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A high-resolution daily gridded 
meteorological dataset for Serbia 
made by Random Forest Spatial 
Interpolation
Aleksandar Sekulić   1,2 ✉, Milan Kilibarda1,2, Dragutin Protić1 & Branislav Bajat   1

We produced the first daily gridded meteorological dataset at a 1-km spatial resolution across Serbia 
for 2000–2019, named MeteoSerbia1km. The dataset consists of five daily variables: maximum, 
minimum and mean temperature, mean sea-level pressure, and total precipitation. In addition to 
daily summaries, we produced monthly and annual summaries, and daily, monthly, and annual long-
term means. Daily gridded data were interpolated using the Random Forest Spatial Interpolation 
methodology, based on using the nearest observations and distances to them as spatial covariates, 
together with environmental covariates to make a random forest model. The accuracy of the 
MeteoSerbia1km daily dataset was assessed using nested 5-fold leave-location-out cross-validation. 
All temperature variables and sea-level pressure showed high accuracy, although accuracy was lower 
for total precipitation, due to the discontinuity in its spatial distribution. MeteoSerbia1km was also 
compared with the E-OBS dataset with a coarser resolution: both datasets showed similar coarse-scale 
patterns for all daily meteorological variables, except for total precipitation. As a result of its high 
resolution, MeteoSerbia1km is suitable for further environmental analyses.

Background & Summary
Daily meteorological observations are available from various sources, such as Global Historical Climate Network 
Daily (GHCN-daily)1, Global Surface Summary of the Day (GSOD)2, European Climate Assessment & Dataset 
(ECA&D)3, and OGIMET4. However, there is no information from these sources on daily meteorological variable 
values at unobserved locations, and so gridded meteorological datasets are made. Daily gridded meteorological 
datasets are essential input for numerous models and analyses across various research fields. For example, daily 
meteorological gridded datasets are used in agriculture for estimating yield5,6, the occurrence of insect pests and 
disease7, and crop growth8, as well as in meteorology9, hydrology10, ecology11, climate and climate change analysis12,  
risk assessment13, and forestry14.

Various sources of daily gridded meteorological datasets on global and regional levels cover the territory of 
Serbia. The details about these datasets are given in Table 1.

Most daily gridded datasets at the global and regional levels produced at a coarser spatial resolution can hardly 
represent localized meteorological patterns, which is their main limitation. MODIS LST has a finer spatial reso-
lution (1 km), but daily products do not cover the entire spatial domain. Therefore, there is a need for localised 
meteorological gridded datasets at finer spatial resolutions. High-resolution daily gridded meteorological datasets 
are available for other regions15–21, but so far there has not been one for Serbia.

With this in mind, we developed the MeteoSerbia1km dataset, the first daily gridded (gap-free) meteorolog-
ical dataset at a 1-km spatial resolution across Serbia, for the period 2000–2019. The MeteoSerbia1km dataset 
consists of daily maximum, minimum and mean temperatures (Tmax, Tmin, Tmean), the mean sea-level pres-
sure (SLP), and the total precipitation (PRCP). The Random Forest Spatial Interpolation methodology (RFSI)22 
was used for this purpose. RFSI was selected as it combines environmental covariates and observations from 
the nearest stations, in order to predict values at unobserved locations. Additionally, monthly and annual aver-
ages and daily, monthly, and annual long-term means (LTM) were made by averaging (or summing for PRCP) 
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the MeteoSerbia1km dataset. The accuracy of the MeteoSerbia1km daily grids was assessed by nested k-fold 
cross-validation. Because there are no daily gridded meteorological datasets for Serbia and there is no reference 
point, MeteoSerbia1km was compared with the E-OBS daily gridded dataset at a spatial resolution of 10 km. 
MeteoSerbia1km was also tested with independent station observations.

As daily gridded meteorological datasets mostly cover a longer period of time, they can help in under-
standing the behaviour of meteorological variables in both spatial and temporal domains. The newly devel-
oped MeteoSerbia1km dataset is suitable for localized environmental and microclimate analyses, precision 
agriculture, forestry, regional and urban planning, hydrological analysis, and risk management in Serbia. The 
MeteoSerbia1km dataset is freely available in the GeoTIFF format. Daily products will be frequently updated. The 
dataset will also be improved in the future with further developments in the RFSI methodology, adding additional 
environmental covariates and including national meteorological observations.

