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Stacking interactions play a crucial role in drug design, as we can find aromatic cores

or scaffolds in almost any available small molecule drug. To predict optimal binding

geometries and enhance stacking interactions, usually high-level quantum mechanical

calculations are performed. These calculations have two major drawbacks: they are very

time consuming, and solvation can only be considered using implicit solvation. Therefore,

most calculations are performed in vacuum. However, recent studies have revealed a

direct correlation between the desolvation penalty, vacuum stacking interactions and

binding affinity, making predictions even more difficult. To overcome the drawbacks of

quantum mechanical calculations, in this study we use neural networks to perform fast

geometry optimizations and molecular dynamics simulations of heteroaromatics stacked

with toluene in vacuum and in explicit solvation. We show that the resulting energies

in vacuum are in good agreement with high-level quantum mechanical calculations.

Furthermore, we show that using explicit solvation substantially influences the favored

orientations of heteroaromatic rings thereby emphasizing the necessity to include

solvation properties starting from the earliest phases of drug design.

Keywords: machine learning, stacking, solvation, heteroaromatics, ANI

INTRODUCTION

Binding between targets and small molecule drugs depends on a small set of specific interactions
(Bissantz et al., 2010). In structure-based drug design, the main goal is to optimize a small molecule
to make use of all possible interaction sites provided by the protein’s binding pocket (Bissantz
et al., 2010; Kuhn et al., 2011). Computer simulations of protein ligand complexes and various
approaches to predict the binding free energy are readily used in the drug design process (Chang
et al., 2007; Chodera et al., 2011; Mobley and Klimovich, 2012; Limongelli et al., 2013; Hansen and
Van, 2014). However, certain interactions, e.g., π-π stacking of heteroaromatics, are not properly
parametrized inmodern force fields to reliably make free energy estimations. Yet, these interactions
play a major role in drug design (Burley and Petsko, 1985; Meyer et al., 2003; Williams et al., 2003;
Adhikary et al., 2019). Heteroaromaticmoieties or cores are found in themajority of drugmolecules
(Meyer et al., 2003; Wang et al., 2017) as they present ideal modification sites and allow for unique
interactions, i.e., stacking (Meyer et al., 2003; Salonen et al., 2011). Stacking can occur as π-π
(Huber et al., 2014), halogen-π (Wallnoefer et al., 2010), amide-π (Harder et al., 2013; Bootsma
and Wheeler, 2018), cation-π (Gallivan and Dougherty, 1999), and even anion-π (Wheeler and
Bloom, 2014) interactions.
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The state-of-the-art approach to estimate stacking
interactions and to identify favorable geometries is the
application of high-level quantum mechanical calculations.
This can either be done by using a grid-based approach (Huber
et al., 2014; Bootsma et al., 2019) or by using descriptors
derived from high-level quantum mechanical calculations
(Bootsma and Wheeler, 2011). However, to obtain interaction
energies via a grid-based approach, numerous calculations
have to be performed and molecules are restrained in single-
point calculations (Huber et al., 2014). Furthermore, these
calculations are almost exclusively performed in vacuum or
implicit solvent. Nevertheless, several studies have investigated
the effect of solvation on stacking interactions and the resulting
implications on thermodynamic properties (Kolár et al., 2011;
Lee et al., 2019; Loeffler et al., 2020). In general, assessment of
the desolvation penalty is crucial in drug design as it can reveal
why certain molecules do not reflect the expected gain in binding
affinity (Biela et al., 2012; Dobiaš et al., 2019; Loeffler et al.,
2020). Therefore, a combination of approaches is inevitable to
understand the energetics of molecules and to interpret and
optimize SAR studies (Loeffler et al., 2020). Since quantum
mechanical calculations come with an extreme computational
cost, several ways to minimize calculation time have been
developed, including fragmentation (Kitaura et al., 1999), semi-
empirical methods (Dewar et al., 1985; Elstner, 2006; Stewart,
2009) and recently machine learning approaches (Smith et al.,
2017, 2018). Machine learning is a powerful tool and has already
been applied to address various challenges in chemistry, e.g., the
prediction of binding affinity (Nguyen et al., 2019), atomic forces,
nuclear magnetic resonance shifts (Ghosh and Hammes-Schiffer,
2015), and even the prediction of reaction pathways (Jiang et al.,
2016). Additionally, it has been shown, that machine learning
approaches allow substantially faster predictions of quantum
mechanically calculated potential energy surfaces (Chmiela et al.,
2017; Schütt et al., 2017; Smith et al., 2018; Yao et al., 2018),
geometries and atomic charge models (Smith et al., 2017). In
recent years, potentials based on deep neural networks have been
developed and have already widely been applied to tackle several
challenges, as they promise quantum accuracy at classical cost
(Smith et al., 2017;Wang et al., 2018;Wang and Riniker, 2019; Xu
et al., 2019; Ghanbarpour et al., 2020). These neural networks, in
particular, the ANAKIN-ME (Accurate NeurAl networK engINe
for Molecular Energies)—short ANI (Chmiela et al., 2017; Smith
et al., 2017), have been trained to learn the potential energy
surfaces. Similar to classical force fields, electrons are not treated
explicitly in ANI. Additionally, the potential energy is calculated
as a function of the geometric positions of atoms. In contrast,
ANI does not use predefined properties such as atomic bonds,
as in quantum mechanical calculations, and the energies in ANI
are an artificial neural network. As the energy is not obtained by
solving the Schroedinger equation, the computational effort of
ANI is substantially reduced when compared to high-level QM
calculations (Gao et al., 2020). From the potential energy surfaces

