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Activation of the coagulation cascade is a critical, evolutionarily conserved mechanism
that maintains hemostasis by rapidly forming blood clots in response to blood-borne
infections and damaged blood vessels. Coagulation is a key component of innate immu-
nity since it prevents bacterial dissemination and can provoke inflammation. The term
immunothrombosis describes the process by which the innate immune response drives
aberrant coagulation, which can result in a lethal condition termed disseminated intravas-
cular coagulation, often seen in sepsis. In this review, we describe the recently uncovered
molecular mechanisms underlying inflammasome- and STING-driven immunothrombo-
sis induced by bacterial and viral infections, culminating in tissue factor (TF) activation
and release. Current anticoagulant therapeutics, while effective, are associated with a life-
threatening bleeding risk, requiring the urgent development of new treatments. Target-
ing immunothrombosis may provide a safer option. Thus, we highlight preclinical tools
which target TF and/or block canonical (NLRP3) or noncanonical (caspase-11) inflamma-
some activation as well as STING-driven TF release and discuss clinically approved drugs
which block key immunothrombotic processes and, therefore, may be redeployed as safer
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anticoagulants.
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Introduction

Coagulation is a core component in maintaining physiological
hemostasis and the host response to infection. The coagulation
cascade is defined by two major pathways—the intrinsic and
extrinsic pathways—which culminate in a common pathway
which ultimately results in formation of a thrombus and fibrin
clot, stopping bleeding. The intrinsic pathway, which primarily
contributes to pathological clot formation [1], is initiated via
injury to blood vessels by autoactivation of coagulation factor
(F)XII upon exposure of plasma to a diverse range of blood-borne
artificial or pathological surfaces, including negatively charged
endogenous activating surfaces such as RNA, DNA, polyphos-
phate, and/or components of atherosclerotic plaques [2]. The
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extrinsic pathway is initiated by coagulation FIII, also called tis-
sue factor (TF) or CD142, which is expressed at low, basal levels
in a complex with FVII on the membrane of circulating immune
cells and cells in the blood vessel wall [3-5]. Blood clotting is
controlled by endogenous anticoagulants such as tissue factor
pathway inhibitor (TFPI), activated protein C, or antithrombin
[6]. However, under pathogenic circumstances, exposure to, and
detection of, microbes by innate immune cells amplifies the pro-
coagulant activity of TF up to 100-fold, resulting in clot formation
with the dual role of preventing bleeding but also inhibiting the
dissemination of the provoking pathogen [7, 8]. Exposure to
bacteria or viruses is detected by pattern recognition receptors
(PRRs) on immune cells, such as monocytes, macrophages,
endothelial cells (ECs), neutrophils, and platelets, triggering

[Correction added on 15 June 2022, after first online publication: The copyright
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Figure 1. Two major pathways of coagulation converge during hemostasis to form a blood clot. The original “waterfall” model of the coagulation
cascade comprises the intrinsic and extrinsic pathways which converge into a common pathway to generate thrombin and form a fibrin clot.
The intrinsic pathway primarily contributes to pathological clot formation and is activated when FXII encounters blood-borne, negatively charged
surfaces such as RNA, DNA, and components of atherosclerotic plaques. The extrinsic pathway is activated when subvascular TF is exposed to
plasma, or released into the bloodstream via innate immune cell pyroptosis, where TF forms a cell-surface complex with FVIIa. The intrinsic and
extrinsic pathways combine to activate FX, which drives thrombin generation and ultimately blood clot formation. Endogenous inhibitors of the

coagulation cascade include TFPI, activated protein C, and antithrombin.

TF production and release. TF is released from macrophages,
ECs, and neutrophils via inflammasome-mediated pyroptosis
[9, 10]. This activates the coagulation cascade, restoring, and
maintaining hemostasis via rapid development of a thrombus, or
blood clot, and subsequent clearance of the pathogen. Thrombin
in turn feeds back to drive further inflammation via cleavage
of protease-activated receptors (PARs) and activation of the
proinflammatory cytokine IL-la [11, 12]. Thus, inflammation
and coagulation are innately connected, evolutionarily conserved
processes. This interplay has been termed immunothrombosis
[13]. Dysregulated immunothrombosis, termed thromboinflam-
mation, characterizes life-threatening conditions, such as sepsis
and disseminated intravascular coagulation (DIC), but also
acute respiratory distress syndrome, stroke, myocardial infarc-
tion, venous thromboembolism, and coronavirus disease 2019
(COVID-19) [13-18].

