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Purpose: To improve disease severity classification from fundus images using a hybrid
architecture with symptom awareness for diabetic retinopathy (DR).

Methods: We used 26,699 fundus images of 17,834 diabetic patients from three
Taiwanese hospitals collected in 2007 to 2018 for DR severity classification. Thirty-seven
ophthalmologists verified the images using lesion annotation and severity classification
as the ground truth. Two deep learning fusion architectures were proposed: late fusion,
which combines lesion and severity classificationmodels in parallel using apostprocess-
ing procedure, and two-stage early fusion, which combines lesion detection and classi-
fication models sequentially and mimics the decision-making process of ophthalmol-
ogists. Messidor-2 was used with 1748 images to evaluate and benchmark the perfor-
mance of the architecture. The primary evaluation metrics were classification accuracy,
weighted κ statistic, and area under the receiver operating characteristic curve (AUC).

Results: For hospital data, a hybrid architecture achieved a good detection rate, with
accuracy and weighted κ of 84.29% and 84.01%, respectively, for five-class DR grading.
It also classified the images of early stage DR more accurately than conventional
algorithms. The Messidor-2 model achieved an AUC of 97.09% in referral DR detection
compared to AUC of 85% to 99% for state-of-the-art algorithms that learned from a
larger database.

Conclusions:Our hybrid architectures strengthened and extracted characteristics from
DR images, while improving the performance of DR grading, thereby increasing the
robustness and confidence of the architectures for general use.

Translational Relevance: The proposed fusion architectures can enable faster and
more accurate diagnosis of variousDRpathologies than that obtained in currentmanual
clinical practice.

Introduction

Diabetic retinopathy (DR) is a sight-threatening
disease; however, timely diagnosis in the early stage
can reduce the occurrence of vision loss or blindness
by spurring timely medical intervention and manage-
ment of glucose levels and blood pressure.1–4 Long-
term diabetes is likely to cause DR that can impair

the microvascular transport of blood and nutrients
to the retina, causing it to leak or swell and eventu-
ally lead to blindness. Taiwan’s National Health Insur-
ance system recommends annual fundus examination
for diabetic patients to detect DR. The examination
rate is low because most patients are unaware of their
condition until they experience vision reduction.5,6
To increase adherence to the examination, a one-stop
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service consisting of primary care and retinal imaging
has been established.7

However, several other issues remain to be
addressed in DR detection. The first issue is expertise:
a well-trained ophthalmologist is required for DR
grading and lesion type assessment.8,9 The second
issue is intergrader reliability: human interpretation
of imaging varies among ophthalmologists.10,11 The
third issue is manpower: the compound annual growth
rate (CAGR) of the number of eye doctors (CAGR:
2.60%) is lower than that of the diabetic population in
Taiwan (CAGR: 4.78%).12,13 Thus, there is an urgent
and critical need for an artificial intelligence–based
approach to support decision making.14 Therefore,
developing a robust and automated grading system
for DR that gives a prompt response is required to
support frontline clinicians who are not experts in the
ophthalmology field. This would reduce the clinicians’
workload and alleviate the personnel insufficiency
associated with a large number of diabetic patients.

The DR severity level determination is based on the
observed findings from the fundus image. The Inter-
national Clinical Diabetic Retinopathy Disease Sever-
ity (ICDR) Scale has been widely used to identify
patients with signs related to the types of DR lesions,
such as microaneurysms (MA), hemorrhages (H), and
exudates (EX).1,15 According to the signs and distri-
bution of lesions of the ICDR scale definition, the
DR severity can be divided into five levels: no appar-
ent retinopathy, mild nonproliferative DR (NPDR),
moderate NPDR, severe NPDR, and proliferative DR
(PDR).1 A patient need not be referred to an ophthal-
mologist if his or her eye could be graded as nonrefer-
able DR (less than moderate NPDR); the patient could
be referred only for referable DR (moderate/severe
NPDR and PDR).1 The early signs of DR are MA, H,
EX, and so on.9,16 MA is the first clinical sign of DR
and the only characteristic in mild NPDR. Therefore,
MA recognition is critical in the clinical management
of DR and patient education. Hence, in addition to
a convolutional neural network (CNN)–based grading
model, we focus on lesion information as a complemen-
tary feature to improve the DR severity classification.