Methods
Study area.  Serbia is a medium sized Southeastern European country that covers an area of 88,361 km2, i.e., 
around 18% of the Balkan Peninsula (18.8°–23.0° E longitude, 41.8°–46.2° N latitude). It is characterized by a 
complex topography (Fig. 1, Digital Elevation Model (DEM)), since its northern parts are within the Pannonian 
Plain, and southern parts are crossed with several mountain systems. The mean altitude of Serbia is 473 m, rang-
ing from 29 m in the northeast to 2,656 m on Prokletije Mountain in the southwest23. There are three main types 
of climate in Serbia, from north to south: continental, moderate continental, and modified Mediterranean cli-
mate. Precipitation is unevenly distributed with an average amount of 739 mm, and the average temperature for 
the period 1961–2010 was 10.4°C24.

Observational source data.  OGIMET and Automated meteorological stations in Vojvodina (AMSV) are 
two observational datasets from which daily meteorological variables from the OGIMET data were used as depend-
ent variables in the modelling process, while AMSV data was used for evaluation of the MeteoSerbia1km dataset.

OGIMET.  OGIMET4 is a Weather Information Service which provides data that includes historical daily sum-
maries from surface synoptic observation (SYNOP) reports starting from the year 2000. SYNOP reports are 

Dataset name Abbreviation Ref. Dataset type Spatial resolution

Moderate Resolution Imaging Spectroradiometer Land Surface 
Temperature MODIS LST 52 RS-based 1 km

Tropical Rainfall Measuring Mission/Integrated Multi-satellitE Retrievals 
for Global Precipitation Measurement TRMM/IMERG 26 RS-based 0.1° (~10 km)

Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks PERSIANN 53 RS-based 0.04° (~4 km)

Climate Prediction Center global temperature and precipitation CPC 54,55 station-based 0.5° (~50 km)

Ensembles daily gridded observational dataset E-OBS 27 station-based 0.1° (~10 km)

Climate of the Carpathian region (covers only the northern part of Serbia) CarpatClim 56 station-based 0.1° (~10 km)

National Centers for Environmental Prediction/National Center for 
Atmospheric Research reanalysis NCEP/NCAR 57 reanalysis 2.5° (~250 km)

National Oceanic and Atmospheric Administration (NOAA) - CIRES 
20th Century Reanalysis NOAA-CIRES 58 reanalysis 2.5° (~250 km)

ERA-Interim ERA-Interim 59 reanalysis 80 km

ERA5 (hourly, but can be aggregated to a daily resolution) ERA5 60 reanalysis 0.25° (~25 km)

Table 1.  Existing daily gridded meteorological datasets for Serbia (Ref. stands for reference and RS for remote 
sensing).

Fig. 1  OGIMET and AMSV station locations used for making and testing MeteoSerbia1km with DEM.
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meteorological alphanumeric messages for reporting observations from more than 10,000 meteorological stations 
around the world. Reports are mostly available every 6 h (00, 06, 12 and 18 UTC), but for some stations every 3 or 
1 h. The format of these reports is standardized and defined by the World Meteorological Organization (WMO). 
OGIMET daily summaries from 61 SYNOP stations, of which 28 are in Serbia, were used for the spatial interpola-
tion of meteorological variables (Fig. 1). The remaining 33 stations in a 100-km buffer around the Serbian border 
were used for a more accurate spatial interpolation, especially in the areas near the Serbian border.

The outliers for OGIMET precipitation daily summaries that were four times larger than (a) the maximum of 
the surrounding observations, i.e., observations in a radius of 100 km and (b) the corresponding E-OBS value (see 
section E-OBS) were detected and removed.

A summary of the statistics for each of the meteorological parameters is given in Table 2.

Automated meteorological stations in Vojvodina.  AMSV25 collects hourly data for temperature (Tmax, Tmin, 
Tmean), the dew point, PRCP, relative humidity, etc., which began in March 2005. AMSV daily summaries from 
55 stations (Fig. 1) were used to independently test MeteoSerbia1km in Vojvodina, specifically Tmax, Tmin, 
Tmean, and PRCP.

Gridded source data.  The DEM (Fig. 1), topographic wetness index (TWI) and IMERG gridded data were 
used as independent (auxiliary) variables (covariates) in the modelling process for the daily meteorological vari-
ables, while the E-OBS dataset was used for evaluation of the MeteoSerbia1km dataset.