Coagulopathies, including sepsis and DIC, are conditions of
significant microvasculature damage and multiorgan failure, and
are the primary cause of death in intensive care units [19].
Appropriately, the World Health Organization has recently rec-
ognized sepsis as a global health priority [20], with 48.9 mil-
lion cases of sepsis and 11 million associated deaths reported
in 2017, accounting for just under one-fifth of all global deaths
[21]. In this review, we will describe the critical role of TF
in initiating immunothrombosis, and focus on recent develop-
ments describing novel mechanisms by which bacterial- and viral-
induced immunothrombosis can be triggered via PRRs. In addi-
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tion, we will discuss new approaches toward targeting these
pathways that drive immunothrombosis and thromboinflamma-
tion, as a means to treat coagulopathies.

Tissue factor: The initiator of
trauma-induced coagulation

TF is a 47-kDa membrane glycoprotein and receptor and the key
trigger of infection- and injury-induced coagulation [5, 22-24].
TF is critical for survival, as deletion in mice leads to univer-
sal embryonic death [25-27], and defects in TF gene expression
are associated with differing clinical outcomes in patients with
severe sepsis [28]. TF is expressed by adventitial tissues, such as
ECs, and blood-borne circulating immune cells such as monocytes,
macrophages, and neutrophils [5]. During hemostasis, blood ves-
sel injury triggers exposure and release of extravascular TF into
the bloodstream, where it forms a complex with FVII and con-
tributes to blood clotting via low-level activation of the extrin-
sic pathway of the coagulation cascade, before rapid inhibition
by TFPI (Fig. 1) [4]. However, detection of pathogen-associated
molecular patterns (PAMPs), such as LPS by PRRs such as TLR4,
triggers immunothrombosis via rapid induction of TF at the mRNA
level. This occurs via PAMP-induced activation of the transcrip-
tion factor NF-kB both in vitro and in vivo [29], in monocytes and
macrophages [29-31], neutrophils [32, 33], ECs [34, 35], and
epithelial cells [36], the primary sources of TF [37].

www.eji-journal.eu

1025 &=



1026

Tristram A.]. Ryan and Luke A. ]. O’Neill

TF is modified in a process termed decryption, which occurs
in-part via changes in the lipid composition in the outer leaflet of
the cell membrane [8, 10, 38], increasing the procoagulant activ-
ity of TF [7, 8]. Decrypted TF is then released from immune cells
through inflammasome-induced pyroptotic pores, via activation of
the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3,
via caspase-1) or noncanonical (via caspase-11) inflammasomes
[9, 10]. The molecular mechanisms underlying this process have
recently been studied in detail in monocytes and macrophages,
as they are the main source of circulating TF [23, 37]. For exam-
ple, deletion of monocytes and macrophages using clodronate or
gadolinium chloride significantly attenuates thrombin generation
and septic shock-induced mortality in mice in vivo [9, 10].

Following its release via pyroptotic pores, decrypted TF is
expressed in the circulation on outer membrane vesicles [39-42]
and forms a high-affinity cell-surface complex with FVII/VIIa to
proteolytically activate factors IX to IXa and X to Xa, resulting in
thrombin generation [5, 43]. Thrombin then activates PARs which
are critical for the interplay between inflammation and coagula-
tion, boosting proinflammatory cytokine secretion but also acti-
vating platelets [44, 45]. Thrombin also cleaves fibrinogen to
fibrin which generates a clot by forming a mesh at the site of
infection, in conjunction with activated platelets and neutrophils
which expel their DNA, histones, and granule-derived enzymes to
form networks of extracellular fibres called neutrophil extracel-
lular traps (NETs), in a process termed NETosis [46-50]. NETs
then propagate thrombosis by capturing TF and TF-positive extra-
cellular vesicles from the circulation, further driving coagulation
[51, 52]. Thus, detection of PAMPs by PRRs triggers induction and
decryption of TE increasing its procoagulant activity, which is the
key initiating step in coagulopathy associated with immunothrom-
bosis and thromboinflammation (Fig. 2).

