection and performed once more 6 h after first treatment. The fur on the back
of all mice was shaved, and the animals were put under brief isoflurane anesthesia. The
dorsal skin was stripped with autoclave tape. In order to standardize the degree of barrier
disruption elicited by the tape stripping, transepidermal water loss (TEWL) was measured
using a barrier device (gpower, Seoul, South Korea). Each mouse was stripped between
7 and 10 times until TEWL reached approximately 70 g/m2h. Then, living S. pyogenes
(1 × 108 CFU/50 µL in distilled water) were topically applied and well spread out. At
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18 h after the last topical treatment, the mice were sacrificed and the superficial wound
specimens excised for dermatohistopathology.

5.4. Histological Analysis

The dorsal skin specimens were fixed in 10% formalin at room temperature (RT) and
subsequently dissected, dehydrated, and embedded in paraffin. The paraffin-embedded
tissues were cut into 4 µm sections which were then mounted on glass slides and stained
with hematoxylin and eosin (H&E) according to standard protocols.

5.5. Immunohistochemical Analysis

The tissue sections were deparaffinized with xylene and dehydrated in gradually
decreasing concentrations of ethanol. The sections were incubated with a primary antibody
(1:100) for 1 h at 37 ◦C. The signal was visualized using the EnVision System (Dako,
Carpinteria, CA, USA) for 30 min at 37 ◦C; the coloring reagent was 3,3′-diaminobenzidine
tetrahydrochloride, and hematoxylin was used as the counterstain. The primary antibodies
were anti-neutrophil and anti-IL-17A (Abcam, Cambridge, UK). All slides were scanned
using a Pannoramic® MIDI slide scanner (3DHISTECH, Budapest, Hungary).

5.6. Immunofluorescence Analysis

The dorsal skin specimens were deparaffinized with xylene and dehydrated in gradu-
ally decreasing concentrations of ethanol. The primary antibody (1:200) was added followed
by incubation for 2 h at 37 ◦C, and secondary antibody (1:200) was then performed for 1 h
at RT. The nuclei were labeled with 4′, 6-diamidino-2-phenylindole (DAPI; 1:1000) at RT for
2 min. The antibodies were anti-filaggrin (Enzo Life Sciences, Lausen, Switzerland) and
anti-rabbit-biotinylated secondary antibodies conjugated with fluorescein isothiocyanate
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA). The slides were mounted
using a fluorescence mounting medium (Dako; Agilent Technologies, Inc., Santa Clara,
CA, USA), and the stained slides were imaged using a NIKON® A1+ confocal microscope
(Nikon, Tokyo, Japan).

5.7. Western Blot Analysis

Protein samples were extracted from the skin specimens using Cell Lytic™ M protein
extraction solution (Sigma-Aldrich, St. Louis, MO, USA), according to the manufacturer’s
recommendations. After incubation for 30 min on ice, the total extract was centrifuged at
12,000 rpm at 4 ◦C for 10 min and the supernatant was collected. The protein concentration
was measured with the Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA) at
595 nm using a spectrophotometer.

The protein samples were separated using precast gradient polyacrylamide gels
(BoltTM 4–12% Bis-Tris Plus Gels; Thermo Fisher Scientific, Waltham, MA, USA) and
transferred to a nitrocellulose membrane (GE Healthcare, Chicago, IL, USA). The mem-
brane was blocked in 5% bovine serum albumin for 1 h at RT and then incubated overnight
with the primary antibody at 4 ◦C. The membranes were then incubated with horseradish
peroxidase-conjugated secondary antibodies for 1 h at RT. The signals were detected using
enhanced chemiluminescence detection reagents (Thermo Fisher Scientific, Waltham, MA,
USA). Signal intensity was analyzed using the iBright™ CL1500 Imaging System (Thermo
Fisher Scientific, Waltham, MA, USA) and quantified using the Image Lab Software (Bio-
Rad Laboratories, Hercules, CA, USA). The protein expression levels were normalized to
GAPDH (Cell Signaling, Beverly, MA, USA) expression values. The primary antibodies
used were anti-interleukin-1 beta (IL-1β; Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-tumor necrosis factor-alpha (TNF)-α, anti-neutrophil (Abcam, Cambridge, UK), and
anti-GAPDH (Cell Signaling, Beverly, MA, USA).
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5.8. Statistical Analysis

All results were presented as mean ± standard error of the mean (SEM) and statistical
significance was tested using Prism 5 (GraphPad Software, Inc., San Diego, CA, USA).
Statistical significance was tested by one-way analysis of variance with a Tukey’s multiple
comparison test and difference with p < 0.05 were considered significant.
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