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ABSTRACT

An operon is a fundamental unit of transcription
and contains specific functional genes for the con-
struction and regulation of networks at the entire
genome level. The correct prediction of operons is
vital for understanding gene regulations and func-
tions in newly sequenced genomes. As experimental
methods for operon detection tend to be nontrivial
and time consuming, various methods for operon
prediction have been proposed in the literature.
In this study, a binary particle swarm optimization
is used for operon prediction in bacterial genomes.
The intergenic distance, participation in the same
metabolic pathway, the cluster of orthologous
groups, the gene length ratio and the operon
length are used to design a fitness function. We
trained the proper values on the Escherichia coli
genome, and used the above five properties to im-
plement feature selection. Finally, our study used
the intergenic distance, metabolic pathway and the
gene length ratio property to predict operons.
Experimental results show that the prediction
accuracy of this method reached 92.1%, 93.3%
and 95.9% on the Bacillus subtilis genome, the
Pseudomonas aeruginosa PA01 genome and the
Staphylococcus aureus genome, respectively.
This method has enabled us to predict operons
with high accuracy for these three genomes, for
which only limited data on the properties of the
operon structure exists.

INTRODUCTION

Operons in prokaryote organisms contain one or more
consecutive genes on the same strand, although a few

eukaryotic organisms also have operon-like structures,
e.g. Caenorhabditis elegans (1). These genes are
co-transcribed into a single-strand mRNA sequence.
Co-transcribed genes likely have the same biological func-
tions and directly affect each other. Operon prediction can
therefore be used to infer the function of putative proteins
if the functions of other genes in the same operon are
known. A well-known example is the lactose operon in
Escherichia coli. This operon contains the three consecu-
tive structural genes, lacZ, lacY and lacA, which all share
the same promoter and terminator.
Operons of bacterial genomes contain information

valuable for drug design and determining protein func-
tions (2). The Gram-positive Staphylococcus bacterium,
for example, is a human pathogen that is responsible for
community-acquired and nosocomial infections (3).
Operon prediction on this bacterium can facilitate drug
target identification and the development of antibiotic
drugs. However, knowledge of operons is scarce, and
experimental methods for predicting operons are gener-
ally difficult to implement (4). To gain better insight, the
number and organization of operons in bacterial genomes
have to be studied in greater detail. A detailed understand-
ing of the transcription rules is critical, as it would
allow scientists to accurately predict operons based on
an organism’s genomic sequence.
A number of scientists have proposed properties that

can accurately predict operons. These properties can be
divided into the following five categories (5): intergenic
distance, conserved gene clusters, functional relations,
genome sequence and experimental evidence. In each of
the aforementioned categories, it is pivotal to detect the
promoter and the terminator at the operon boundaries to
identify the biologically most representative properties (4).
The simplest and most important prediction property is to
observe whether the distance between gene pairs within an
operon (WO pairs) is shorter than the distance between
gene pairs at the borders of the transcription units (TUB
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pairs) (3). The distance property yields very good operon
prediction results.
Many computational algorithms have been proposed to

properly balance the sensitivity and specificity of operon
prediction. Jacob et al. (4) proposed an algorithm guided
by fuzzy logic. Fuzzy logic does not rely on complex
mathematical formulas to calculate fitness values of a
chromosome. Genetic algorithms (GA) (2) use the
intergenic distance, metabolic pathways, cluster of
orthologous groups (COG) and microarray expression
data to predict operons. Zhang et al. (6) presented a
support vector machine algorithm (SVM) to predict
operons. This method uses the four biological properties
as SVM input vectors and divides gene pairs into operon
pairs (OPs) and non-operon pairs (NOPs). The experimen-
tal accuracy of prediction was 0.9. In our study, we
compare additional predictors [genome-specific (7),
DVDA (8), FGENESB, ODB (9), OFS (10), OPERON
(11), JPOP (12), VIMSS (13), UNIPOP (1) and
genome-wide operon prediction in Staphylococcus aureus
(3)], in addition to the above-mentioned methods.
In this paper, we propose an effective binary particle