Previous algorithms incorporating lesion informa-
tion have shown promising results,16,17 but their infer-
ence speed is hindered by the patch-based method.18,19
Hence, we propose two CNN-based fusion architec-
tures, instead of using lesion patches as the inputs, to
support DR grading efficiently. To understand better
the signs of lesions and which types and distribu-
tions affect the DR severity, we explored whether
the proposed architectures can increase the robustness
and interpretability of DR severity classification. Two
architectures are proposed: a late fusion method to

combine two deep learning architectures by a postpro-
cessing procedure and a two-stage early fusion method
to exploit lesion localization at pixel level for DR classi-
fication. Assuming that the extracted neighborhood
context of lesions enhances the classification perfor-
mance, the lesion detection or localizationmay support
clinical diagnosis, especially for subtle lesion detec-
tion in the early stages of DR. As such, we aimed to
identify the DR severity of Taiwanese diabetic patients
using fundus images from 2007 to 2018 with added
lesion information via an improved hybrid recognition
method.

Methods

This section presents detailed information on the
collected database and proposes two different architec-
tures for fusing both lesion information and a grading
network for DR classification. First, a late fusion
architecture combines the grading model and lesion-
classification model via a postprocessing procedure.
Second, a two-stage early fusion architecture highlights
the suspicious DR lesions and produces fully weighted
lesion images in the first stage. Then, raw images and
fully weighted images are trained jointly in the second
stage for DR grading.

Database

This study used two data sets: a private data set
from three Taiwan hospitals and a public data set,
Messidor-2. For the private data set, we used 26,699
fundus images obtained from 17,834 patients between
2007 and 2018 at Tri-Service General Hospital, Chung
Shan Medical University Hospital, and China Medical
University Hospital. The hospitals’ institutional review
boards and the Industrial Technology Research Insti-
tute approved this study, and the research followed the
tenets of the Declaration of Helsinki. The need for
informed consent was waived owing to the retrospec-
tive nature of the study. A variety of ophthalmoscopes
were used with 45° fields of view. A group of board-
certified ophthalmologists independently graded the
images based on the ICDR scale,1 and they annotated
the corresponding lesions. The private data set was
randomly split into three independent data sets based
on patient IDs: training set (22,617 images), validation
set (2039 images), and testing set (2043 images). The
distributions of the five-class DR severity and four-
type DR lesion are shown in Figure 1. A new distri-
bution of Messidor-2,20,21 with 1748 images (78.26%
nonreferable DR and 21.74% referable DR), was used
for the testing as well.
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Figure 1. Workflow diagram showing distribution of DR severity level and the incidence rate of DR lesions in a different data set.

Ground Truth

For the private data set, the ground truth (GT) of
disease severity for each image was based on the major-
ity consensus of the three ophthalmologists. If there
was an ungradable image or an image without a major-
ity consensus for a five-class classification, that image
was removed to minimize grading bias. The percentage
of such removals was 43%. A total of 26,699 images
were used after dropout (Fig. 1).

The GT of lesion location for each image was based
on the following rules: (1) bounding boxes for the image
labeled by two ophthalmologists are compared. If the
same symptom is marked and the intersection over
union (IoU) >25%, then the intersection area is taken
as the GT. (2) Otherwise, the marked symptoms are

retained as theGT. (3) TheGTobtained from the previ-
ous steps is compared with the image marked by the
third ophthalmologist, and then the GT is updated.

Figure 2 shows the annotated lesion combination
process between two ophthalmologists. Based on the
rules, the final GT distribution of DR lesion types
by DR severity level could be determined. As seen
in Figure 3, lesions are marked in the majority level
of no DR. It implies that one of the graders marked
lesion(s) and the other two graders marked no lesion
in the same image. It is worth noting that the number
of lesions in severe NPDR and PDR is less than that
in moderate NPDR. This arises because the invasion
of the area is usually greater in the severe levels of
DR, and the relative number of lesions may decrease.
Furthermore, the signs of neovascularization should be
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Figure 2. Lesion location GT production process. (a) Lesion annotated by two ophthalmologists (D1 and D2). (b) Rule-based combination
results.
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Figure 3. Distribution of DR lesion types by DR severity level.

taken into consideration in the judgment of PDR for a
complete research.

