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Abstract: Twenty fungal strains belonging to 17 species and isolated from male scalp hair were tested
for their capacity to hydrolyze keratinous material from chicken feather. The identification of the
three most efficient species was confirmed by sequencing of the internal transcribed spacer (ITS)
region of rDNA. Activities of fungal keratinases produced by Aspergillus stelliformis (strain AUMC
10920), A. sydowii (AUMC 10935), and Fusarium brachygibbosum (AUMC 10937) were 113, 120, and
130 IU mg−1 enzymes, respectively. The most favorable conditions were at pH 8.0 and 50 ◦C.
Keratinase activity was markedly inhibited by EDTA and metal ions Ca+2, Co+2, Ni+2, Cu+2, Fe+2,
Mg+2, and Zn+2, with differences between the fungal species. To the best of our knowledge, this is the
first study on the activity of keratinase produced by A. stelliformis, A. sydowii, and F. brachygibbosum.
F. brachygibbosum keratinase was the most active, but the species is not recommended because of its
known phytopathogenicty. Aspergillus sydowii has many known biotechnological solutions and here
we add another application of the species, as producer of keratinases. We introduce A. stelliformis as
new producer of active fungal keratinases for biotechnological solutions, such as in the management
of keratinous waste in poultry industry.

Keywords: keratin; microbial keratinases; feather; waste management; enzymes; biotechnology

1. Introduction

Keratins are structural elements of wool, hooves, horns, hair, nails, and feathers. Forty
million tons of keratinous waste is generated in the USA, Brazil, and China per year [1].
The meat industry—in slaughterhouses—generates millions of tons of keratinous waste in
the world annually [2]. Chicken feathers alone are generated, up to two million tons [3]. In
addition, the fur industry and barbershops generate keratinous waste. Only a small part
of waste, mostly from slaughterhouses, is utilized as animal feed. Keratins are insoluble
fibrillar proteins of the exterior defensive surfaces of vertebrates. Keratinous materials are
known for their high stability owing to the firm stabilization of their polypeptide chains
and the many disulfide bonds that cross these chains [4]. Keratins are not degraded by
common protein breaking enzymes, i.e., proteases, such as pepsin and papain. Managing
keratinous waste needs a low-cost solution, especially in developing countries.

Keratinous substrates are known to be degraded by fungi and bacteria that produce
extracellular keratinolytic enzymes, i.e., keratinases [5–7]. Keratinophilic fungi are com-
monly found from many habitats. They have been found in soils, from Antarctica to
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the tropics, as well as from agricultural soils [8]. Keratinases are usually extracellular
inducible enzymes secreted by different fungal genera, such as Aspergillus, Chrysosporium,
Trichophyton, and Microsporum [9–11]. They are protease enzymes with widespread use
in various industries. For instance, keratinase powder, produced using the bacterium
Bacillus licheniformis and the fungus Parengyodontium album, is sold commercially. Kerati-
nases are used in pharmaceutical industries, such as in vaccine production and preparation
of bioactive peptides and serums. They are useful in the treatment of calluses, keratinized
skin, psoriasis, and acne [12]. Manufacturing of cosmetic products, such as anti-dandruff
shampoos, nutritional lotions, and creams use keratinases. They are commonly used in
feed formulas, nitrogen fertilizers, and the leather industry [5,13–15]. As a novel solution,
they may be used to treat wastewater containing keratin waste [16].

Keratinolytic fungi include Acremonium, Aphanoascus, Aspergillus, Chrysosporium,
Cladosporium, Doratomyces, Fusarium, Lichtheimia, Microsporum, Paecilomyces, Scop-
ulariopsis, Trichoderma, and Trichophyton. Many of these fungi are pathogenic. The
pathogenicity and virulence of some fungi are often due to the high capability of the
fungal strains to degrade both hard and soft types of keratin [17]. However, industrially
interesting fungi are the non-pathogenic fungi that do not cause infections. Therefore, more
research for suitable microorganisms is needed. Keratinases are active within a broad range
of temperatures (40–70 ◦C) and pH values (6–11) [1,6,12,18–22]; thus, optimum conditions
need to be studied for biotechnological solutions.