swarm optimization (BPSO) for operon prediction.
To validate the feasibility of the method, we calculated
the logarithmic likelihood of each property in the E. coli
(NC_000913) genome as a fitness value of each gene
in the particle. Three bacterial genomes [Bacillus
subtilis (NC_000964), Pseudomonas aeruginosa PA01
(NC_002516) and S. aureus (NC_002952)] were selected
as benchmark genomes of known operon structure. In a
first step, a restriction was introduced in the strand form
to initialize a basis for the intergenic distance property. In
order to select the best possible combination of properties,
we employed the concept of feature selection to implement
operon prediction. The five features investigated were
the intergenic distance, metabolic pathways, COG, gene
length ratio and operon length. Based on the experimental
results and our analysis thereof, the intergenic distance,
metabolic pathways and gene length ratio were selected
after the feature selection process to calculate the fitness
value of each gene in a particle. The particle was subse-
quently updated by an update formula at each generation.
The detailed updating process is described in the next
section. The experimental results indicate that the
proposed method obtained a higher accuracy, sensitivity
and specificity on the test data sets when compared to
other methods from the literature.

MATERIALS AND METHODS

Data set preparation

The complete microbial genome data were downloaded
from the GenBank database (http://www.ncbi.nlm.nih
.gov/). The data contain a total of 4225, 5651 and 2845
genes in the B. subtilis genome, P. aeruginosa PA01
genome and S. aureus genome, respectively. The related
genomic information consists of the gene name, gene ID,
position, strand and product. The operon databases of
E. coli and B. subtilis were obtained from RegulonDB
(http://regulondb.ccg.unam.mx/) (14) and DBTBS

(http://dbtbs.hgc.jp/) (15), respectively. The operon data-
bases of the P. aeruginosa PA01 genome and the S. aureus
genome were obtained from ODB (http://odb.kuicr
.kyoto-u.ac.jp/) (9). The genomes’ metabolic pathway
data and COG data were obtained from KEGG (http://
www.genome.ad.jp/kegg/pathway.html) and NCBI
(http://www.ncbi.nlm.nih.gov/COG/), respectively.

Definition of a potential operon pair

In order to gain valuable information pertaining to drug
and protein functions, operons have to be predicted based
on an organism’s genomic sequence. The entire genome is
scanned for adjacent gene pairs on the same string, and
each gene pair is then classified into one of three types: (i)
adjacent; (ii) WO pair; or (iii) TUB pair. The latter two are
defined as positive and negative, respectively, before the
accuracy for a putative operon map is calculated. The WO
pairs of adjacent genes shown in Supplementary Figure S1
are in the same operon. If the operon contains a single
gene and the downstream gene is of unknown status, the
gene pair is called a TUB pair. However, if the gene is of
uncertain status at the end of the border of the transcrip-
tion unit (16), the gene pair cannot be labeled a TUB pair.
In addition, the first gene of an operon and the upstream
gene are TUB pairs.

Binary particle swarm optimization

Overview. The particle swarm optimization (PSO) tech-
nique is a population-based evolutionary algorithm de-
veloped by Kenney and Eberhart in 1995 (17). PSO has
been developed through simulation of the social behavior
of organisms, e.g. fish in a school or birds in a flock. The
method is similar to a genetic algorithm, in which particles
are initialized within a random population and search for
global optimal solutions at each generation. However,
PSO is not suitable for optimization problems in a
discrete feature space. Hence, Kenney and Eberhart de-
veloped binary PSO (BPSO) to overcome this problem
(18). The basic elements of BPSO are briefly introduced
below:

(i) Population: A swarm (population) consists of N
particles.

(ii) Particle position, xi: Each candidate solution can
be represented by a D-dimensional vector; the ith
particle can be described as xi ¼ ðxi1,xi2, . . . , xiDÞ,
where xiD is the position of the ith particle with
respect to the Dth dimension.

(iii) Particle velocity, vi: The velocity of the ith particle
is represented by vi ¼ ðvi1,vi2, . . . ,viDÞ, where viD is
the velocity of the ith particle with respect to the
Dth dimension. In addition, the velocity of a
particle is limited within Vmin,Vmax½ �

D.
(iv) Inertia weight, w: The inertia weight is used to

control the impact of the previous velocity of a
particle on the current velocity. This control par-
ameter affects the trade-off between the exploration
and exploitation abilities of the particles.
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(v) Individual best, pbesti: pbesti is the position of the
ith particle with the highest fitness value at a given
iteration.