Inflammasomes and TF

Caspase-11 (in mice; caspase-4/5 in humans) is a member of
the evolutionarily conserved family of caspases that mediate
cell death [53]. It is induced and activated in response to
Gram-negative bacteria, but not Gram-positive bacteria [54]. The
response of caspase-11 to Gram-negative bacteria forms what has
been termed as a noncanonical inflammasome. LPS induces tran-
scriptional upregulation of caspase-11 in a range of immune and
nonimmune cells including macrophages, neutrophils, and ECs
[14, 53, 55-59]. Activation, and subsequent cleavage, of caspase-
11 occurs upon detection of cytosolic LPS [56, 60, 61], trigger-
ing proteolytic cleavage of gasdermin D (GSDMD), a member of
the family of gasdermin proteins that cause cell death [57, 62].
The pore-forming, N-terminal fragment of GSDMD is released,
inserting into the cell membrane to form large oligomeric pores
[63]. This leads to a proinflammatory, lytic form of cell death,
termed pyroptosis, as first identified by Kayagaki et al. in a sem-
inal paper in 2011 [55]. Pyroptosis, therefore, provides a critical
host defense mechanism by killing infected cells and preventing
dissemination of a pathogen.

© 2022 The Authors. European Journal of Immunology published by
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Caspase-1 forms a canonical inflammasome and processes the
proinflammatory cytokines IL-18 and IL-18. NLRP3 is a key acti-
vator of caspase-1 and is stimulated upon exposure to a diverse
range of pathogens [64] via potassium efflux [65]. Caspase-1 is
then recruited to the complex and autoproteolytically activated
where it cleaves GSDMD, forming sublytic pores in the cell mem-
brane [64, 66, 67].

Canonical and noncanonical inflammasome activation has
recently been shown to be critical for the release of TF from
immune cells. It had previously been reported that caspase-11 is
highly expressed in primary human macrophages in patients with
severe sepsis [68], hinting at its importance in immunothrombo-
sis. In 2019, Wu et al. showed that activation of both the canonical
(with EprJ type III secretion system rod proteins from Escherichia
coli (E. coli)) and noncanonical (with LPS) inflammasomes in
macrophages triggers TF release via pyroptosis, leading to severe
thrombosis and lethality [9]. Deletion of caspase-11 and TLR4
(but not caspase-1) in mice did not affect EprJ-induced caspase-
1 cleavage and TF release, whereas deletion of both caspase-
11 and -1 blocked TF release, highlighting the requirement for
caspase-1 in pyroptosis and TF release [9]. Injection of mice with
clodronate-containing liposomes, which depletes macrophages,
significantly reduced EprJ-induced plasma levels of thrombin-
antithrombin and fibrinogen (which are markers of TF-mediated
thrombosis [15]), as well as lethality [9]. Another 2019 study sup-
ported these findings, showing that activation of caspase-11 and
GSDMD is essential for LPS-induced thrombosis [10]. Notably,
GSDMD increased the procoagulant activity of TF via external-
ization of phosphatidylserine (PS) [10], a cell membrane phos-
pholipid that is mostly expressed on the inner cell membrane
during homeostasis [5, 8, 39]. This GSDMD-mediated increase
in TF activity occurs via influx of calcium into the cell [10]. This
is consistent with reports from the 1980s and 1990s that PS and
calcium are key regulators of TF decryption, and thus, enhance
TF-initiated coagulation [8, 39, 40]. Furthermore, in a mouse
model of blood flow restriction-induced venous thrombosis, dele-
tion of caspase-1 and GSDMD, but not caspase-11, protected mice
against venous thrombosis [69]. Deletion of macrophages, using
gadolinium chloride, also protected against venous thrombosis
[69]. These studies directly implicated inflammasome-mediated
macrophage cell death as a trigger of immunothrombosis in
response to NLRP3 activation, cytosolic LPS, and in ischemia.