Abbreviations: ANI, Accurate NeurAl networK engINe for Molecular Energies;
GAFF, General Amber Force Field; MD; Molecular Dynamics, QM; Quantum
Mechanics, SAR; Structure Activity Relationship.

of organic molecules in a transferable way, including both the
conformational and configurational space, ANI is able to predict
the potential energy for molecules outside the training set.

To investigate protein-ligand interactions molecular
dynamics simulations are a standard tool in computational
drug design (Michel and Essex, 2010). Usually additive force
fields are used to study the dynamic properties of proteins (Tian
et al., 2020). These approaches are well-suited to describe protein
properties and give valuable insights to all kinds of properties
including flexibility (Fernández-Quintero et al., 2019a) and
plasticity of binding sites (Fernández-Quintero et al., 2019b) and
protein-protein interfaces (Fernández-Quintero et al., 2020).
Using computer simulations requires a balance between cost
and accuracy. Compared to classical force fields, quantum-
mechanical methods are highly accurate but computationally
expensive and not feasible for large systems. In classical force
fields, stacking interactions of heterocycles with aromatic amino
acid sidechains are still challenging to describe (Sherrill et al.,
2009; Prampolini et al., 2015). Therefore, studies on stacking
interactions almost exclusively rely on high-level quantum
mechanical calculations (Bootsma and Wheeler, 2011, 2018;
Huber et al., 2014; Bootsma et al., 2019). The use of Machine
learning combines the best of both approaches.

In this study we make use of the ANI potentials to calculate
stacking interactions of heteroaromatics frequently occurring
in drug design projects. We compare the calculated minimal
energies with high-level quantum mechanical calculations in
vacuum and in implicit solvation. Furthermore, we perform
molecular dynamics simulations to generate an ensemble
of energetically favorable and unfavorable conformations of
heteroaromatics interacting with a truncated phenylalanine side
chain, i.e., toluene, in vacuum and explicit solvation.

METHODS

Data Set
The set of molecules investigated in this study frequently
occurs in drug molecules (Salonen et al., 2011) and has already
been investigated in previous publications to characterize their
stacking properties using quantum mechanical calculations
and molecular mechanics based calculations to estimate their
respective solvation properties as monomers as well as complexes
(Huber et al., 2014; Bootsma et al., 2019; Loeffler et al., 2019)
(Figure 1).