(vi) Global best, gbest: The best position of all pbest
particles is called global best.

(vii) Stopping criteria: The process is stopped after the
maximum allowed number of iterations is reached.

In the BPSO algorithm, each particle represents a can-
didate solution to the problem, and a swarm consists of N
particles moving around a D-dimension search space until
the computational limitations are reached. A flowchart
of BPSO is shown in Figure 1. An inertia weight with a
value of 1 is used at each generation (18). The gbest value
is reached after the maximum number of 100 iterations
has been executed. Detailed steps are shown below and
in the flowchart of Figure 1.

Step (i): Each particle is initialized based on the gene
strand and a random threshold value of between 0
and 600 bp.

Step (ii): The pair-score of each gene is calculated based
on its properties.

Step (iii): The fitness value of the putative operon is
calculated by Equation (11).

Step (iv): The fitness value of each particle is calculated
by Equation (12).

Step (v): Each particle is updated based on the PSO
update formula, and a search for pbesti and gbest of
the population is conducted.

Step (vi): Steps 3 and 4 are repeated until the stopping
criteria are satisfied.

In BPSO, each particle is updated based on the follow-
ing equations:

v new
id ¼ w� voldid +c1 � r1 � pbestid � xoldid

� �
+c2 � r2 � gbestid � xoldid

� � ð1Þ

if vnewid =2 Vmin,Vmaxð Þ

then vnewid ¼ max min Vmax,v
new
id

� �
,Vmin

� � ð2Þ

S vnewid

� �
¼

1

1+e�v
new
id

ð3Þ

if r3 < S vnewid

� �� �
then xnewid ¼ 1 xnewid ¼ 0 ð4Þ

where w is the inertia weight that controls the impact of
the previous velocity of a particle. c1 and c2 are acceler-
ation constants that control the distance a particle moves
at each generation; r1, r2 and r3 are random numbers
between [0, 1]. vnewid and voldid represent the velocity of the
new and old particles, respectively. Particles xoldid and xnewid
denote the position of the current particle and the updated
particle, respectively. The velocity of a dimension in
Equation (2) is limited within Vmin,Vmax½ �

D. The positions
of the updated particles are calculated by Equation (3)
(19). If the function S vnewid

� �
is greater than r3, the

position of the particle is updated to {1} (meaning this
gene is part of the operon). If S vnewid

� �
is smaller than r3,

the position is updated to {0} (i.e. this gene is the final
gene of the operon).

Initial population. The proposed method uses the
intergenic distance and strands to create P binary par-
ticles. Each particle is initialized with a random threshold
value of between 0 and 600 bp (4). For adjacent genes to
be considered in the same operon, they must conform to
the following two conditions: the distance of adjacent
genes must be smaller than the random threshold value,
and adjacent genes must be on the same strand. If the dis-
tance between adjacent genes is greater than the random
threshold value, we assume that the two adjacent genes are
within a different operon. Adjacent genes on different
strands are considered NOPs). Supplementary Figure S2
illustrates these criteria. The encoding used is shown in
Supplementary Figure S3.

Randomly initialize position X, associate velocities 

V, pbest and gbest of the population, set g = 0 

d = 1 

Execute update equations of 

particle 

d < m 
N

Fit (Xi) > Fit (pbesti)

d = d + 1 Y

pbesti = Xi

Fit (Xi) > Fit (gbest)

Y

N Y

i < P

N

i = i + 1 
N

N

Y

Y

End

Output the best 

Start 

i = 1 

Calculate fitness value of each particle 

Satisfy stopping
condition 
or  g = G

g = g + 1 

W = W –
G

0.5

gbest = Xi

Figure 1. BPSO flowchart. The algorithm starts out by initializing a
population of random particles. Then the fitness values of particles are
calculated and searches for pbest and gbest are executed at each gen-
eration. Afterwards, the position and velocity of the i-th particle
are updated by pbesti and gbest in the swarm, and the search for the
best solution is continued by updating the generations until the
stopping criteria are satisfied. Each particle makes use of its own
memory and knowledge gained by the swarm as a whole to find the
best solution. The updated position and velocity of the particles
confined within Xmin,Xmax½ �

D and Vmin,Vmax½ �
D are obtained.
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Fitness function. As stated previously, many properties
can be used to predict operons. The five properties we
used in this study are individually described in the follow-
ing section. Supplementary Table S1 shows the pair-score
of the intergenic distance, metabolic pathway, COG gene
function and the gene length ratio calculated by the loga-
rithmic likelihood ratio test. The pair-score of the operon
length is calculated by the Bernoulli process.

Intergenic distance. This property allows operon predic-
tion in genomes for which the genomic sequence is com-
pletely mapped. In order to prevent mRNA degradation,
the distance of adjacent genes in the same operon is kept
short (20). The Supplementary Figure S4 shows the
operon diagram. The intergenic distance is calculated
using base pairs of adjacent genes. However, adjacent
genes sometimes overlap. The intergenic distance distribu-
tion of WO and TUB pairs is shown in Supplementary
Figure S5. Genes with a smaller intergenic distance are
more likely located within the same operon (2). The
maximum frequency of the distance of WO pairs is –4
(21). However, the distance distribution frequency of
TUB pairs increases with the distance and gradually
becomes higher than the frequency of WO pairs. Hence,
this property can be used to identify operons. As shown in
Supplementary Table S2, we calculate the score of each
separated interval in 10-bp bins (22) based on an
intergenic distance from –100 bp to 300 bp using the fol-
lowing equation:

LLdist genei, genej
� �

¼ ln
NWO distð Þ=TNWO

NTUB distð Þ=TNTUB

� �
ð5Þ

where NWO distð Þ and NTUB distð Þ correspond to the
number of WO and TUB pairs in the interval distance
dist (10, 20, 30 . . . ). TNWO and TNTUB are the total pair
numbers within WO and TUB, respectively.

Metabolic pathways. Gene ontology contains three levels
of biological functions, namely a biological process, a mo-
lecular function and a cellular component (23). However,
genes within an operon often participate in the same bio-
logical process (6). Therefore, adjacent genes have the
same metabolic pathway, and we can reasonably assume
that the gene pair is located in the same operon. The
pathway pair-score is only taken into account when two
adjacent genes have the same pathway. Otherwise, the
pathway pair-score is 0 (2). Equation (6) is used to calcu-
late the pathway pair-score.

LLpath genei, genej
� �

¼ ln
NWO pathð Þ=TNWO

NTUB pathð Þ=TNTUB

� �
ð6Þ

where NWO pathð Þ and NTUB pathð Þ correspond to the total
number of WO and TUB pairs in the same metabolic
pathway.

COG gene function. The COGs consist of three main
levels. The first level contains the following four classes:
information storage and processing, cellular processing
and signaling, metabolism and different COG categories.
Each class is subdivided into multiple functional

categories. Adjacent genes are often of the same class, so
we assume that the gene pair is located in the same
operon. The pair-score of the COG gene function is
calculated based on the first level. The following equations
are used (12):

LLCOG genei, genej
� �

¼ ln
NWO COGð Þ=TNWO

NTUB COGð Þ=TNTUB

� �
ð7Þ

LLCOGd genei, genej
� �

¼ ln
1�NWO COGð Þ=TNWO

1�NTUB COGð Þ=TNTUB

� �
ð8Þ

where NWO COGð Þ and NTUB COGð Þ are the total number
of WO and TUB pairs in the same COG gene function.
LLCOGd (genei, genej) in Equation (8) represents the
pair-score of adjacent genes with a different COG gene
function.

Gene length ratio. TUB pairs are often associated with
small values of the natural logarithm of the length ratio
when the logn of the length ratio is examined. The length
ratio influences the probability of the gene pair being
located within an operon (7). Dam et al. (7) used their
experimental results to verify that the gene length ratio
is a powerful tool for discerning operons. The pair-score
of the gene length ratio is calculated as the natural loga-
rithm of the length ratio of upstream genes and down-
stream genes (7). It is defined by the following equation:

LLglr genei, genej
� �

¼ ln
lengthi
lengthj

 !
ð9Þ

where lengthi and lengthj are the length of the upstream
and downstream gene, respectively.