The aim of the study was to find suitable and effective fungal species able to degrade
keratinous materials to be used in different biotechnological applications. We isolated
fungi from human hair and, after a preliminary experiment, chose the best three species to
measure the yield and the activity of keratinases the fungi produced.

2. Materials and Methods
2.1. Keratin Powder Preparation

Chicken feathers (50 g) collected from poultry farms located in the Assiut district,
Egypt, were defatted with chloroform–methanol (1:1) in continuous agitation for 24 h, then
washed three times with distilled water, and dried in the air. For keratin extraction, the
chicken feathers were immersed in 1000 mL of 0.5 M sodium sulfide for 6 h with contin-
uous agitation at ambient conditions. Soluble keratin was first centrifuged for 10 min at
10,000× g and then precipitated from the supernatant using 70% ammonium sulfate. The
precipitate was washed four times with distilled water, dried at 40 ◦C, and used as chicken
keratin powder in keratinase assay experiments.

2.2. Preliminary Experiment/Submerged Fermentation

Twenty fungal strains (17 species) previously [23] isolated from scalp hair samples
of males in Riyadh city, Saudi Arabia, were used individually as three replicates. Fungi
were preliminary identified morphologically and deposited in the Culture Collection of the
Assiut University Mycological Centre (AUMC), with accession numbers in Table 1. Fungi
were revived and tested for their purity and viability on Czapek’s agar medium (HiMedia,
Mumbai, India).

Sterilized sucrose-free Czapek’s broth containing 5.0% (weight/weight) chicken
feathers as the sole source of carbon and 0.1% glucose was used as a fermentation
medium. In a 250 mL Erlenmeyer flask, 50 mL of fermentation medium was inoculated
with 1 mL of cell suspension of the tested fungi. Spore suspension (1 mL) containing
1.8 × 108 spore mL−1 from 7-day-old culture of each fungus was inoculated into
their own fermentation flasks (100 mL broth) and incubated at 30 ◦C for 15 days
under shaking at 150 rpm. Then, supernatants were obtained by centrifugation at
10,000× g for 10 min, and cell-free supernatants were used as the raw microbial kerati-
nase enzymes in the preliminary keratinase activity assay.
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Table 1. Activity of fungal keratinases (mean ± SD, n = 3). AUMC no. = Culture Collection of the
Assiut University Mycological Centre accession numbers.

Fungal Species AUMC
No.

Relative Activity
IU mL−1 min−1

Alternaria alternata (Fries) Keissler 10926 689 ± 42
Alternaria alternata (Fries) Keissler 10932 1680 ± 120

Alternaria botrytis Woudenberg and Crous 10931 1211 ± 98
Alternaria botrytis Woudenberg and Crous 10936 1018 ± 87

Alternaria chlamydosporigena Woudenberg and Crous 10915 1398 ± 154
Aspergillus nidulans Winter 10933 935 ± 70

Aspergillus niger van Tieghem 10912 52 ± 23
Aspergillus stelliformis F. Sklenar, Jurjević and Hubka 10920 3336 ± 169

Aspergillus sydowii (Bainier and Sartory) Thom and Church 10935 3523 ± 188
Aspergillus ustus (Bainier) Thom and Church 10934 2091 ± 197

Aureobasidium pullulans (de Bary) Arnaud 10914 129 ± 11
Chaetomium globosum Kunze 10941 1600 ± 156

Curvularia tsudae (Tsuda & Ueyama) Deng, Tan and Shivas 10940 570 ± 85
Fusarium brachygibbosum Padwick 10937 3554 ± 189

Nodulisporium sp. 10916 270 ± 20
Penicillium chrysogenum Thom 10913 589 ± 11

Penicillium glabrum (Wehmer) Westling 10929 218 ± 49
Phoma herbarum Westend 10919 258 ± 12

