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This study assessed changes in blood muscle damage indicators and 
DNA damage indicators in lymph and urine after 8 weeks of high-inten-
sity intermittent running and weight training in male and female college 
students majoring in skiing. This study aimed to find an effective training 
method by investigating differences in the effectiveness between men 
and women. A total of 20 male and female ski major college students 
conducted short-term high-intensity intermittent running and weight 
training in the morning and afternoon, respectively, 3 days a week for  
8 weeks for 24 times in total. After 8 weeks of high-intensity intermittent 
running and weight training, changes in DNA damage indicators in the 
lymph and urine and muscle damage indicators in the blood were ana-
lyzed. The creatine kinase level significantly differed at rest pre-graded 
exercise testing (GXT) and 60 min of recovery post-GXT after training 

from that before training between the male and female groups. Al-
though lactate dehydrogenase (LDH) levels decreased in both groups 
over time, no significant differences in LDH were found between the 
two groups. Second, DNA 8-hydroxydeoxyguanosine (8-OHdG) in the 
lymph was significantly different between the two groups at rest pre-
GXT and 60 min of recovery post-GXT. 8-OHdG in the urine was signifi-
cantly lower in the female group only at 60 min of recovery post-GXT. 
Partial sex differences were found in the reduction of muscle damage 
and DNA damage after 8 weeks of high-intensity intermittent running 
and weight training.
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INTRODUCTION

Intermittent exercise, involving repetitive high-intensity full-
body exercise within a short period, is a highly efficient exercise 
that achieves maximum heart rate (HRmax) and energy consump-
tion. The American College of Sports Medicine recommends exer-
cising at 80%–95% of the HRmax for 5 sec to 8 min for high-in-
tensity intermittent exercise (HIIE) and performing low-intensity 
exercise during rest for the same amount of time as HIIE at 40%–
50% of the HRmax. HIIE has been reported to have various ef-
fects compared with other exercises of different intensities; howev-
er, muscle damage after HIIE increases enzyme concentrations in 
the blood in general individuals and athletes (Lippi et al., 2008). 
Specifically, 1-time exercise induces muscle fatigue, increasing 

muscle-damaging materials. By contrast, long-term regular train-
ing reduces muscle-damaging materials for the same exercise load 
(Du and Sim, 2021).

Creatine kinase (CK) and lactate dehydrogenase (LDH), which 
have been proposed as indicators of muscle damage in the blood, 
are closely related to the intensity, duration, and amount of exer-
cise and show various patterns depending on the fitness level of 
the body. An increasing interest has focused on exercise-induced 
DNA damage (Cakatay et al., 2010). High-intensity exercise can 
increase the oxygen intake of skeletal muscles by 100- to 200-fold, 
and such an excessive increase in oxygen intake overpowers the 
antioxidant system and produces lipid peroxidation. This can dam-
age and deform DNA and proteins (Mastaloudis et al., 2004; Sen, 
1995; Tanimura et al., 2008). Among DNA forms affected by ox-
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idative damage, 8-hydroxydeoxyguanosine (8-OHdG) is a key ox-
idative nucleotide derivate of DNA helix damage. Studies have 
previously suggested that oxidative stress from physical exercise 
can cause DNA damage (Adelman et al., 1988; Levine, 1983).

The role of regular exercise in DNA damage is still unclear, and 
the relationship between regular exercise and DNA damage as an 
adaptation to HIIE, as it may be seen as a DNA damage repair 
process, should be investigated. On the contrary, various studies 
are actively investigating the factors that cause oxidative stress, 
DNA damage, and countermeasures. Some of those studies have 
suggested the potential role of sex in oxidative stress and DNA 
damage (Massafra et al., 2000; Viña et al., 2006).

Therefore, in this study, we aimed to investigate changes in mus-
cle and DNA damage indicators after 8 weeks of HIIE in male and 
female ski major college students and assess the differences by sex.

MATERIALS AND METHODS

The study participants were randomly selected 20 college stu-
dents, including 10 male and 10 female students, majoring in 
skiing at Hebei Sport University in Shijiazhung City, China. This 
study was approved by the Ethics Committee of a Tangshan Nor-
mal University (No: TSNU-2020-l01). The characteristics of the 
participants are shown in Table 1.