Quantum Mechanical Calculations
We followed the protocol recently introduced to perform energy
optimization of heteroaromatics with toluene using Gaussian09
(Frisch et al., 2009) at the ωB97XD (Chai and Head-Gordon,
2008)/cc-pVTZ (Dunning, 1989) level. This combination has
been benchmarked by Huber et al. (2014) and has been used in
recent publications addressing similar questions (Loeffler et al.,
2019, 2020). To better compare the geometries resulting from the
simulations in water, we performed the geometry optimizations
using an implicit water model. We used the polarizable
continuum model, a reaction field calculation using the integral
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FIGURE 1 | Overview of the analyzed aromatic molecules. Simulations were performed to investigate stacking interactions with toluene. We analyzed 5-membered

heteroaromatics, furan, isoxazole, oxazole, pyrazole, triazole, and tetrazole. Furthermore, we simulated 6-membered rings, benzene, pyridine, pyrazine, pyrimidine,

pyridazine, variants of triazine, and tetrazine, and pyrimidone.

equation formalism (Tomasi et al., 2005) implemented in
Gaussian09 (Frisch et al., 2009).

ANI
This approach makes use of the Behler Parrinello symmetry
functions to compute an atomic environment vector (AEV), GX

i ,
which is composed of all elements, GM probing regions of an
atoms chemical surroundings. Each Exi is then used as input to
a single neural network potential. The energy of a molecule is
calulated as the sum of all individual neural network potentials
(Supplementary Figure 1).

The summation formalism to calculate Eτ shows two major
advantages. Firstly, it allows fortransferability, and secondly, an
even greater advantage is that due to the simple formalisma
near linear scaling in computational complexity with added cores
and/or GPUs is possible (Supplementary Figure 1).

Simulation Setup
As starting structures for the simulations we used the
minimum energy conformations provided in xyz-format in the
Supplementary Material in the paper published by Bootsma
et al. (2019). We solvated these conformations in a water box
with a minimum wall distance of 10 Å using tleap resulting
in approximately 1500 explicit water molecules (Case et al.,
2018). To equilibrate the water box we performed a restrained
equilibration allowing only the water molecules within the box
to move as suggested in previous publications. During the

equilibration performed with the AMBER simulation package
we restrained the aromatic molecules to keep the geometry
obtained from high-level QM calculations. The final frame of
the equilibration was then used as starting structure of the
production run. For each step of the simulations we calculated
the forces and energies using ANI (Smith et al., 2017). To perform
the simulations we used the atomic simulation environment
(ASE) engine, protocol included in the Supplementary Material

(Larsen et al., 2017). We used a timestep of 0.25 fs. To keep the
temperature constant at 300K we used the Langevin algorithm
with a friction coefficient of 0.02 atomic units. We employed
periodic boundary conditions in x, y, and z directions. We
performed a short LBFGS (Head and Zerner, 1985) optimization
before initiating the production runs of 100 ps. We performed
this setup 10 times with different starting velocities for each
heteroaromatic molecule.

Vacuum Interaction Energies
To calculate the interaction energies in vacuum we performed
the geometry optimization of the complexes and the respective
monomers individually. These calculations were performed for
force fields using MOE, for QM using Gaussian09 and for
the ANI potentials using the ASE environment. The vacuum
stacking interaction energies were then calculated according to
the supermolecular approach as previously published. It has been
shown that Counterpoise-corrections can result in distortions
of the hypersurface (Liedl, 1998). Thus, and to allow for better
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FIGURE 2 | Definition of the coordinate system and the Tait-Bryan angles used in the analysis process. The origin of the coordinate system is defined as the center of

the benzene ring of toluene.

comparability with the previous results no BSSE-correction
was performed.