Pyrenophora dematioidea (Bubák & Wróbl.) Rossman and K.D.
Hyde 10930 580 ± 33

Pyrenophora dematioidea (Bubák & Wróbl.) Rossman and K.D.
Hyde 10938 512 ± 15

2.3. Keratinase Activity Assay

The reaction mixture contained 1.0 mL of the cell-free supernatant + 0.01 g chicken
keratin powder (prepared in 1 mL of 50 mmol citrate buffer pH 5.0). The mixture was
incubated in a water bath at 50 ◦C for 60 min. The reaction was stopped by adding 2.0 mL
10% trichloroacetic acid (TCA). The resulting precipitate was separated by centrifugation
at 10,000× g for 10 min. Then, 0.2 mL of the supernatant was diluted to 1.0 mL with
purified water, and 5.0 mL of alkaline cupper reagent (sodium carbonate, 40 g; tartaric acid,
7.5 g; copper sulfate, 4.5 g and distilled. water, 1000 mL; final pH 9.9 ± 0.5) was added.
Afterwards, 0.5 mL of the Folin–Ciocalteu reagent was added and the tubes were kept
in the dark for 30 min to allow the blue color formation. Negative control was prepared
by incubating the enzyme solution with 2 mL of 10% TCA without keratin. Absorbance
was measured at 660 nm (UV-visible spectrophotometer; T80+; UK), using tyrosine as
the standard. One unit of keratinolytic activity corresponds to the enzyme amount that
releases 1 µmol tyrosine mL−1 min−1 under standard test conditions [24], according to the
L-tyrosine standard curve (Equations (1)–(3)) [24].

Concentration of L-tyrosine = absorbance/(0.0018 × 1000) mg/mL (=g/L) (1)

Keratinase activity = (concentration of L-tyrosine)/0.0001812 IU/mL/min (2)

Keratinase activity can be also expressed as IU/g (= IU/mL/min × 100). (3)

Total protein content was measured with the method of [25], using bovine serum albumin
(BSA) as the standard and the specific keratinase activity per mg protein was calculated.

2.4. Molecular Identification of the Potent Strains

The three most active strains in the preliminary experiment were identified by se-
quencing. For the DNA extraction, small pieces of fungal mycelia from 7-day-old cultures
of Aspergillus strains (AUMC 10920 and AUMC 10935) grown on malt extract agar (MEA)
and Fusarium strain (AUMC 10937) on potato dextrose agar (PDA) at 25 ◦C were trans-
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ferred individually to 2 mL Eppendorf tubes. DNA extraction was performed as described
by Moubasher et al. [26]. The PCR reaction was carried out in SolGent company (South
Korea) using the universal primers ITS1 (5TCC GTA GGT GAA CCT GCG G 3), and
ITS4 (5TCC TCC GCT TAT TGA TAT GC 3), in the reaction mixture described by [27–29].
Sequences obtained from SolGent Company were compared to sequences from GenBank
using MAFFT (version 6.861b) with the default options [30]. Alignment gaps and parsi-
mony uninformative characters were chosen as described by Criscuolo and Gribaldo [31].
Maximum likelihood (ML) and maximum parsimony (MP) phylogenetic analyses were
conducted using PhyML 3.0 [32]. The robustness of the most parsimonious trees was tested
by 100 bootstrap replications [33]. The best optimal model of nucleotide replacement for
ML analyses was calculated using Smart Model Selection (SMS) version 1.8.1 [34]. The
phylogenetic tree was prepared with FigTree version 1.4.3 [35] and edited with Microsoft
Power Point (2016).