Running was considered a short-time HIIE and performed  
3 times a week (Monday, Wednesday, and Friday) in the morning 
for 8 weeks for a total of 24 times. To maximize the exercise effects, 
weight training was performed in the afternoon. Running was 
conducted for 60 min per session, including 30 min of the main 
exercise and 15 min each for warm-up and cool-down. The run-

ning exercise was conducted at 80%–95% of the HRmax, and 
during rest, the participants ran at 50% of the HRmax. The exer-
cise intervals were as follows: 100-m run, followed by 60 sec of 
rest, 200-m run, 90 sec of rest, and 400-m run. This was repeated 
4 times, with 3-min rest between each set. The exercise intensity 
was basically done according to the guidelines of the American 
College of Sports Medicine, but HIIE was implemented by modi-
fying the exercise program suggested by Du and Sim (2021) in 
consideration of the exercise ability that the subjects could per-
form (Table 2).

Weight training was conducted 80 min per session, including 
60 min of the main exercise and 10 min each for warm-up and 
cool-down. A total of 13 different exercises were performed at  
10–15 repetitions per set at 65%–75% of one-repetition maximum 
(1RM). Each exercise was conducted for 20–30 sec, and the rest 
time between each exercise was 20 sec. The rest time between up-
per body, abdominal, and lower body exercises was 60 sec, and the 
rest time between each set was 120 sec (Table 3).

Blood and urine samples of the participants were collected at 
4-time points: at rest before the graded exercise test (GXT), imme-
diately post-GXT, 60 min of recovery post-GXT, and at 120 min 
of recovery post-GXT before and after the 8-week-long HIIE run-
ning and weight training program. On the day of blood and urine 
collection, the Bruce protocol was conducted on a treadmill for 
GXT. This progressive overload exercise was conducted until all-
out based on the rating of perceived exertion by Borg. The collected 
blood was centrifuged at 4°C at 3,000 rpm for 30 min at the De-
partment of Diagnostic Testing. After centrifugation, the blood 
was stored in a freezer at 70°C. The urine was immediately frozen 
after collection and stored in a 75°C freezer until analysis. All vari-
ables were analyzed at the clinical laboratory and medical verifica-
tion center of S hospital. CK and LDH levels were analyzed as 
muscle damage indicators. Changes in lymph and urine 8-OHdG 
levels were analyzed as DNA damage indicators.

In this study, all data analyses were conducted using the IBM 
SPSS Statistics ver. 26.0 (IBM Corp., Armonk, NY, USA). The 
mean and standard error were derived for each variable, and re-

Table 1. Physical characteristics of the participants

Participants Age (yr) Height (cm) Weight (kg)

Male (n= 10) 21.8± 0.63 179.1± 4.68 82.5± 10.45
Female (n= 10) 21.6± 0.96 166.4± 1.98 62.6± 3.58

Values are presented as mean± standard error.

Table 2. High-intensity intermittent training program

Exercise Exercise program Time (min) Intensity (HRmax) Set Frequency

Warm-up Stretching 15 30%–40% 3 (Monday, Tuesday, and Friday)
Main exercise 100-m run

200-m run after a 60-sec break
400-m run after a 90-sec break 

30 Exercise intensity 80%–95% 4
Exercise intensity at rest 50%

Cool-down Stretching 15 30%–40% 

HRmax, maximal heart rate.
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peated measures analysis of variance was conducted to assess the 
effects of the variables on changes in muscle and DNA damage 
indicators between the groups. The significance level was set at 
0.05.

RESULTS

Changes in LDH levels
Changes in the LDH levels are presented in Table 4. No inter-

action was observed between the groups and time points at all 
4-time point measurements.

Changes in CK levels
Changes in the CK levels are presented in Table 5. Interactions 

were found between the groups and time points at rest pre-GXT 
and 60 min of recovery post-GXT (P<0.05). The CK level sig-
nificantly decreased at rest pre-GXT and 60 min of recovery post-
GXT posttraining compared with that observed during pretrain-
ing in both male and female groups (P<0.001). By contrast, no 
interactions were found between the groups and time points im-
mediately post-GXT and at 120 min of recovery post-GXT.

Changes in lymph DNA 8-OHdG levels
Changes in the lymph DNA 8-OHdG levels are presented in 

Table 3. Weight training program

Exercise Exercise program Time (min) Intensity (1RM) Set (repetition) Frequency

Warm-up Stretching 10 3 (Monday, Tuesday, and Friday)
Main exercise Upper body Standing V raise 60 65%–75% 4 (10–15)

Shoulder press
Bicep curls and Triceps kickbacks

Abdominal Flutter kicks
Reaching oblique
Crunch
Supine leg raise

Lower body Squat
Squat jump
Leg curl
Barbell squat
Leg press
Leg extension

Cool-down Stretching 10

RM, repetition maximum.