Operon length. The operon length is given by the number
of genes in an operon (24). De Hoon et al. (25) evaluated
the distribution of the operon length based on a list of 635
experimentally verified operons and calculated a prior
probability of adjacent gene pairs within the same
operon. If an operon contains just a single gene, the struc-
ture is called a singleton operon; if an operon consists
of multiple genes, the operon appearance probability
decreases. The Bernoulli process is the discrete equivalent
of a Poisson process (25). The probability P, i.e. the
pair-score of the operon length, is calculated by the
following equation:

Pi ¼
n� 1

n
ð10Þ

n is the average operon length that is given by the total
number of genes in all operons divided by the total
number of operons in the genome. Pi represents the prob-
ability of the next gene being located in the same operon.
If a random number between [0, 1] is smaller than Pi, we
infer that the gene pair is in the same operon.

While the individual pair-scores are obtained by the
above calculations, the overall pair-score of adjacent
genes is calculated as the sum of the individual pair-scores
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from the five properties mentioned above. Supplementary
Figure S6 shows the fitness evaluation.

The fitness value of the cth putative operon can thus be
calculated by the following equation:

fitnessc ¼
Xm�1
i¼1

ðdi+pi+LLglrðgenei,genejÞÞ

+

Pm�1
i¼1

Pm
j¼i+1

ðLLpathðgenei,genejÞ+LLCOGðgenei,genejÞÞ

n

0
BBB@

1
CCCA

�m, m ¼ n+1

ð11Þ

where di is the pair-score of the intergenic distance of the
ith gene in the cth operon, and m and n are the total
number of genes and gene pairs in the cth operon, respect-
ively. In equation (11), the pathway and COG fitness
values divided by n are used to calculate the average
value of the two gene pair properties, and then these
averages are multiplied by m to obtain the fitness value
of the two properties for the operon. An example is given
in Supplementary Table S3.

Finally, the fitness value of a particle is calculated as the
sum of the fitness values from all putative operons in the
particle and thus given by the following equation:

fitness ¼
Xc
i¼1

fitnessi ð12Þ

where c is the number of operons in the particle.

Parameter settings

The population number P was set to 20, the iteration
number G was 100, the initial inertia weight w was 1,
c1 and c2 were 2 (26) and Vmax and Vmin were 6 and –6,
respectively (18).

Example

An example of the performed calculations is given in
Supplementary Data.

RESULTS AND DISCUSSION

Performance measurement

In this study, we used the E. coli genome to estimate the
fitness value, and then conducted accuracy tests on other
genomes. To do this, the training data set was further
divided in order to be able to estimate the prediction
accuracy during the search. For a large data set like
E. coli, it is easy to build a predictor that clearly identifies
WO and TUB pairs. Most previous efforts to predict
operons have focused on the E. coli genome, which has
lead to an extensive database of experimentally identified
transcripts for this genome. For these reasons, E. coli was
chosen as the training data set. We used the entire data set
to estimate the fitness values, since dividing the data set
into subgroups does not provide a clear advantage over

using the entire data set (7). In order to verify the gener-
alization ability of our method, test data sets do not
contain the E. coli genome, which have the genome-
specific properties. The predictive performance (7) was
evaluated based on the sensitivity and specificity
(Supplementary Table S4). True positive (TP) and false
negative (FN) are the numbers of correctly and incorrectly
predicted operon gene pairs among the WO gene pairs,
respectively, whereas true negative (TN) and false
positive (FP) are the numbers of correctly and incorrectly
predicted operon gene pairs among the TUB gene pairs.
We calculated the sensitivity, specificity and accuracy
based on TP, FN, TN and FP; results are shown in
Supplementary Table S4. We present an instance in
which the experimental operon encoding of the genome
is 111010, and the predicted operon encoding is 110110.
The third and fourth genes are FN and FP, respectively.
The first, second and fifth gene are TP, and the sixth gene
is TN (Supplementary Figure S7). We compare the
accuracy obtained to other methods and note that a
good balance between sensitivity and specificity was
achieved.