For the public data set,Messidor-2, the gradesmade
available by Abramoff20 were adopted in this study.

Late Fusion

To prepare useful information in the training
process, image preprocessing was conducted in which
the nonretinal background was cropped from raw
images. As can be seen in Figure 4, we developed
a late fusion model (M1) in which the grading
model (baseline model, M0) and the four lesion type-

classification models were trained independently with
the cropped images. With images of size 299 × 299
as the inputs, we trained a CNN model using the
Inception-v4 architecture22 for grading and another
four CNN models using the DenseNet architecture23
with images of size 224 × 224 as the inputs for binary
lesion classification.

The lesion-classification models (with or without a
lesion type of MA, H, hard exudates [HE], or soft
exudates [SE]) were used for feature extraction. The
lesion-classification features were deemed as supple-
mentary information by the late fusion architecture.
As the features from the softmax regression were the
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Figure 4. Workflow of the baseline model (M0) and four fusion models (M1–M4).

final outputs produced from the heterogeneous models
(grading model and four binary lesion-classification
models), a postprocessing method combined all the
features with an ordinal ridge regression model to
classify the disease severity (Fig. 4).

Two-Stage Early Fusion

Inspired by previous work,16 we also developed a
two-stage early fusion architecture (M2/M3) in which
two different types of input images are used for grading
DR. As can be seen in Figure 4, we used the raw input

images instead of lesion patches for training an object-
detection model based on RetinaNet24 with images of
size 1216 × 1216 in the first stage. Our object-detection
model was trained to enhance the fourmajor symptoms
of suspicious DR regions in a full image (Fig. 5). In the
second stage, a classification model using Inception-
v4 with lesion-enhanced images and raw images of
size 299 × 299 was simultaneously trained for severity
classification. Both features were concatenated before
the fully connected fusion layer.

Specifically, we replaced the raw RGB pixels with
new pixels to highlight the potential DR lesions in
the first stage. To enhance the suspicious DR lesions
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(a) (b)
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Figure 5. Input images: (a) raw image and (b) enhanced image with highlighted lesion locations (MA, H, and SE).

from the predicted regions, first, we divided the origi-
nal image RGBmatrix by 4; second, we multiplied it by
the lesion type based on the predicted annotation; and
third, we multiplied it by a function f(x) based on the
confidence level information (c) of the detected lesion.
The confidence level of the detector may suppress the
degree of enhancement. Therefore, two enhancement
strategies were used: strategy 1 (S1) using the confi-
dence level (x, x ∈ [0, 1]) as additional information
and strategy 2 (S2) without using the confidence level.
The formula to calculate the new RGB pixel is shown
in Equation (1):

New RGB pixel = raw RGB pixel/4

× lesion type × f (x) , (1)

where lesion type is 1 (for no DR), 2 (for H), 3
(for HE/SE), or 4 (for MA), and f(x) is defined as

f (x) =
{
c i f x ∈ S1
1 i f x ∈ S2.

As Figure 6 shows, in S1, if an observed confidence
level of the fourmain symptomswith a value of 0.5 and
a raw pixel value of 255 existed for each symptom, then
the new pixel values were updated as 127.5, 63.75, and
95.625, respectively. Alternatively, using S2 in M2, the
new weighted pixel values of the four main symptoms
were increased to 255, 127.5, and 191.25. The differ-
ences among the pixel values of different DR lesions
are, therefore, elevated without information suppres-
sion, using S2.

Furthermore, for early DR detection purposes in
model M3, we focused on MA detection alone and
modified Equation (1) to obtain Equation (2):

New RGB pixel = raw RGB pixel/2

× lesion type × f (x) (2)

0

0

No DR H HE/SE MA

No DR H HE/SE MA

255

0 255

12/41/4

(S2)

(S1)

3/4

0 12/41/4 3/4

Figure 6. Strategies of the potential DR lesions extraction. Blue
dots: H; yellow dots: HE or SE; red dots: MA.

where lesion type can be 1 (for no DR) or 2 (for MA),
and f (x) = 1.

Image artifacts may influence the performance of
MA detection because of the presence of dust or dirt.
The morphology of these artifacts is similar to MA in
terms of color and size. Hence, we filtered the images
through an object-detection model to remove dust
or dirt particles before producing the MA-enhanced
images.