Table 4. Changes in the lactate dehydrogenase (ng/L) from pre- to posttraining 
in each group

Group Time Rest 
pre-GXT

Immediately 
post-GXT

60 min of 
recovery 
post-GXT

120 min of 
recovery 
post-GXT 

Male Pre 46.51± 2.25 54.40± 2.24 50.15± 1.17 47.62± 1.70
Post 41.44± 1.94 50.10± 2.17 46.03± 1.67 44.17± 1.48

Female Pre 44.70± 1.24 53.72± 2.15 49.05± 1.30 45.84± 1.29
Post 38.45± 2.27 48.75± 1.59 44.32± 1.44 41.41± 1.73

F 1group*time = 1.291 (0.271), Fgroup = 11.267 (0.004), Ftime = 119.843 (0.000). 
F  2group*time = 1.314 (0.267), Fgroup = 1.349 (0.261), Ftime = 257.127 (0.000). 
F  3group*time = 1.395 (0.253), Fgroup = 6.025 (0.025), Ftime = 289.395 (0.000). 
F 4group*time = 1.434 (0.247), Fgroup = 16.056 (0.001), Ftime = 92.334 (0.000).

Values are presented as mean± standard error.
GXT, graded exercise test.
F 1, rest pre-GXT; F 2, immediately post-GXT; F 3, 60 min of recovery post-GXT; F 4, 
120 min of recovery post-GXT.

Table 5. Changes in the creatine kinase (ng/L) from pre- to posttraining in each 
group

Group Time Rest 
pre-GXT

Immediately 
post-GXT

60 min of 
recovery 
post-GXT

120 min of 
recovery 
post-GXT

Male Pre 384.48± 6.88 479.25± 9.62 430.89± 12.71 394.84± 9.06
Post 361.41± 7.84 449.61± 7.52 397.03± 18.43 366.21± 7.84

Female Pre 366.28± 5.61 467.95± 13.88 420.25± 15.00 378.63± 9.90
Post 335.96± 9.50 429.09± 13.33 375.92± 6.97 343.85± 9.65

F 1group*time = 4.994 (0.038), F(P) male = 89.371 (0.000), F(P) female = 201.523 (0.000). 
F  2group*time = 4.099 (0.058), Fgroup = 7.594 (0.013), Ftime = 226.514 (0.000). 
F 3group*time = 4.849 (0.041), F(P) male = 161.303 (0.000), F(P) female = 126.487 (0.000). 
F 4group*time = 1.616 (0.220), Fgroup = 34.037 (0.000), Ftime = 172.509 (0.000).

Values are presented as mean± standard error.
GXT, graded exercise test.
F 1, rest pre-GXT; F 2, immediately post-GXT; F 3, 60 min of recovery post-GXT; F 4, 
120 min of recovery post-GXT.
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Table 6. Interactions were found between the groups and time 
points at rest before GXT and 60 min of recovery post-GTX (P< 
0.05). The lymph DNA 8-OHdG level significantly decreased at 
rest pre-GXT posttraining than that observed at rest pre-GXT 
pretraining in both male and female groups (P<0.01). In the male 
group, the lymph 8-OHdG level significantly decreased at 60 min 
of recovery post-GXT posttraining compared with that observed 
at pretraining (P<0.01). However, no significant difference was 
noted between pre- and posttraining in the female group. By con-
trast, no interactions were observed between the groups and time 
points immediately post-GXT and at 120 min of recovery post-
GXT.

Changes in urine DNA 8-OHdG levels
Changes in the urine DNA 8-OHdG levels are presented in  

Table 7. Significant interactions were noted between the groups 
and time points at 60 min of recovery post-GXT (P<0.05). In 
both male and female groups, urine DNA 8-OHdG levels post-
training were significantly decreased compared with those of pre-
training (P<0.001). By contrast, no interactions were observed 
between the groups and time points at rest pre-GXT, immediate-
ly post-GXT, and at 120 min of recovery post-GXT.