Receiver operating characteristic curve analysis

The sensitivity and specificity express the accuracy of the
two operon prediction factors. The sensitivity is the ability
to predict the WO pairs, and the specificity is the ability
to predict the TUB pairs. Sensitivity and specificity show
a reciprocal relationship; if one of the two factors in-
creases, the other is decreased. Receiver operating charac-
teristic (ROC) curves are used to express the relationship
between sensitivity and specificity (27). By convention,
the false-positive rate is plotted on the abscissa and
the true-positive rate on the ordinate (6). The point on
the ROC curve where the tangent has a slope of one
is the point of maximum sensitivity and specificity. The
area under the curve (AUC) represents the prediction
accuracy of the method (6).
The operon prediction ROC curves are shown in

Figure 2A–C. The figures show that the intergenic
distance property is the most effective property for
operon prediction. Figure 2A and B show a smaller
AUC when the metabolic pathway or COG gene
function properties are left out. It can thus be assumed
that metabolic pathway and COG gene function
properties are very important for operon prediction.
Nevertheless, these two important properties have flaws.
The false positive of the COG gene function property is
very high. Metabolic pathway data are not sufficiently
available in all databases, so results show a different per-
formance on different genomes (2). In Figure 2C, the ROC
curve of S. aureus is not smooth, since the experimentally
verified operon data set is too small (1).

Contribution of selected features to operon prediction

The implemented feature selection was based on the
intergenic distance, metabolic pathway, COG gene
function, gene length ratio and operon length since these
properties have powerful identification capabilities for
operon prediction. The intergenic distance property not
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only plays an important role in the initial step, but also
yields good results for operon prediction (3,10,20,24,28).
This property can be used to universally predict bacterial
genomes with a completed chromosomal sequence. In the
functional relations category, we used the metabolic
pathway and the COG gene function to predict operons.

The metabolic pathway property has a high prediction
accuracy on the E. coli data set, as indicated by the litera-
ture (4). When adjacent genes have the same pathway, the
probability of a pair being within the same operon is very
high. The reason we selected the COG gene function is
that genes which belong to the same first level functional
category or fall into the fourth category have a probability
of 83.5% of being within the same operon on the E. coli
genome (22). However, since the metabolic pathway and
the COG gene function belong to the function relation
category, the method only searches regions where these
properties overlap (4). Since the same prediction results
were obtained when either one of these properties was
used, is should be noted that the metabolic pathway
property is more efficient for operon prediction. Since
the metabolic pathway property only determines whether
adjacent genes have the same pathway or not, the COG
must be used to estimate if a gene is within a functional
category. In addition, the ratio of the length of gene pairs
is a powerful discerning property for operon prediction
(7). The operon length is a severely biased method of pre-
diction, since the probability is directly dependent on the
number of WO pairs and TUB pairs (25). Both, the gene
length ratio and operon length, fall into the genome
sequence category. In order to avoid searching
overlapping regions of the two properties, we selected
either property for operon prediction. As shown in the
experimental results, the combination of the gene length
ratio and the metabolic pathway property yielded superior
prediction results compared to other methods; hence, the
gene length ratio property was finally selected in this
study.

Comparison to other methods

BPSO was applied to search for the best putative operon
at each generation. The best putative operon identified by
the search was then compared to experimentally verified
operons. We have compared our method with various
reported methods, including genetic algorithm (2), a
fuzzy genetic algorithm (4), support vector machine (6)
using both genome-specific and general genomic informa-
tion (7), genome-wide operon prediction in S. aureus (3)
and prediction results taken from the literature (1,8–13).
In Table 1, all prediction properties of the B. subtilis
organism available in the literature are listed and the
prediction performance is compared to our method. As
Table 2 shows, the prediction accuracy of the proposed
method obtained the highest value on the B. subtilis
(0.921), P. aeruginosa PA01 (0.933) and S. aureus (0.959)
data sets. The proposed method also showed the best per-
formance in terms of prediction sensitivity and specificity
on most of the tested bacterial genomes. For B. subtilis,
our method had the highest sensitivity (0.930). ODB had
the highest specificity (0.992), but had a low sensitivity
(0.499). ODB does not achieve a good balance between
sensitivity and specificity. For P. aeruginosa PA01 and
S. aureus, our predictor obtained a higher accuracy, sen-
sitivity, and specificity compared to the other methods
from the literature. Overall, the proposed method