Finally, model M4 combines the binary lesion type
information and features from the enhanced image for
performance enhancement.

Data Analysis

We analyzed the performance of both the binary
lesion type-classification model and the refer-
able/nonreferable DR model for image-level recog-
nition by calculating accuracy, area under the receiver
operating characteristic curve (AUC), sensitivity, and
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Figure 7. Closeup of MA. Example of IoU smaller than 0.15. The
larger bounding box is produced by GT; the smaller bounding box
is produced by a prediction model.

specificity. Note that in the binary lesion type classi-
fication, “true positive” denotes one of the locations
of a predicted lesion having an IoU >15% compared
to the GT location, “true negative” denotes both GT
and prediction without any lesion detection, “false
positive” denotes GT without any lesion detection but
with prediction, and “false negative” denotes GT with
at least one location but no prediction or any predic-
tion location having an IoU ≤15%. The IoU should be
larger than 15% to include the lesions because the pixel
size of MA usually is within 3 × 3, and the bounding
box size of GT is around 7 × 7.

Figure 7 shows an example of IoU that approxi-
mates 15%. The threshold definition of IoU is reason-
able and rigorous because several studies published in
the literature used at least one pixel overlaps with a
GT25,26 that an image is considered to contain a target
lesion. Moreover, the accuracy and weighted κ with
Fleiss-Cohen κ coefficient weights27 were calculated to
evaluate the performances of the fusion architectures
in five-class disease severity classification.

The benchmark data set, Messidor-2, was used to
identify the performance of a hybrid model, which has
the best results from five-class classification for binary
classification (nonreferable DR versus referable DR),
based on the calculation of accuracy, AUC, sensitivity,
and specificity.

Results

For the private data set of 2043 images, the lesion-
classification model detected the DR symptoms with
an AUC greater than 81% for each symptom (Table 1).
The sensitivity in detecting one of the symptoms
was greater than 65% and the specificity in detect-
ing the absence of the symptoms correctly was greater
than 80%. This classification model detected the true
negatives more than the true positives.

We also explored the effectiveness of four fusion
models for DR grading. For the two- and five-
class severity classification, a comparison between the
baseline model (M0) and the proposed fusion models
(M1–M4) is summarized in Table 2. The performance
of M0 in terms of accuracy and weighted κ was
81.60% and 80.09%, respectively. The late fusionmodel
M1 integrated the four major DR symptoms, slightly
increasing the accuracy and weighted κ. The results
of the early fusion models, M2 and M3, were similar;
however, M2 decreased the misclassification rate at a
severity level of mild NPDR andmaintained the rate at
moderate NPDR (data not shown). For the early detec-
tion of referrals, in M4, we combined the features from
the lesion-classification (M1) and early fusion (M2)
models with a regression model to obtain an output

Table 1. Performance of Binary Lesion Type-Classification Model at the Image Level

Lesion Type Accuracy (%) AUC (%) Sensitivity (%) Specificity (%)

MA 77.04a 81.32 69.90 80.14
H 87.08 90.06 79.14 90.23
HE 79.59 82.26 64.57 83.95
SE 81.79 87.90 77.44 82.09

aData are means.

Table 2. Performance Comparison of the Baseline Model (M0) and the Proposed Fusion Models (M1–M4)

Five-Class Two-Class

Model Accuracy Weighted κ Accuracy AUC Sensitivity Specificity

M0 81.60 80.09 92.12 94.19 80.98 94.92
M1 81.69 81.19 92.22 95.08 82.20 94.73
M2 84.24 83.86 92.27 95.06 90.49 92.71
M3 85.12 84.43 91.09 94.21 90.98 91.12
M4 84.29 84.01 92.95 95.51 86.83 94.49
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(a) (b)

Figure 8. (a) Raw images. (b) Enhanced images.

accuracy of 92.95% and AUC of 95.51%, which is
better than that of the othermodels.We also found that
S2 yielded better results than S1 (data not shown).

M4 is the best-performing model as it produced
the highest AUC when Messidor-2 was used to
benchmark the performance of the state-of-the-art
algorithms.10,21,28–32 In Table 3, M4 with an AUC of
97.09% has similar results to those presented in previ-
ous works. M4 also achieved a comparable sensitivity
in detecting referable DR of 93.68% and a specificity in
detecting nonreferable DR of 91.52%.