cGAS-STING and immunothrombosis

Recently, activation of the DNA sensor cyclic GMP-AMP syn-
thase (cGAS)-STING has been implicated as a driver of sepsis
in models of human and mouse coagulopathies. In 2014, muta-
tions in transmembrane protein 173 (TMEM173) (the gene which
encodes STING) were found to increase production of IFN-§ in
PBMCs and fibroblasts from pediatric patients presenting with
recurrent fevers, ulcerative skin lesions, vasculitis, and intersti-
tial lung disease, in addition to systemic inflammation, cutaneous
vasculopathy, and pulmonary inflammation [70, 71]. ECs, which
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Figure 2. Inflammasome- and STING-mediated TF release drives thrombosis. Detection of a diverse range of microbes (such as viruses and Gram-
negative and Gram-positive bacteria) by PRRs triggers innate immune signalling cascades which converge to activate IRF3/7 and NF-«B. IRF3/7
stimulates expression of type I IFNs. This leads to IFN-p release, which acts via the JAK-STAT signalling complex to drive transcription of hun-
dreds of ISGs including caspase-11. Activation of STING can also drive this process. Caspase-11 is then cleaved and activated upon recognition of
cytosolic LPS (which occurs via HMGB1 and RAGE), triggering cleavage and activation of GSDMD, resulting in pyroptosis. GSDMD cleavage can also
be triggered by caspase-1 or caspase-8 activation. Simultaneously, TF is induced by NF-kB, before TF is post-translationally activated, in a process
termed decryption. Procoagulant TF is then released through the pyroptotic pores to drive thrombosis, which can result in thromboinflammation,
sepsis, and disseminated intravascular coagulation. These signalling cascades have been shown to be blocked by a number of immunomodu-
latory compounds including DMF, heparin, STING inhibitors (C-176, C-178, H-151), JAK inhibitors (Baricitinib, Ruxolitinib, Tofacitinib), and NLRP3
inflammasome inhibitors (4-OI, Itaconate, MCC950). Thus, innate immune signalling can trigger TF-mediated thrombosis via activation of the
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express STING, were also found to increase IFN-f production
when stimulated with the second messenger cyclic guanosine
monophosphate-adenosine monophosphate [70]. Furthermore,
TF expression was upregulated in vascular ECs from patients with
a mutation in TMEM173 [70]. These reports, describing a severe
autoinflammatory syndrome termed STING-associated vasculopa-
thy with onset in infancy, were the first to link STING with a coag-
ulopathy.

STING has been shown to sustain the host procoagulant
response at later timepoints by regulating calcium release from
macrophages and monocytes to drive GSDMD cleavage, facilitat-
ing the release of TF [72]. Notably, however, Zhang et al. found
that this occurs in a type I IFN-independent manner [72]. This
occurs in monocytes and macrophages via binding of STING with
inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), the primary
calcium release channel from the ER. The authors found that
a STING-ITPR1 complex forms after infection with the Gram-
negative bacterium E. coli, or the Gram-positive bacterium Strep-
tococcus pneumoniae (S. pneumoniae), which activates caspase-
8. STING-ITPR1 binding boosts release of calcium from the ER
into the cytosol, triggering cleavage of GSDMD via activation
of caspase-1/11 (after E. coli infection) or caspase-8 (after S.
pneumoniae infection). This facilitates pyroptosis and subsequent
release of TE resulting in sepsis and DIC [72]. The authors con-
cluded that this process was type I IFN-independent as dele-
tion of IFNAR, the type I IFN receptor, did not significantly
alter mouse blood coagulation markers, such as platelets, fib-
rinogen, D-dimer, and TE when assayed 48 h after caecal liga-
tion and puncture (CLP)-induced sepsis [72]. Furthermore, stim-
ulation of human and mouse monocytes and macrophages with
IFN-o and IFN-B did not induce TF release, whereas stimulation
with E. coli and S. pneumoniae both induced TF release [72].
This highlights the specificity of pathways that drive coagula-
tion within certain contexts. Two key signals are required for
inflammasome-mediated coagulation: the first signal is infection-
or injury-associated induction of TF at the mRNA and protein
levels; the second signal is activation and cleavage of inflamma-
tory caspases to trigger pyroptosis and release of procoagulant
TE After infection with E. coli or S. pneumoniae, TF is induced
rapidly at the mRNA level via NF-kB, in addition to activation
of caspase-1/11/8-mediated pyroptosis, representing the two key
signals of inflammasome-mediated coagulation. However, when
cells are stimulated with IFN-B, there is no known direct induc-
tion of TF mRNA via NF-kB.