Einteraction = Ecomplex − Emonomer A − Emonomer B (1)

Trajectory Analysis
The orientation of the stacked molecule during the simulation
relative to the reference was described in terms of the Tait-Bryan
angles (Markley and Crassidis, 2014). We especially focused
on the nick and gier angles, as shown in Figure 2. Therefore,
a reference coordinate system was defined using the toluene
orientation. The y-axis is positioned in the direction from the
ring C4 atom (para position) to the methyl carbon atom (cf.
Figure 2). The x-axis was initially positioned in the direction
from the center of mass of the C2 and C3 to the center of mass
of the C4 and C5 atoms. From these two vectors we calculated
the z-axis as the resulting cross product. The direction was
chosen to obtain a right-handed coordinate system. To ensure an
orthogonal coordinate system we recalculated the x-axis as the
cross product of the y- and z-axis. The origin of the coordinate
system was defined as the center of mass (COM) of the aromatic
ring of the toluene molecule.

We aligned the obtained trajectories on the toluene
molecule and then transformed the coordinates of the stacking

heteroaromatic molecule into the previously introduced
coordinate system. Furthermore, we assigned a “nose” vector
r. The atoms chosen for each molecule can be found in
Supplementary Figure 1. The vector r was normalized to
length 1, and the nick angle θ and gier angle Ψ were calculated
as follows.

nick (θ) = arcos (rz) ·
180

π
− 90 (2)

gier (9) = arctan

(

rx

ry

)

·

180

π
(3)

These angles were used to describe the molecular orientation in
reference to the toluene molecule. In all frames where the center
of mass was in the negative z-direction, the z-component of r
was reversed, corresponding to mirroring the molecule by the xy-
plane, i.e., the plane of the aromatic toluene (cf. Figure 2). Free
energy profiles of the nick and gier angles obtained from kernel
density estimation (KDE) with a kernel width of 0.1 radians.

RESULTS

Geometry Optimizations
To assess the influence of solvation we initially performed
unrestrained geometry optimizations, starting from the
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geometries provided by Bootsma et al. (2019), in implicit solvent
using the quantummechanical setup as described in theMethods
section. We investigated the stacking interactions of a set of
compounds that was recently studied in two publications on a
truncated phenylalanine sidechain, i.e., toluene (Bootsma et al.,
2019; Loeffler et al., 2020). Comparing the resulting stacking
interaction energies, we find a Pearson correlation of 0.74 for

the grid based approach (Bootsma et al., 2019) and 0.68 for
the unrestrained energy optimizations (Loeffler et al., 2020).
Comparing the obtained geometries, it is particularly striking
that the compounds that prefer a T-stacked geometry in vacuum
show a parallel displaced conformation in implicit solvent.
If these compounds, (L09, L10, and L13), are excluded the
correlation increases to 0.94 (see Figure 3A). This shows that

FIGURE 3 | (A) Correlation of vacuum stacking interactions from an unrestrained geometry optimization with stacking interaction energies in implicit solvent: The

Pearson correlation including the three compounds favoring T-stacked geometries (indicated in gray) is 0.74, without these three the correlation increases to 0.94. (B)

Comparison of a grid-based approach by Bootsma et al. (2019) to identify minimum energy geometries with unrestrained geometry optimization in implicit solvent. We

obtain a Pearson correlation of 0.77.

FIGURE 4 | (A) Vacuum stacking interactions from geometry optimizations using GAFF correlated with high-level QM calculations. Overall the Pearson correlation is

0.41. (B) Correlation of stacking interaction energies calculated from geometry optimizations using ANI with published unrestrained geometry optimizations using

high-level QM calculations (Loeffler et al., 2020). Shown in dark blue are the 6-membered rings, and in cyan the 5-membered heteroaromatics. We find an overall

correlation of 0.81, the linear fit for all complexes is shown in black. The linear fit for the individual groups of compounds are shown in dark blue for the 6-membered

rings and in cyan for the 5-membered rings, respectively.
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even continuum models allow for different optimal stacking
geometries compared, especially if T-stacked geometries are
favored in vacuum.

Besides the high-level quantum mechanical calculations we
performed simulations in water and vacuum using ANI (Smith
et al., 2017) and the General Amber Force Field (GAFF) (Wang
et al., 2004). To compare the resulting stacking interaction
energies from ANI and GAFF with published QM data, we
performed geometry optimizations of the complexes and of
respective monomers (Supplementary Table 1). The stacking
interaction was then calculated via the supermolecular approach,
Equation (1) (Beljonne et al., 2000).