DEM and TWI.  A DEM at a spatial resolution of 1 km was created by combining SRTM 30 + and ETOPO DEM. 
A TWI at a spatial resolution of 1 km was derived from the SAGA GIS TWI algorithm and DEM. DEM and TWI 
both have a 1-km spatial resolution.

IMERG.  IMERG26 is an algorithm that combines information from multiple sources, such as satellite microwave 
precipitation estimates, microwave-calibrated infrared satellite estimates, precipitation gauges, and other precip-
itation estimators to estimate precipitation over the majority of the Earth’s surface. One of the IMERG products 
is maps (grids) of daily precipitation estimates. The IMERG final run version V06B precipitation estimates were 
used for developing the PRCP model. IMERG estimates are a space-time covariate with a spatial resolution of 
10 km and temporal resolution of one day. Earlier versions of the IMERG dataset, based on GPM, covered the 
period from 2014, but starting from version V06B, IMERG includes TRMM preprocessed data going back to June 
2000. The IMERG dataset was used as a coarser scale covariate for precipitation. Therefore, the IMERG dataset 
was resampled to a 1-km spatial resolution using bilinear interpolation and DEM as a base layer.

E-OBS.  E-OBS27 is an ensemble dataset constructed through a conditional simulation procedure. For each of 
the 100 members of the ensemble, a spatially correlated random field is produced using a pre-calculated spatial 
correlation function. The mean across the members is calculated and is provided as the “best-guess” fields. E-OBS 
is a daily dataset with a spatial resolution of 10 km. Because E-OBS is based on observations from ECA&D and 
SYNOP meteorological stations, it was used for comparison with the daily MeteoSerbia1km dataset and the 
detection of precipitation outliers.

RFSI.  RFSI22 is a novel methodology for spatial interpolation based on the random forest machine learning 
algorithm28. In comparison with other random forest models for spatial interpolation, RFSI uses additional spa-
tial covariates: (1) observations at n nearest locations and (2) distances to them, in order to include the spatial 
context in the random forest. RFSI model predictions can be written as:

� = … …z f x x z d z d z d z d(s ) ( (s ), , (s ), (s ), , (s ), , (s ), , , (s ), ) (1)m n n0 1 0 0 1 1 2 2 3 3

where z(s )0�  is the prediction at prediction location s0, = …x i m(s )( 1, , )i 0  are environmental covariates at location 
s0, z(si) and di are spatial covariates (i = 1, …, n), where z(s )i  is the i-th nearest observation from s0 at location si 
and di = |si - s0|. These spatial covariates proved to be valuable extensions for the random forest algorithm in 
improving its spatial accuracy. A detailed description of RFSI, including its performance and implementation 
procedure, is provided by Sekulić et al.22.

Model development and prediction.  In order to prepare the data for RFSI modelling, all of the environmental 
covariates were overlaid with training observation locations for each day. Then, RFSI spatial covariates were 

Parameter Tmax [°C] Tmin [°C] Tmean [°C] SLP [mbar] PRCP [mm]

Minimum −22.2 −34.8 −24.8 967.4 0.0

1st quartile 9.7 0.5 5.0 1,012.5 0.0

Median 18.3 6.9 12.3 1,016.5 0.0

Mean 17.6 6.4 11.8 1,017.1 2.0

3rd quartile 25.8 12.7 18.9 1,021.4 1.0

Maximum 45.9 30.8 35.4 1,077.8 198.0

Table 2.  Summary of the statistics for the selected variables in OGIMET daily summaries for the period 2000–2019.
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created in the following way: for each day and for each training observation location, n nearest training observa-
tion locations were found and n pairs of covariates—observations at n nearest locations and distances to them—
were calculated. Extracted overlaid values and n pairs of spatial covariates were assigned to the corresponding 
observations, making a dataset which was then used to fit an RFSI model.

Predictions were made in a similar manner to the development of the RFSI model. For each of the desired 
prediction days and locations (in this case pixels of the target grid), environmental covariates were extracted and 
observations at n nearest training locations and distances to them were calculated. Then, predictions were made 
using extracted values and n pairs of spatial covariates, and an already fitted RFSI model. The entire process of 
making the RFSI model and making predictions is presented in Fig. 2. It should be noted that the RFSI model can 
handle both regression and classification tasks.