Discussion

A previous study achieved a weighted κ of 84%
from a large training data set (1.6 million images).11
We provide good baseline (M0) results from training
on a smaller data set (22,000 images) with a weighted
κ of 80%. To reduce the gap of training sample
size, two-stage early fusion architectures enhanced the

performance of DR grading and achieved a similarly
weighted κ of 84%, indicating that the lesion detection
assistance was useful. The M4 hybrid model combines
the lesion type classification and early fusion informa-
tion, producing the best results in terms of sensitiv-
ity and specificity for detecting referral DR. Note that
the incidence of soft exudates is relatively low in DR
images compared to the other lesion types, and some
of the small lesion features may disappear in the last
convolutional layer. Thus, the lesion detection infor-
mation is required to directly provide complementary
information for the classifier.

As can be seen in the upper panel of Figure 8,
soft exudates were highlighted by the enhancement
algorithm; a small hemorrhage was also highlighted in
the lower panel. Both enhanced images assisted M4 to
classify the image more correctly to referable DR than
M0 (original prediction class is nonreferral). Further-
more, we used a public data set, Messidor-2, obtained
from France, to validate the proposed model in practi-
cal use. M4 also achieved performance on Messidor-
2 comparable to that of the benchmark algorithms
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without using the lesion information. In summary,
these results validate that M4 performed equally well
on both the private and public data sets in improving
the overall performance of DR grading.

The proposed strategy mimics the evaluation
process of ophthalmologists, in which the fundus
image is inspected to identify suspicious entities
(lesion types/locations) and then classified. This
hybrid process combines candidate lesion features and
whole-image deep learning features, which increases
the overall performance for DR grading. Moreover,
although background pigmentation varies across races
and ethnicities and may hinder diagnosis, the DR
signs are immutable.7,33 Our architectures were trained
without using a transfer-learning model; they were
trained based solely on the Asian fundus images and
obtained a robust performance on both test data sets
(AUC of 95.51% for Asian, 97.09% for Messidor-2).
Hence, the proposed architectures can be combined
with well-trained DR signs to become more highly
applicable to different ethnicities. This result is similar
to the findings in Li et al.34 Furthermore, both nonmy-
driatic and mydriatic images were used for training to
demonstrate a generalized application of the proposed
architectures. Instead of using a time-consuming
patch-based method, early fusion efficiently decreased
the inference time for lesion detection in supporting
DR grading.

Improving the misclassification rate in the early
stage of DR is essential for clinical management
and preventing patient vision loss in the future. A
minor visual change between the mild and moder-
ate severity stages assessed with a fundus photo-
graph or optical coherence tomography, such as MA,
intraretinal hemorrhages, or small hard drusen, may
be overestimated or underestimated even by experi-
enced ophthalmologists.11,28 For example, the pixels
of MA are less than 0.002% of the image. Further-
more, the image artifacts are sometimes similar toMA.
Consequently, the intergrader variability is well known,
with a lower κ,11 which affects the performance of the
CNN model as well. Accordingly, we developed the
fusion architectures and combined the lesion informa-
tion using the CNN model for DR grading. This may
compensate for the information loss during the compu-
tation of the convolutional layers of the CNN model.

A limitation of our study is that the fusion archi-
tectures excluded information on neovascularization,
which is an important feature in the class of PDR.
This feature was not trained because sparse data were
marked as neovascularization. In addition, the perfor-
mance improvement of the late fusion architecture was
unclear. This finding was unexpected and suggests that

there may have been overlapping features between the
baseline and the lesion-classification models.

Future work will include adjusting different weight-
ing methods or modifying the losses from both the
image enhancement classifier and the raw image classi-
fier by using a controlled hyperparameter. Moreover,
longitudinal image data make DR prediction more
accurate and objective; this has some potential that
should be explored further.

In conclusion, we have developed fusion architec-
tures that combine lesion information with disease
severity classification. TheM4hybridmodel performed
well on Messidor-2 when compared with state-of-the-
art algorithms without lesion detection information.
Thus, we believe thatM4will assist frontline health care
providers in efficiently highlighting lesion information
and classifying DR severity and can be considered a
representative model for general use.
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