DISCUSSION

Muscle damage following unfamiliar training or high-intensity 
exercises causes mechanical and oxidative stress. CK and LDH, 
which are used as indicators of muscle damage, are activated during 
high-intensity exercises and show different patterns depending on 
the fitness level of the body (Brancaccio et al., 2010; Deruisseau et 

al., 2004). Although various previous studies have reported that 
vigorous one-time exercise or high-intensity training induces mus-
cle fatigue, increasing the concentration of muscle damage sub-
stances and causing structural damage to skeletal muscles (Bradley 
et al., 2010; Brancaccio et al., 2008; Nosaka et al., 2011), recent 
evidence suggests that regular training for a long period reduces 
muscle damage and muscle-damaging materials for the same ex-
ercise load (Du and Sim, 2021; Yang, 2015). Yang (2015) reported 
that CK levels significantly decreased in the exercise group after  
6 weeks of high-intensity winter training in judo athletes. In a re-
cent study, Du and Sim (2021) observed decreased CK and LDH 
levels after 8 weeks of interval training in sprinters.

Herein, after 8 weeks of HIIE, CK levels significantly decreased 
in both male and female groups at rest pre-GTX and 60 min of 
recovery post-GTX. Specifically, at rest pre-GTX, CK levels were 
more effectively reduced in the female group than in the male 
group, whereas at 60 min of recovery post-GTX, CK levels were 
significantly lower in the male group than in the female group. 
Although CK levels immediately post-GTX and at 120 min of 
recovery post-GTX decreased in both groups posttraining compared 
with that of pretraining, no significant differences were found in 
the CK levels between the two groups. By contrast, LDH levels 
decreased during posttraining compared with the levels during 
pretraining in both male and female groups at all 4-time point 
measurements; however, no significant differences were found in 
LDH levels between the two groups.

In agreement with the results of previous studies, our findings 
suggest that CK and LDH activity may vary depending on the 
body’s familiarity with high-intensity exercise and that CK and 
LDH activities decrease with long-term training. Although it is 

Table 6. Changes in the lymph DNA 8-hydroxydeoxyguanosine (ng/L) from 
pre- to posttraining in each group

Group Time Rest 
pre-GXT

Immediately 
post-GXT

60 min of 
recovery 
post-GXT

120 min of 
recovery 
post-GXT

Male Pre 28.12± 1.57 47.72± 1.00 37.84± 1.30 32.91± 1.11
Post 26.03± 1.06 44.06± 1.06 36.04± 1.18 30.28± 1.22

Female Pre 24.63± 1.24 40.26± 1.38 33.97± 2.42 29.35± 1.90
Post 21.27± 1.47 35.59± 0.54 33.57± 2.18 26.23± 1.22

F 1group*time = 5.003 (0.038), F(P) male = 26.428 (0.001), F(P) female = 74.416 (0.001).
F 2group*time = 3.296 (0.086), Fgroup = 452.384 (0.000), Ftime = 224.442 (0.000). 
F 3group*time = 5.710 (0.028), F(P) male = 17.699 (0.002), F(P) female = 0.940 (0.358). 
F 4group*time = 2.550 (0.128), Fgroup = 43.367 (0.000), Ftime = 86.937 (0.000).

Values are presented as mean± standard error.
GXT, graded exercise test.
F 1, rest pre-GXT; F 2, immediately post-GXT; F 3, 60 min of recovery post-GXT; F 4, 
120 min of recovery post-GXT.

Table 7. Changes in the urine DNA 8-hydroxydeoxyguanosine (ng/L) from pre- 
to posttraining in each group

Group Time Rest 
pre-GXT

Immediately 
post-GXT

60 min of 
recovery 
post-GXT

120 min of 
recovery 
post-GXT

Male Pre 14.90± 1.47 29.42± 1.51 21.67± 1.95 17.08± 1.56
Post 14.21± 1.31 25.89± 1.35 20.26± 1.38 16.60± 1.49

Female Pre 13.86± 2.01 27.29± 1.36 19.53± 2.16 15.13± 2.13
Post 12.64± 2.09 23.50± 1.36 17.17± 1.34 14.19± 1.69

F 1group*time = 0.648 (0.431), Fgroup = 3.327 (0.085), Ftime = 8.327 (0.000). 
F 2group*time = 0.182 (0.675), Fgroup = 50.896 (0.000), Ftime = 56.713 (0.000). 
F 3group*time = 4.661 (0.045), F(P) male = 41.324 (0.000), F(P) female = 121.875 (0.000). 
F 4group*time = 0.674 (0.422), Fgroup = 58.898 (0.000), Ftime = 0.954 (0.342).