Model tuning.  In order to achieve the best possible prediction accuracy, hyperparameters for the RFSI models 
were tuned. The tuned hyperparameters were the number of variables to possibly split at each node (mtry), minimal 
node size (min.node.size) and ratio of observations-to-sample in each decision tree (sample.fraction), and the num-
ber of nearest observations (n.obs). The number of trees (ntree) hyperparameter was fixed and set to 250, according 
to Sekulić et al.22, as a larger value of ntree would not improve the RFSI model’s accuracy. The splitrule (splitrule) 
hyperparameter was also fixed and set as variance for regression tasks, and gini index for classification tasks.

The hyperparameters were tuned using 5-fold leave-location-out cross-validation (LLOCV). Here ‘leave- 
location-out’ means that all observations from a specific location (i.e. time series of observations from a station) 
were in the same fold, and 5-fold means that all of the locations were grouped into 5 groups (folds). Then, each of 
the folds was used once for validation. By doing so, the accuracy of the targeted spatial prediction was assessed29. 
Many different combinations of hyperparameters were tested and for each combination, 5-fold LLOCV was per-
formed. In other words, for each of the hyperparameter combinations, the entire dataset was split into 5 folds. 
Each of the folds once represented a test fold, while the four remaining folds were used to fit the RFSI model with 
a hyperparameter combination. Finally, RMSE was adopted as a criterion for the selection of optimal hyperpa-
rameters. The RMSE was calculated for the entire dataset after the 5-fold LLOCV process, i.e., based on all obser-
vations and predictions from all 5 folds.

Modelling of daily meteorological variables.  Temperature.  Modelling the daily temperature variables, 
Tmax, Tmin, and Tmean, is a regression task. All daily temperature RFSI models are as follows:

T f DEM TWI GTT DOY IDW z d z d(s ) ( , , , , , (s ), , , (s ), ) (2)max min mean R n obs n obs, , 0 1 1= … . .

where Tmax,min,mean(s0) is the daily temperature (Tmax, Tmin, and Tmean) prediction at prediction location s0, fR 
denotes an RFSI regression model, GTT is the geometrical temperature trend, a function of latitude and day of the 
year (which was shown to be a valuable covariate for Tmax, Tmin and Tmean)30, DOY is a temporal covariate, i.e., 
the day of the year, and IDW is a local inverse distance weighting prediction based on the n.obs number of nearest 
observations (excluding the observed location).

The tuned hyperparameters for each of the daily temperature models are given in Table 3. The IDW exponent 
(p) was also tuned. The n.obs hyperparameter was 10 for the Tmax model and 9 for the Tmin and Tmean models.

Fig. 2  Schematic representation of the RFSI algorithm22.
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Sea-level pressure.  Modelling the daily SLP is also a regression task. The SLP RFSI model has fewer covariates 
than corresponding temperature models:

SLP f DEM DOY IDW z d z d(s ) ( , , , (s ), , , (s ), ) (3)R0 1 1 9 9= …

where SLP(s0) is the daily SLP prediction at prediction location s0.
The tuned hyperparameters for the daily SLP model are given in Table 3. The n.obs hyperparameter was 9.

Precipitation.  PRCP was modelled in two steps, i.e., with two models: (1) a classification model for the daily 
precipitation occurrence and (2) a regression model for the daily amount of precipitation, denoted as:

PRCP f DEM T T LP IMERG DOY z d z d
f DEM T T LP IMERG DOY IDW z d z d

(s ) ( , , , S , , , (s ), , , (s ), )
( , , , S , , , , (s ), , , (s ), ) (4)

C max min

R max min

0 1 1 9 9

1 1 6 6

= … ⋅

…

where PRCP(s0) is the daily PRCP prediction at prediction location s0, fC denotes the PRCP RFSI classifica-
tion model with 0 and 1 as possible classes, Tmax, Tmin, and SLP are corresponding daily predictions from the 
MeteoSerbia1km dataset at location s0, and IMERG is the corresponding overlayed value from the IMERG dataset 
at location s0. Both precipitation models were fitted on the entire dataset with the same covariates. This means that 
zero precipitation observations were included in the regression model fitting. One reason for this was to include 
zero precipitation proximity in the regression model. As seen from Eq. 4, in PRCP prediction, the regression model 
was applied only in the locations where the classification model predicted the precipitation occurrence (class 1).