For the GAFF stacking interactions, we obtained an overall
Pearson correlation of 0.41, as shown in Figure 4A. The lack
of correlation between GAFF and QM data emphasizes that
stacking interaction of different heteroaromatics with benzene is

not well-parametrized in classical force field-based approaches.
Individually, for the 5-membered rings the correlation increases
to 0.61 and for the 6-membered rings to 0.60, indicated
by the cyan and dark blue line in Figure 4A. The overall
Pearson correlation for our set of compounds of QM vacuum
stacking interactions with ANI stacking interactions results in
0.81. By only taking the 6 membered rings into account, the
correlation increases to 0.93, depicted by the dark blue line
in Figure 4B. For the 5-membered rings alone the correlation
results in 0.91 (Figure 4-cyan line). The comparison between
the results obtained with different methods is summarized in
Supplementary Table 1.

Molecular Dynamics Simulations
As starting geometries for the molecular dynamics simulations
we used the optimized structures published by Bootsma et al.

FIGURE 5 | 2D histogram analysis of the nick and gier angles of pyrazine in molecular dynamics simulations stacked with toluene. Simulations were performed in

vacuum (A) and using explicit solvation (B). We projected the orientations from published geometry optimizations in vacuum (C) into the density surface.
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(2019), and solvated these structures as described in the
Methods section. The geometries by Bootsma et al. (2019),
were obtained by performing elaborate high-level quantum
mechanical calculations. It has been shown that the potential
energy surface of stacked heteroaromatics is rather shallow,
therefore, we focused our analysis on the relative orientation
of the respective heteroaromatic rings rather than x,y, and z
coordinates. Thus, we analyzed the trajectories using the relative
orientations of the stacked heteroaromatics to toluene, i.e., the
nick and the gier angle, as described in the Methods section. We
highlight four systems in these sections, additional plots can be
found in the Supplementary Material.

In general, we can see that the nick angle shows less
variation than the gier angle regardless if the simulation is
performed in vacuum or water (cf. Supplementary Figure 4).
However, comparing the individual systems, either simulated

in vacuum or water, different population distributions can
be observed.

For the benzene-toluene complex, we sample both
the π-π stacked and the T-stacked conformations (cf.
Supplementary Figure 5). However, we can see a clear
preference for the π-π stacked geometry in vacuum and
explicit solvation. The T-stacked geometry can only be found
stabilized in simulations using explicit solvent. However, even
in the simulations performed in vacuum, we can show that the
two molecules are hardly ever completely parallel, but almost
always slightly tilted (Supplementary Figure 1), a fact that is
very difficult to include in grid-based approaches using single
point calculations.

In contrast to benzene, pyridazine has a substantial dipole,
due to the two neighboring heteroatoms. In vacuum, we
can clearly observe that the orientations proposed from QM

FIGURE 6 | Distribution of the nick and gier angles of furan during molecular dynamics simulations in complex with toluene in vacuum (A) and in water (B) using 2D

histograms. We mapped the orientations of published optimized geometries of furan stacking with toluene (C) into the density surface.
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FIGURE 7 | 2D-histogram analysis of the nick and gier angles of triazole during the molecular dynamics simulations of the stacking interactions with toluene in

vacuum (A) and in water (B). (C) Shows the optimized geometries obtained from a grid-based optimization approach in vacuum.

simulations represent the two main minima (Figure 5A). In our
trajectories, the main orientation is found when the two dipoles
are aligned but pointing into opposite directions (Figure 5C). In
the presence of a solvent, no deep minimum can be identified,
but we can clearly see, that an orientation in which the two
Nitrogen atoms are orientated directly toward the methyl group
of toluene is substantially less likely (Figure 5B). This is well in
line with previously published results, where a second minimum
was identified in implicit solvent geometry optimization (Loeffler
et al., 2020). In the violin plots (Supplementary Figure 4), we
can see that in the gier angle the distribution of the minima is
∼30◦, which corresponds to a rotation by one aromatic bond of
the aromatic ring.