2.5. Experiment to Produce Keratinases Using the Three Most Active Strains

The three most active fungal strains were used in the submerged fermentation incu-
bation, carried out as described for the preliminary submerged fermentation incubation
above. Erlenmeyer flasks (500 mL) containing 100 mL of fermentation medium were used.
After the fermentation period, the cell-free supernatants were subjected to 60% ammonium
sulfate precipitation. The precipitated proteins were isolated and lyophilized using a
freeze dryer (VirTis, model #6KBTES-55, NY, USA). Lyophilized keratinases were dissolved
separately in citrate buffer (pH 5.0) and dialyzed twice at room temperature against the
same buffer for 2 h, removing the buffer every time. Then, they were stored overnight at
4 ◦C to exclude small molecules. The dialyzed keratinases were then lyophilized using a
freeze dryer, weighed, and used as partially purified fungal keratinase enzymes to measure
the activity of the enzymes and their optimal conditions.

2.6. Effect of PH and Temperature on the Activity of Partially Purified Keratinases

The partially purified fungal keratinases of the three selected fungi were used in the
reaction mixture that contained 0.01 g keratinase and 0.01 g chicken keratin powder (each
was prepared independently in a 50 mmol citrate buffer solution of 1.0 mL). The different
experiments were prepared as three replicates and the absorbances were measured as
above. Keratinase activity was calculated and expressed as kilo unit per g keratinase
(KU g−1 keratinase).

Eight pH values (3.0–10.0) were tested. The buffers used were citrate buffer (pH 3.0–6.0),
phosphate buffer (pH 7.0–8.0), and borate buffer (pH 9.0–10.0). Then, six temperatures
(30–80 ◦C) at the optimum pH value of each microbial keratinase was tested. Divalent
metal ions (Ca+2, Co+2, Ni+2, Cu+2, Fe+2, Mg+2, and Zn+2) were tested by adding at the
concentration of 5 mmol mL−1 as CaCl2, CoCl2, NiCl2, CuSO4, FeSO4, MgSO4, and ZnSO4.
An enzyme inhibitor was tested using 5 mmol mL−1 ethylenediaminetetraacetic acid (EDTA).
The activity of the microbial keratinase in the absence of metal ions or EDTA were measured
under standard conditions to define 100% activity in optimal conditions.

3. Results
3.1. Preliminary Experiment

Six strains exhibited keratinase activity above 1500 IU mL−1 min−1 (Table 1).
Fusarium brachygibbosum was the most active (3554 IU mL−1 min−1) followed by
A. sydowii and Aspergillus stelliformis with the activities of 3336 and 3523 IU mL−1 min−1,
respectively. Keratinase activity values from Aspergillus ustus, Alternaria alternata
(AUMC 10932), and Chaetomium globosum showed 2091, 1681, and 1600 IU mL−1 min−1,
respectively. The remaining tested fungi showed low keratinase activity ranging from
52 to 1398 IU mL−1 min−1.



J. Fungi 2021, 7, 471 5 of 13

3.2. Fungi Producing Active Microbial Keratinases

The three most active fungal species were confirmed by by phylogenetic analysis as
Aspergillus stelliformis, A. sydowii, and Fusarium brachygibbosum (Figure 1). The phylogenetic
tree showed the relationship of our Aspergillus strains AUMC 10920 and AUMC 10935 to the
other Aspergillus species. The Aspergillus species in this analysis showed 100% similarity to
A. stelliformis CCF 5375 and A. sydowii CBS 593.65 (Figure 2). Sequencing data were submitted
to GenBank and assigned accession numbers as MW045465 for A. stelliformis and MW045469
for A. sydowii. It is worth it to mention that A. stelliformis is a newly recorded species
related to Aspergillus section Nidulantes that accommodates A. nidulans and other species
developing biseriate conidiophores with light brown-pigmented stipes, and, if present,
the ascomata embedded in masses of Hülle cells. The Fusarium strain AUMC 10937 was
identified as F. brachygibbosum with GenBank accession number of MW045472 (Figure 3).

J. Fungi 2021, 7, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. Light brown spores of A. stelliformis (A,B), biseriate conidiophores, and spinulose conidia 
of A. sydowii (C,D), and relatively curved and fusiform microconidia of F. brachygibbosum originated 
from mono and polyphialides (E,F). 