Figure 2. ROC curves of operon prediction. This study estimates the
predictive ability under the circumstances of leaving a single property
out on the B. subtilis, P. aeruginosa PA01 and S. aureus data,
respectively.
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obtained better results than the other methods tested for
operon prediction.

DISCUSSION

GA and BPSO are both optimization algorithms. In the
literature, the metabolic pathway and COG properties are
often used to predict operons. Based on ROC curves pub-
lished in the literature, we know that the identification
ability of the microarray property is inferior to the

ability of the gene length ratio property (2). If the initi-
ation threshold is set at 300 bp, a rather small value, the
prediction results do not attain a good balance between
sensitivity and specificity. The reasons for the improved
performance of our method compared to other methods
can be found in the following factors: (i) the superiority of
the BPSO algorithm; (ii) an improved initialization pro-
cedure; (iii) a fitness function designed based on statistics;
and (iv) the selection of relevant properties. Each of these
factors is discussed below.

Table 2. Accuracy, sensitivity, and specificity of operon prediction on three genomes

Genome Methodology Accuracy Sensitivity Specificity

B. subtilis (NC_000964) BPSO 0.921 0.930 0.899
BPSO (initiation threshold=300 bp) 0.905 0.887 0.945
UNIPOP (1) 0.792 0.782 0.821
GA (2) 0.883 0.873 0.897
Using both genome-specific and general
genomic information (7)

0.902 N/A N/A

SVM (6) 0.889 0.900 0.860
ODB (9) 0.632 0.499 0.992

DVDA (8) 0.485 0.319 0.932
OFS (10) 0.683 0.765 0.439
VIMSS (13) 0.780 0.764 0.871
FGA (4) 0.882 N/A N/A
JPOP (12) 0.746 0.720 0.900
OPERON (11) 0.629 0.531 0.892
FGENESB (http://www.softberry.com) 0.771 0.721 0.904

P. aeruginosa PA01 (NC_002516) BPSO 0.933 0.930 0.939
BPSO (initiation threshold=300 bp) 0.910 0.885 0.951

GA (2) 0.813 0.870 0.763
S. aureus (NC_002952) BPSO 0.959 0.959 0.958

BPSO (initiation threshold=300 bp) 0.936 0.924 0.958

Genome-wide operon prediction in
Staphylococcus aureus (3)

0.920 N/A N/A

N/A: Data not available.
Highest values in bold type.

Table 1. Prediction features used by each computational method on the data set of B. subtilis

Methodology Features used

ID PA GLR HG COG PD MI MO GO GOC PP CGA CF PF CAI GCC PR TE

BPSO ˇ ˇ ˇ
UNIPOP (1) ˇ
GA (2) ˇ ˇ ˇ ˇ
Using both genome-specific

and general genomic
information (7)

ˇ ˇ ˇ ˇ ˇ ˇ

SVM (6) ˇ ˇ ˇ ˇ
ODB (9) ˇ ˇ ˇ ˇ
DVDA (8) ˇ
OFS (10) ˇ ˇ ˇ
VIMSS (13) ˇ ˇ ˇ ˇ
FGA (40 ˇ ˇ ˇ ˇ
JPOP (12) ˇ ˇ ˇ
OPERON (11) ˇ
FGENESB