Values are presented as mean± standard error.
GXT, graded exercise test.
F 1, rest pre-GXT; F 2, immediately post-GXT; F 3, 60 min of recovery post-GXT; F 4, 
120 min of recovery post-GXT.
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thought that increased physical strength leads to an improved de-
fense mechanism against cellular damage, enzyme activity in the 
muscles and blood may vary depending on not only genetic fac-
tors, training method, exercise intensity, and exercise duration, 
but also individual characteristics of the participants.

Increased oxidative stress due to exercise can lead to oxidative 
modification of lipids, proteins, and nucleic acids, resulting in DNA 
damage (Cakatay et al., 2010; Sachdev and Davies, 2008). Specifi-
cally, unlike many previous studies reporting that high-intensity 
one-time exercise increases DNA damage (Mastaloudis et al., 2004; 
Tanimura et al., 2008; Tsai et al., 2001), regular training protects 
against exercise-induced DNA damage as an adaptive phenome-
non involving the regulation of intracellular protein enzymes and 
repair enzyme system (Radák et al., 1999). Radák et al. (1999) re-
ported that 8-OHdG levels significantly decreased in the group of 
4-week-old mice that underwent swimming exercise for 14 months 
compared with the nonexercising group. In another study, Radák 
et al. (2000) also measured urine 8-OHdG levels in five well-trained 
super-marathon runners during a 4-day race. On day 1, 8-OHdG 
levels increased significantly, and on day 4, 8-OHdG levels decreased 
significantly compared with that measured in the first 3 days.

In our study, lymph 8-OHdG levels measured after 8 weeks of 
HIIE significantly decreased at rest pre-GTX in both male and 
female groups compared with that before training. Specifically, the 
8-OHdG level was significantly lower in the female group than in 
the male group. On the contrary, at 60 min of recovery post-GTX, 
8-OHdG levels significantly decreased in the male group, but not 
in the female group. 8-OHdG levels immediately post-GTX and 
at 120 min of recovery post-GTX decreased in both groups post-
training compared with that pretraining; however, no significant 
differences were found in 8-OHdG levels between the two groups.

Previous studies have suggested that sex can affect oxidative stress 
and that women may experience less oxidative stress than men 
(Goldfarb et al., 2007; Massafra et al., 2000; Viña et al., 2006). 
Although the effects were not related to training, Massafra et al. 
(2000) reported that estrogen, a female hormone, can increase su-
peroxide dismutase (SOD) and glutathione peroxidase, thereby 
providing a protective mechanism against the generation of reac-
tive oxygen species. In addition, Yamafuji et al. (1971) stated that 
steroids, male hormones, can induce DNA damage, leading to 
greater DNA damage in men than in women. Among studies 
supporting such theory with regard to oxidative stress and DNA 
damage during exercise, Tiidus (2000) reported that female rats 
had less exercise-induced oxidative stress than male rats after run-
ning until exhaustion. Furthermore, Sureda et al. (2008) observed 

that women had high mitochondrial SOD at rest and lower hy-
drogen peroxide levels after swimming at 75%–80% of the maxi-
mum capacity, suggesting that women have higher resistance to 
stress than men during high-intensity exercise.

The findings of this study showed that a decrease in the blood 
levels of CK, an indicator of muscle damage, at rest pre-GTX and 
60 min of recovery post-GTX led to a decrease in DNA damage 
in the lymph. Specifically, differences were found in CK levels at 
rest pre-GTX and 60 min of recovery post-GTX between the two 
sexes. At rest, CK levels were more effectively reduced in the fe-
male group than in the male group, and at 60 min of recovery post-
GTX, the opposite was observed. Further studies are needed to 
confirm these findings. Urine 8-OHdG levels were significantly 
reduced at 60 min of recovery post-GTX after training in both 
male and female groups. Specifically, 8-OHdG levels were signifi-
cantly lower in the female group than in the male group.

As such, reduced muscle and DNA damage after HIIE appears 
to be achieved by improved physical strength and adaptation after 
8 weeks of training, which subsequently increased defense against 
stress and upregulated recovery processes against DNA damage. 
However, these results do not suggest the exact mechanism for the 
differences in DNA damage by sex. Future studies must consider 
various factors that can affect DNA damage, including metabolic 
mechanisms, hormonal effects, exercise intensity, and exercise du-
ration according to the fitness level of the participants.
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