For five-membered rings, the inserted heteroatoms play
a crucial role for the stacking interaction strength and

conformations. In the example of furane we can find one
orientation sampled very commonly. As mentioned previously,
vacuum quantum mechanical calculations show low energy
conformations when the dipole of furan and toluene are
aligned. In our simulations we find that this orientation is
indeed favorable, when performing the simulations in vacuum
(Figure 6A). However, when performing the simulations in
water, we can clearly observe a shift in the population
(Figure 6B). In the violin plot (Supplementary Figure 4), this
population shift is especially visible in the nick angle, clearly
showing a more favorable tendency for T-stacked geometries
in water compared to the vacuum distributions. Similar to the
simulations of pyrazine, we can now identify the most favored
orientation where the Oxygen atom is orientated toward the
solvent rather than the methyl group of toluene (Figure 6C).
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FIGURE 8 | Two different T-stacked conformations identified in the simulations using explicit solvent. The geometry shown in (A) can also be found in the vacuum

simulations. The conformation in (B) however, can only be sampled when using explicit solvation, as it needs to be stabilized by the surrounding water molecules.

This conformation is stabilized by the surrounding solvent.
Furthermore, we can observe a slightly higher occurrence of
T-stacked geometries in water, which are also stabilized by
interactions of the heteroatom and the aromatic π-cloud with
surrounding water molecules.

Introducing a protonated Nitrogen atom to a five membered
heteroaromatic system substantially influences its electrostatic
properties and thereby stacking interaction (Bootsma et al.,
2019). In our simulations we do not only see π-stacking but also
various conformations of T-stacking. In vacuum, the T-stacking
is observed exclusively as an interaction of the protonated
Nitrogen atom with the toluene π-cloud (Figure 7A). During
the simulations performed in water we additionally capture a
conformation where the protonatedNitrogen atom interacts with
the surrounding water molecules while the stacking interaction
occurs between one of the carbon-bound hydrogen atoms
(Figure 7B). Despite the different stacking geometries, we are
able to identify a preference of orientation. In vacuum the strong
dipole of triazole is aligned with the toluene dipole, while in
water it is clearly favorable for the protonated Nitrogen atom to
be orientated away from the methyl group of toluene, thereby
allowing an improved interaction with the surrounding water
molecules. These observations can also be confirmed in the violin
plots (Supplementary Figure 4), where the distribution of the
nick angles is substantially broader, indicating the occurrence of
different T-stacked geometries.

DISCUSSION

In this study we performed molecular dynamics simulations of
heteroaromatics, stacking with toluene in vacuum and in explicit

solvent. It has been shown previously, that even implicit solvation
can influence stacking interaction energies and geometries. In
our results we observe this most prominently for heterocycles
where a protonated Nitrogen atom is present. In vacuum, T-
stacking is almost always favored in unrestrained geometry
optimizations, while the parallel displayed geometry is more
favorable when using an implicit solvent. Furthermore, we
also calculated the vacuum stacking interactions by using ANI.
Overall, we find a good correlation of the resulting energies
with DFT calculations, despite an offset in the absolute energy
values (see Figure 3). However, for the 5-membered rings, three
complexes reveal a substantially stronger stacking interaction
with ANI, namely furan, isoxazole, and oxazole. If these three
complexes are neglected, the correlation increases to 0.93. This
might indicate that the Oxygen atom in aromatic rings is not
yet perfectly trained within the ANI network to characterize such
subtle intermolecular interactions.