(http://www.softberry.com)
ˇ ˇ ˇ ˇ

ID, intergenic distance; PA, pathway; GLR, gene length ratio; HG, homologous genes; COG, cluster of orthologous groups; PD, phylogenetic
distance; MI, microarray; MO, motif; GO, gene ontology; GOC, gene order conservation; PP, phylogenetic profile; CGA, common gene annotation;
CF, comparative features; PF, protein functions; CAI, codon adaptation index; GCC, gene cluster conservation; PR, promoter; TE, terminator.
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(i) Most methods predict operons based on the
properties of adjacent genes, which they try to identity
as either OP or NOP. However, this procedure does not
take the properties of near genes into account, and thus
generally results in lower accuracies for operon prediction.
The BPSO used in this study evaluates the properties of all
genes, and thereby increases the probability of finding an
optimal solution. In order to raise the BPSO prediction
performance, we set the inertia weight to 1, and limit the
velocity of BPSO to between Vmin and Vmax. If the velocity
is close to 0, the probability of a state changing is
increased, and vice versa. Hence, BPSO has global and
local search capabilities. The probability of obtaining
the best solution is thus increased.
(ii) Operon prediction accuracy can be increased if

better particles are selected in the initial step since the
benefits of the initially superior particle are multiplied
through the repeated updating process at each generation.
In our study, the intergenic distance and the gene strand
condition were evaluated in the initiation step. As shown
in Table 2, we obtained a higher specificity and lower sen-
sitivity when the initiation threshold was set to 300 bp.
When the threshold was adjusted to 600 bp, the sensitivity
was raised, but the specificity was reduced. A sensitivity
and specificity value of higher than 0.8 represents a good
balance between the two parameters (6). In order to
obtain a good balance between sensitivity and specificity
and increase the accuracy of operon prediction, proper
settings at the initiation step are of critical importance.
By boosting the quality of particles at the initiation, the
best particles can be obtained by successive progression
through the generations.
(iii) Generally, the fitness value of a particle is propor-

tional to the prediction accuracy. Although adjacent genes
have related properties, they still have a different probabil-
ity of being in different operons. This necessitates the
implementation of a fitness function in the proposed
method. We calculate the fitness value of each particle
based on the logarithmic likelihood ratio test since this
method is designed on the basis of statistics. Therefore,
the fitness value of a putative operon is directly propor-
tional to the prediction accuracy. The experimental results
prove that this fitness function identifies better particles.
(iv) Experimental data on the E. coli genome can be

downloaded from the RegulonDB database, but for
other genomes extensive experimental data are not
readily available. In order to apply the proposed method
to other genomes with fewer attributes, only five common
properties for operon prediction were used. Theoretically,
methods using more properties for operon prediction
achieve a higher accuracy. Some of the methods in
Table 1 use numerous properties, yet our BPSO method
only uses three such properties and still achieves better
results. The simplicity of our method can thus be con-
sidered a great attribute for operon prediction. When we
used the five original properties to predict operons, the
prediction accuracy did not improve, but the prediction
time was increased (data not shown). Table 1 shows that
the intergenic distance, homologous genes and pathway
property are frequently used. ODB uses four properties
for operon prediction, but the method suffers from a

low prediction sensitivity (1). In addition, the WO pair
and TUB pair performance of DVDA was <0.5 in the
gene pair analyses performed, and the operon prediction
performance based on the literature (5) was <0.2 based on
the complete operons of E. coli and B. subtilis. We thus
omitted the homologous gene property, and used two
properties more suitable for identification of the WO
and TUB pairs. The gene length ratio is used somewhat
less frequently than other properties, but the literature (7)
hints at the powerful identification ability of this property.
Our method achieved the highest accuracy for operon pre-
diction even though it only uses three properties on all
bacterial genomes. The contributions to operon prediction
are thus self-evident.

CONCLUSION

We propose a novel operon prediction method called
BPSO for operon prediction in bacterial genomes. The
intergenic distance and strand are applied at the initiation
step, and BPSO thus superior particles are used at the
initialization of a population. We used the intergenic
distance, metabolic pathway, COG gene functions, gene
length ratio and the operon length of the E. coli genome
for feature selection and designed a fitness function.
Finally, BPSO was used to predict operons based on the
intergenic distance, metabolic pathway and gene length
ratio properties. The experimental results show that the
proposed method not only increases the accuracy of
operon prediction on the three genome data sets tested,
but also reduces the computation time needed for the pre-
diction. In the future, we intend to investigate different
properties and other algorithms on the problems of
operon prediction in order to increase the prediction per-
formance further.
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