Figure 1. Light brown spores of A. stelliformis (A,B), biseriate conidiophores, and spinulose conidia
of A. sydowii (C,D), and relatively curved and fusiform microconidia of F. brachygibbosum originated
from mono and polyphialides (E,F).



J. Fungi 2021, 7, 471 6 of 13J. Fungi 2021, 7, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Phylogenetic tree generated from MP analysis based on ITS sequence data of Aspergillus 
stelliformis AUMC 10920 and A. sydowii AUMC 10935 associated to other related genes in Aspergil-
laceae. Blue color refers to the species in this study. Bootstrap support values (100 replications) for 
ML/MP combination equal to or greater than 50% are indicated at the respective nodes. The tree is 
rooted to Aspergillus awamori-CBS 557.65 as the out group. 

 

Figure 2. Phylogenetic tree generated from MP analysis based on ITS sequence data of
Aspergillus stelliformis AUMC 10920 and A. sydowii AUMC 10935 associated to other related
genes in Aspergillaceae. Blue color refers to the species in this study. Bootstrap support values
(100 replications) for ML/MP combination equal to or greater than 50% are indicated at the
respective nodes. The tree is rooted to Aspergillus awamori-CBS 557.65 as the out group.

3.3. Yield and Activity of Keratinases

In submerged fermentation, the three fungi produced keratinases with relatively
high yield. It was possible to produce 4.0 g keratinase powder from A. stelliformis,
4.5 g from A. sydowii, and 3.7 g from F. brachygibbosum per liter of fermentation medium.
The keratinases appeared to be active; the highest activity was reached at pH 8.0 for
each microbial keratinase, and were 105, 104, and 119 KU/g keratinase for A. stelliformis,
A. sydowii, and F. brachygibbosum, respectively (Figure 4). The specific activities were 4223,
3522, and 3277 IU/mg protein, respectively.

The optimum temperature was 50 ◦C (pH 8.0) for each of the three microbial kerati-
nases. The activity values increased to 113, 120, and 130 KU/g keratinase produced by
A. stelliformis, A. sydowii, and F. brachygibbosum, respectively (Figure 5). A notable observation
was that F. brachygibbosum was active at a wide temperature range (30–60 ◦C). The optimum
temperature (50 ◦C) also increased the specific activity of the three keratinases to 4521, 4060,
and 3573 IU/mg protein for A. stelliformis, A. sydowii, and F. brachygibbosum, respectively.
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EDTA and the metal ions had strong inhibitory effects on the activity of the kerati-
nases produced when tested under the optimum conditions observed (pH 8 and 50 ◦C).
The maximum inhibitory effect was with EDTA in case of the keratinases produced by
A. stelliformis and A. sydowii, but not by F. brachygibbosum (Table 2). For F. brachygibbosum,
the inhibitory metal ions were Ca, Cu, and Zn.

Table 2. Effect of metal ions and EDTA (5 mmol mL−1) on keratinase activity produced by different
fungi (mean ± SD, n = 3). The results are expressed as the proportion of the activity in the tested
inhibitory conditions, from the keratinase activity in the control without inhibitors.

Control Activity
KUg−1 Enzyme 113 121 130

Inhibitor A. stelliformis A. sydowii F. brachygibbosum

FeSO4 28 ± 4 27 ± 2 24 ± 3
ZnSO4 29 ± 3 18 ± 2 23 ± 4
CaCl2 34 ± 6 22 ± 6 22 ± 4
CuSO4 28 ± 3 22 ± 5 23 ± 2
NiCl2 30 ± 4 58 ± 9 45 ± 4
CoCl2 76 ± 8 33 ± 8 27 ± 4