The tuned hyperparameters for both the daily PRCP classification and regression models are given in Table 3. 
The n.obs hyperparameter for the classification model was 9, and for the regression model was 6.

Data Records
MeteoSerbia1km is a high-resolution daily meteorological gridded dataset for Serbia, consisting of Tmean, Tmax, 
Tmin, SLP and PRCP variables, for the period 2000–2019. As an example, prediction maps for July 27, 2014 are 
presented in Fig. 3. In addition, monthly and annual averages (totals for PRCP) were generated by aggregating 
daily datasets. Then, daily, monthly, and annual LTM were generated by averaging daily, monthly and annual 
datasets. Since the first five months of the year 2000 were missing from the IMERG dataset, the daily and monthly 
PRCP averages start from June, 2000. Therefore, the daily and monthly PRCP LTMs were calculated without the 
first five months of the year 2000, and PRCP annual averages and LTM were calculated without the year 2000. 
Additionally, only the data for leap years were available for generating the daily LTM for February 29.

The OpenStreetMaps country border (https://osm-boundaries.com/https://osm-boundaries.com/) of Serbia 
was used to ensure that the MeteoSerbia1km dataset covers the territory of Serbia. The entire dataset is at a 
1-km spatial resolution, and is available in both, WGS84 and UTM34N projections. The dataset is stored in the 
GeoTIFF (.tif) format. Units of the dataset values are

•	 temperature (Tmean, Tmax, and Tmin) - tenths of a degree in the Celsius scale (°C)
•	 SLP - tenths of a mbar
•	 PRCP - tenths of a mm

Furthermore, all dataset values are stored as integers (INT32 data type) in order to reduce the size of the 
GeoTIFF files, i.e., temperature values should be divided by 10 to obtain degrees Celsius, and the same for SLP 
and PRCP to obtain millibars and millimeters.

The file naming convention adopted is provided in Table 4. It should be noted that the naming convention is 
different for different products with different temporal resolutions.

The dataset can be downloaded from ZENODO31 (https://doi.org/10.5281/zenodo.4058167), year by year.

Technical Validation
Validation of daily datasets.  The daily MeteoSerbia1km dataset was validated using nested 5-fold LLOCV, 
which combines nested k-fold32 and leave-location-out cross-validation. For nested 5-fold LLOCV, as with the 
regular 5-fold LLOCV, the entire dataset was split into five folds. Each of the folds was used once for testing, while 
the four remaining folds were used for hyperparameter tuning with regular 5-fold LLOCV (see the Model tun-
ing section). Four accuracy metrics, namely, the coefficient of determination (R2), Lin’s concordance correlation 
coefficient (CCC)33, the mean absolute error (MAE) and the root mean square error (RMSE) were calculated for 

Variable mtry min.node.size sample.fraction n.obs p

Tmax 7 15 0.98 10 2.9

Tmin 4 11 0.93 9 2.2

Tmean 7 14 1.00 9 3.0

SLP 6 11 0.91 9 3.5

PRCP classification 3 2 0.70 9 n/a

PRCP regression 7 11 0.93 6 3.3

Table 3.  Optimized hyperparameters for each of the daily meteorological variables.
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all daily meteorological variables for the stations in Serbia (Table 5). Note that the coefficient of determination 
represents the amount of variance explained by the model:
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where ESS is the Error Sum of Squares, TSS the Total Sum of Squares, and z s( )i  the mean of the observations. The 
SLP model had the highest accuracy, especially for stations in Serbia, followed by Tmax and Tmean. This is due to 
the fact that SLP and temperature are continuous variables and have strong spatial autocorrelation. Tmin showed 
slightly lower accuracy than Tmax and Tmean, and PRCP showed the lowest accuracy, which has also been 
reported in similar studies27,34. Furthermore, LLOCV accuracy is lower for stations outside of Serbia because of 
the well-known edge effect interpolation problem. Therefore, including stations outside of Serbia in LLOCV 
would not give an objective accuracy assessment of the MeteoSerbia1km dataset and would even reduce the 
accuracy.

The accuracy of both the two-step PRCP model with classification and the unique PRCP regression model was 
the same. The advantage of the PRCP two-step model with classification is that zero PRCP values were predicted 

Fig. 3  Prediction maps for all daily meteorological variables, for July 27, 2014.