Previous publications have shown that vacuum stacking
interactions are stronger when heteroatoms are positioned
outside the toluene π-cloud (Huber et al., 2014; Bootsma et al.,
2019). When checking the position of the heteroatoms during
our simulations, we can confirm for pyrazine that in both vacuum
and water the Nitrogen atoms are outside the underlying toluene
for more than 70% of the frames. However, as the system reveals
a high flexibility, the nitrogen atoms can also be found oriented
toward the π-cloud. The vacuum simulations of furan show that
the oxygen atom is favorable outside the π-cloud in ∼70% of
the simulation. This even increases to more than 80% for the
simulation in water, where the oxygen atom of furan can interact
with the surrounding water molecules. In the case of triazole,
this observation could not be confirmed in vacuum. On the
one hand, the protonated Nitrogen atom of triazole is the main
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interaction partner for the T-stacked geometries (Figure 8A),
and on the other hand, in vacuum, the positive polarization of
the protonated Nitrogen atom is the only possible interaction
partner for the π-cloud of the underlying toluene. The influence
of solvation was not only visible from our molecular dynamics
simulations, but also from the geometry optimizations using
implicit solvation. In contrast to the optimization performed in
vacuum, the unrestrained optimization using implicit solvation
resulted in a π-π stacked geometry rather than a T-stacked
geometry. However, the protonated Nitrogen atom group is still
positioned inside the π-cloud. Our simulations in water show
that for more than 65% of all frames the protonated Nitrogen
atom group is located outside of theπ-cloud, interacting with the
surrounding water molecules. Additionally, we can identify two
different T-stacked conformations in our simulations in water
as shown in Figures 7B, 8. On the one hand, we observe a T-
stacked geometry stabilized by the interaction of the protonated
Nitrogen atom with the underlying π-cloud (Figure 8A). This
geometry can be seen in vacuum as well as in explicit solvent
simulations (Figure 7). On the other hand, we identify a T-
stacked geometry where the protonated Nitrogen does not
interact with the π-cloud but rather with the surrounding water
molecules (Figure 8B).

ANI allows to explore the conformational space of organic
molecules at lower computational cost and facilitates the
characterization and understanding of non-covalent interactions
i.e., stacking interactions and hydrogen bonds. Nevertheless, in
its current form ANI cannot be used to analyze protein-ligand
interactions, as the ANI potentials are not yet parametrized for
proteins. Furthermore, the water molecules in ANI still need
to be evaluated and compared to classical water models, e.g.,
OPC, SPC, and the TIP water models. Future work on ANI
will aim to develop and include new methods to better describe
long-range interactions by including coulomb interactions. The
constant addition of more data to machine learning methods will
make ANI even more generalizable and improve calculations in
different chemical environments, the treatment of ions and the
applicability to describe reactions (Smith et al., 2019).

In this study we can show that by using neural networks
we can get information not only on geometries but also
on intermolecular interactions correlating well with state-of-
the-art QM calculations. Furthermore, using neural networks
we now can generate ensembles of stacked heteroaromatic
complexes including explicit solvation. Both of these points can
give crucial information in the early stages of computational
drug design.

CONCLUSION

In our study we investigated the influence of solvation on
complexes of stacked heteroaromatics using implicit solvent
geometry optimizations and molecular dynamics simulations

including explicit solvation. We demonstrate that potentials
derived frommachine learning can be used to performmolecular
dynamics simulations as the geometries obtained using high
level quantum mechanical simulations are present within the
ensemble in solution with shifted populations. Additionally,
the calculated stacking interactions using neural networks
energies calculated in vacuum correlate well with high level
quantum mechanical calculations. However, heterocycles
containing an oxygen, i.e., furan, oxazole and isoxazole
are overpredicted in terms of stacking interaction energies.
The ensembles from the molecular dynamics simulations
are well in line with previously published results and show
that heteroatoms are in general favorable outside of the
π-cloud. This is true for heteroatoms except for secondary
amines, which, especially in vacuum, show beneficial
interactions with the underlying π-cloud. Furthermore, we
highlight the necessity of including solvation properties of
aromatic molecules as the optimal geometries can differ
substantially depending on whether water molecules are
present as possible interaction sites or not. The effect of
population shifts naturally increases with the polarity of the
aromatic ring and is especially notable if secondary amines
are present.
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