MgSO4 27 ± 5 17 ± 5 53 ± 8
EDTA 7 ± 1 17 ± 4 52 ± 6

4. Discussion

Microbial keratinases are considered highly useful in many biotechnological appli-
cations. For instance, they are known as plant growth promoters [36]. A more recent
application involves treating keratinous waste produced in agriculture and leather
industries. This waste is difficult to treat with proteases, such as papain, pepsin, and
trypsin [30]. Finding efficient degraders of keratin offers possibilities to treat waste
from cattle, poultry, and leather industries, and keratinases has been studied with the
aim to degrade the different waste material [37,38]. The advantages of using natural
keratinophilic microbes in producing enzymes are the low cost and that the byproducts
are nontoxic (and can even be utilized elsewhere) [39]. Byproducts, such as amino
acids, polypeptides, vitamins, and detergent additives are promising novel applica-
tions that improve the sustainability of agriculture [40,41]. The mechanisms behind
the degradation of keratinous materials still requires further studies. The process
of keratinolysis can be catalyzed by a single keratinase, or more efficiently, in syn-
ergy with other enzymes [7]. Other enzymes such as disulfide reductases catalyze the
breakage of disulfide bonds. Metabolic cooperation with amino acid metabolism, urea
cycle, and disulfide reduction was revealed using metagenomic analysis [42]. Different
reducing agents, such as β-mercaptoethanol and dithiothreitol were present when ker-
atinases produced by fungi and actinomycetes. Thermoactinomyces sp., Trichophyton sp.,
Streptomyces sp., A. parasiticus and A. niger were compared in a review of Peng et al. [43].
The mechanism behind the keratin degradation has been studied with keratinases
produced by Bacillus thuringiensis isolated from donkey hairs. Scanning electron mi-
croscopy and Fourier transform infrared spectrophotometry showed the disintegration
and disruption of the disulphide bonds of the keratin structure [44]. The use of natural
microbes reduces the costs of the enzyme production and, at the same time, offers eco-
nomic processes to waste management [2]. Each of the three species studied appeared to
be good candidates to produce active keratinases. Different species of Aspergillus have
been reported often as potential producers of keratinases the optimum conditions vary-
ing a lot. The optimum conditions for Aspergillus terreus in a 25-days incubation were
40 ◦C and pH 8 [45]. The mutants of 28 strains of A. niger produced varying amounts of
keratinases on solid state fermentation in basal medium containing chicken feathers
after 7 d; the highest activity of keratinases was achieved at pH 5 [46]. When cultivated
in feather meal basal medium containing 2% (w/v) chicken feather for 16 days, the
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optimum of A. flavus was at pH 8 and 28 ◦C [47]. Aspergillus sp. DHE7 recovered from
poultry farm soil in Egypt had the maximum keratinase activity 199 IU/mL in a 2 %
chicken feather substrate when incubated for 4 days at 30 ◦C and pH 6.0 [48]. The
addition of 0.5 % sucrose as a supportive carbon source raised the keratinase activity to
226 IU/mL. The best substrates for the keratinase activity were goat hair (452 IU/mL),
turkey feathers (435 IU/mL) and sheep wool (322 IU/mL). Our Aspergillus species had
a clearly higher temperature optimum, 50 ◦C.

In addition to Aspergillus, several other fungal genera have been shown to produce
active keratinases as well. Scopulariopsis brevicaulis keratinolytic activity was the highest
on chicken feathers followed by human nails and human hair [49]. Cochliobolus hawaiiensis
achieved the maximum development of alkaline keratinase after an incubation for 15 d at
30 ◦C and pH 9.5 [50]. Chrysosporium tropicum optimum production of keratinase in medium
containing chicken feathers was after 21 d at 25 ◦C using 1% glucose as carbon source [39].
Trichophyton ajelloi had its maximum enzyme activity (6.3 KU/mL) at 30 ◦C [51]. Keratinolytic
activity of Chrysosporium tropicum was the highest (8.6 KU/mL) on the 40th day of the
incubation [40]. For Microsporum gypseum (78 KU/mL) and M. canis (76 KU/mL) the highest
activity was recorded on the 20th day of the incubation [41]. Bacillus thuringiensis showed
the activity of 422 U/mL at 50 ◦C and pH 9 [44]. In general, it is difficult to compare the
values of enzyme activity between different studies due to slight differences in methodology.
Therefore, the comparisons should be done with caution.