Product File nomenclature Example

Daily averages var_{time period}_{yyyymmdd}_{proj}.tif tmax_day_20000101_wgs84.tif

Monthly averages var_{time period}_{yyyymm}_{proj}.tif tmax_mon_200001_wgs84.tif

Annual averages var_{time period}_{yyyy}_{proj}.tif tmax_ann_2000_wgs84.tif

Daily LTM var_ltm_{time period}_{mmdd}_{proj}.tif tmax_ltm_day_0101_wgs84.tif

Monthly LTM var_ltm_{time period}_{mm}_{proj}.tif tmax_ltm_mon_01_wgs84.tif

Annual LTM var_ltm_{time period}_{proj}.tif tmax_ltm_ann_wgs84.tif

Table 4.  MeteoSerbia1km dataset file naming convention.
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as exact zeros. Cohen’s kappa coefficient35 for the PRCP RFSI classification in Serbia was 0.779. The confusion 
matrix is shown in Table 6. In cases where the observed values were zero (class 0), only 4.21% of the final pre-
dicted values were larger than 1 mm, and 0.44% of them were larger than 5 mm. If the opposite case was true, 
in which the predicted values were zero (class 0), only 3.94% of the observed values were larger than 1 mm, and 
0.86% of them were larger than 5 mm.

Variable R2 [%] CCC MAE RMSE

Tmax 97.4 0.987 1.1 °C 1.7°C

Tmin 93.7 0.968 1.4 °C 2.0°C

Tmean 97.4 0.987 1.0 °C 1.4°C

SLP 99.1 0.996 0.5 mbar 0.7 mbar

PRCP 63.8 0.784 1.1 mm 3.1 mm

Table 5.  Accuracy metrics for each meteorological variable for stations in Serbia, as assessed using the nested 
5-fold LLOCV.

Observation

0 1

Prediction
0 108,248 (93.40%) 11,591 (16.35%)

1 7,651 (6.60%) 59,298 (83.65%)

Table 6.  Confusion Matrix for the PRCP RFSI classification model from the nested 5-fold LLOCV. Class 0 
represents no precipitation, and class 1 represents precipitation occurrence.

Fig. 4  Average RMSE per station for the period 2000–2019, calculated from the nested 5-fold LLOCV. The units 
are °C for temperature, mbar for SLP and mm for PRCP.
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The average RMSE per station for the entire time period is presented in Fig. 4. Stations at the highest alti-
tudes, Kopaonik (1,711 m) and Crni Vrh (1,037 m), had the largest average RMSE for all temperature variables. 
Additionally, Sjenica (1,038 m) and Zlatibor (1,029 m) had a high average RMSE for Tmin, which is the reason for 
the lower accuracy in comparison with Tmax and Tmean. On the one hand, microclimatic conditions at higher 
altitudes affect the temperature behaviour, so that overall spatial autocorrelation, and therefore the accuracy, is 
lower. On the other hand, the accuracy is higher at lower altitudes, especially in Vojvodina, the northern part of 
Serbia. This makes temperature datasets particularly suitable for agriculture. The average RMSE for SLP is low 
and equally distributed for the territory of Serbia, which is confirmed by the overall high accuracy (Table 5). The 
average RMSE for PRCP is also equally distributed over the territory of Serbia. The time series of predictions from 
the nested 5-fold LLOCV and observations for the Belgrade station, for 2014, are presented in Fig. 5. The figure 
shows that differences between observations and predictions for Tmax, Tmean, and SLP are minor, whereas those 
for Tmin are somewhat larger, mostly because Tmin is slightly underestimated, as reflected in the lower accuracy 
in comparison with Tmax and Tmean (Table 5). For PRCP, the days without precipitation are predicted well, 
whereas the days with precipitation are slightly underestimated.

Comparison with E-OBS.  The E-OBS dataset was taken as a benchmark dataset because it was made by 
geostatistical simulation, i.e., spatial interpolation from ECA&D stations, which also includes SYNOP stations. 
The daily MeteoSerbia1km dataset was aggregated to a 10-km spatial resolution in order to match the pixels 
(grid) of the E-OBS gridded dataset. Then, for each of the raster pixels, a Pearson correlation coefficient (PCC) 
was calculated between the pixel time series of MeteoSerbia1km estimations and the pixel time series of E-OBS 
estimations. Maps of the PCCs for each meteorological variable are presented in Fig. 6.

Fig. 5  Predictions from the nested 5-fold LLOCV (red) and observations (black) for the Belgrade station for 2014.
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The MeteoSerbia1km dataset shows an overall high correlation with the E-OBS dataset for Tmax, Tmin, 
Tmean, and SLP (0.992, 0.989, 0.993, and 0.922 respectively) and similar coarse-scale spatial patterns, with 
slightly lower correlation around the Kopaonik and Crni Vrh stations (Fig. 6), where the LLOCV accuracy was 
the lowest (Fig. 4). The correlation for SLP was lower in the southwestern part of Serbia, probably because of the 
lack of SYNOP SLP stations in that area (Fig. 4). The MeteoSerbia1km dataset showed the lowest correlation 
with the E-OBS dataset for PRCP (0.551). The main reason for this is that precipitation is a complex variable, and 
different models can produce significantly different results. Another reason is that the E-OBS methodology does 
not include IMERG, which is an important predictor for the PRCP model and, consequently, predictions follow 
IMERG patterns. Bearing in mind that the accuracy of MeteoSerbia1km and E-OBS PRCP models does not differ 
much in RMSE and MAE, RFSI PRCP can be valuable for the areas where E-OBS cannot contribute or where a 
finer spatial resolution of 1 km is needed. Hence, the MeteoSerbia1km dataset describes the local variation of 
daily PRCP in Serbia better than E-OBS.

Test with stations in Vojvodina.  MeteoSerbia1km was also tested with independent AMSV sta-
tions that were not used for making RFSI models. The RMSE between AMSV stations and the corresponding 
MeteoSerbia1km values over Vojvodina for the period 2005–present period for Tmax, Tmin, Tmean, and PRCP 
was 1.6°C, 1.8°C 1.2°C, and 3.7 mm, respectively. In comparison with the results from LLOCV for the whole of 
Serbia (Table 5), the accuracy of MeteoSerbia1km temperature variables is slightly better, while the accuracy of 
MeteoSerbia1km PRCP is slightly worse. Lower RMSE for PRCP can be taken as a consequence of a denser net-
work of AMSV stations than OGIMET stations and a large spatial variability of PRCP.

Usage Notes
MeteoSerbia1km is the first high-resolution daily gridded meteorological dataset for Serbia at a 1-km spatial 
resolution. The dataset can be used in a wide range of areas such as agriculture, insurance, forestry, climatology, 
meteorology, hydrology, ecology, soil mapping, urban planning, or any other research field that needs gridded 
data with a high spatial resolution.

MeteoSerbia1km is in the GeoTIFF format which makes it interoperable with any GIS software, such as SAGA 
GIS (http://www.saga-gis.org/), QGIS (http://www.qgis.org), ArcGIS (https://www.arcgis.com/), etc. It should be 
noted that MeteoSerbia1km values are multiplied by 10, so they should be divided by 10 to obtain values in basic 

Fig. 6  Pearson correlation coefficient map between E-OBS and the daily MeteoSerbia1km datasets for Serbia.
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units (°C, mbar and mm). Finally, the predictions for some days may show artifacts due to misrepresentation by 
meteorological stations.

The data are freely available under Creative Commons Licence: CC BY 4.0.

Code availability
The R programming language36, version 3.6.1, was used for the automation of the entire process for making 
the MeteoSerbia1km dataset, using the following packages: climate37, meteo30, nabor38, CAST39, caret40, sp41,42, 
spacetime42,43, gstat44,45, raster46, rgdal47, doParallel48, ranger49, plyr50, ggplot251.

To automate the development, tuning, cross-validation and prediction processes for the RFSI method, five 
additional R functions were created and added to the R meteo package30 (https://github.com/AleksandarSekulic/
Rmeteo, http://r-forge.r-project.org/projects/meteo):

• near.obs - for finding n nearest observations and distances to them from desired locations,
• rfsi - for RFSI model fitting,
• tune.rfsi - for RFSI model tuning,
• cv.rfsi - for RFSI model cross-validation,
• pred.rfsi - for RFSI model prediction.

In order to make this work reproducible, a complete script in R and datasets used for the modelling, tuning, 
validation, and prediction of daily meteorological variables is available via the GitHub repository at https://github.
com/AleksandarSekulic/MeteoSerbia1km.
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