Many studies have confirmed the dependence of microbial keratinase activity from
metals [52,53]. This was the case with our three species A. sydowii, A. stelliformis and
F. brachygibbosum as well. We found no previous information about our species but a feather-
degrading culture of Aspergillus oryzae was activated by Ca and Ba ions while inhibited by
EDTA and Pb ions [54]. Under solid state fermentation with chicken feathers, A. flavipes
keratinase activity was greatly inhibited by EDTA, Hg2+, Fe3+ [55]. No great effect on
A. flavipes keratinase was observed due to the presence of Zn2+, Mg2+ and Cu2+. The
published research reveals that different fungal species have highly variable optimum
conditions. This indicates that the optimum culturing conditions and the inhibitory com-
pounds must be examined for each species separately.

Many of the Fusarium species are known as opportunistic pathogens causing many
plant diseases, among them is one of the most destructive plant diseases Fusarium wilt of
banana [56]. Fusarium brachygibbosum specifically has caused, for instance, leaf spot disease
of date palms and dry rot disease of citrus trees [57,58]. It was reported as a causative
agent of date palm wilting disease although its pathogenicity was assessed as low [59].
Fusarium species are known as toxigenic fungi secreting mycotoxins in food and feed such
as cereals [60,61]. Although F. brachygibbosum keratinase was the most active in a wide
temperature range tested in our study, it must be recommended with caution because of its
known pathogenicity to plants.

Aspergillus sydowii is not known as especially pathogenic but its role as an opportunistic
pathogen causing diseases for instance in coral reefs has been studied in several seas [62,63].
Aspergillus sydowii is known as a species tolerating highly saline conditions and reported
to have potential to be used in different biotechnological solutions. Several Aspergillus
species in general are known to have adverse health effects on humans [64]. Most often,
the fungi have been reported to cause local infections and allergy [65]. However, we found
no reports about severe health effects of either of our Aspergillus species. Its potential has
been verified for instance, in the remediation of polyaromatic hydrocarbons, pesticides,
and pharmaceutical compounds [66,67]. Aspergillus sydowii was observed to adsorb heavy
metals (Cd) and degrade pesticides (trichlorfon) in vitro [68]. In addition, A. sydowii, as
a producer of anthocyanins, has many potential applications in human health and for
instance as natural dyes of foodstuff [69].

Aspergillus sydowiii has been shown to produce many different enzymes that have
potential in many biotechnological applications. Cellulase was produced under sub-
merged fermentation [70] and xylanases under solid-state fermentation [71]. Moreover,
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tannases [72] and lignocellulosic enzymes offer possibilities to food and bioenergy applica-
tions [73]. We can add keratinases the list of A. sydowiii for the first time.

Only some information about A. stelliformis was found [74]. No indication about its
bioactivities nor mentions about its potential use in biotechnology were found. We report,
for the first time, the potential of A. stelliformis to produce keratinases and its potential to
be used in applications to degrade keratinous material.

5. Conclusions

Aspergillus stelliformis, A. sydowii, and F. brachygibbosum appeared to produce kerati-
nases that had high activity. F. brachygibbosum keratinase was the most active in a wide
temperature range. However, as a producer of keratinases, it must be used with caution
and cannot be recommended because of its known phytopathogenicity. Aspergillus sydowii
is known as a species with several potential biotechnological solutions. To this long list
published using A. sydowii, we can add the production of the active keratinase enzyme. We
also introduce a new-recorded species, A. stelliformis, to be used in biotechnological solu-
tions as a producer of active microbial keratinase. Although further studies are required,
both Aspergillus species could be used in degrading problematic and recalcitrant keratinous
waste and in developing sustainable agriculture.
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