Contrastingly, Yang and Cheng et al. showed a critical role for
type I IFN signalling as a driver of coagulation in mouse models
of LPS- and CLP-induced septic shock. In this study, the authors
assessed coagulation markers between 6 and 16 h after infec-
tion, and found that the deletion of IFNAR significantly reduced
LPS-induced plasma levels of thrombin-antithrombin and D-dimer,
in addition to increasing survival of mice [73]. This was veri-
fied using TIR-domain-containing adaptor-inducing interferon-g
(TRIF) KO mice, which were also protected against LPS-induced
septic shock [73]. The different timepoints used in these two

© 2022 The Authors. European Journal of Immunology published by
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studies may explain their differing conclusions, but may also
point toward type I IFNs driving a procoagulant phenotype at
the onset of infection or injury, while STING may directly trigger
coagulation at later timepoints after the type I IFN response has
peaked.

HMGB1 and immunothrombosis

The danger-associated molecular pattern, high-mobility group
box protein 1 (HMGB1), has been linked with coagulation as
it is increased in the serum of LPS-infected mice and sep-
tic patients [74]. In addition, HMGB1 expression on circulat-
ing platelets is increased in trauma patients [75]. Recent stud-
ies have found that HMGB1 derived from platelets, hepatocytes,
and myeloid cells mediates LPS-induced thrombosis in mice in
a TLR4- and MyD88-dependent manner [75-77]. HMGB1 con-
tributes to Gram-negative sepsis by binding to LPS [78], and it has
been shown that hepatocyte-released HMGB1 transports extracel-
lular LPS into the cytosol of macrophages and ECs [79]. This
occurs via endocytosis of HMGB1-LPS, mediated by the recep-
tor for advanced glycation endproducts (RAGE), and subsequent
HMGBI1-induced rupture of the endolysosomal membrane, releas-
ing LPS into the cytosol. Cytosolic LPS is then detected by caspase-
11, triggering noncanonical inflammasome-induced pyroptosis,
releasing TF to drive coagulation [79].

HMGBI has also been shown to stimulate expression of TF
in vitro at the mRNA and protein levels in vascular ECs and
macrophages via activation of the transcription factors NF-kB and
Egr-1 [80]. However, Yang and Cheng et al. did not see an effect
on LPS-induced TF protein levels in vivo after deletion of IFNAR,
TRIE or hepatocyte HMGB1 [73]. Using KO mice, they surmised
that type I IFN and extracellular HMGB1 drive procoagulant TF
activation and coagulation post-transcriptionally via caspase-11-
and GSDMD-triggered pyroptosis and subsequent exposure of PS
(which decrypts TF to trigger coagulation) [73]. In addition, a
recent study assessing the role ninjurinl (Ninj1) in lytic cell death
found that deletion of Ninjl in macrophages impaired pyroptosis
and release of HMGBI, highlighting the importance of cell mem-
brane rupture in driving inflammation and coagulation via release
of HMGB], and likely, TF [81].

Therefore, it is possible that extracellular LPS stimulates
caspase-11-TF-induced coagulation initially by activating NF-«kB
(and inducing TF at the mRNA level), while simultaneously, extra-
cellular LPS also drives type I IFN-mediated induction of IFN-
stimulated genes (ISGs) such as caspase-11. LPS is then deliv-
ered to the cytosol via HMGBI, cleaving and activating caspase-
1 (inducing sublytic pores in the cell membrane) and caspase-
11, which triggers lytic pyroptosis and TF release. HMGB1
might then feedback to induce further TF expression, amplify-
ing the available procoagulant TE Furthermore, as the type I
IFN response subsides, STING might then sense bacterial or host-
derived DNA, driving TF release by regulating changes in calcium,
activating GSDMD-induced pyroptosis. Further in vivo studies are

www.eji-journal.eu



Eur. J. Immunol. 2022. 52: 1024-1034

required to unravel the differing roles of these key players in
immunothrombosis.

Virally-induced immunothrombosis

Induction and decryption of TF has been shown to occur in vitro
and in vivo in response to a range of viruses and the viral ds RNA
mimic polyinosinic:polycytidylic acid (poly[1:C]) [82-84]. TF pro-
coagulant activity is increased in ECs infected with Herpes simplex
virus (HSV) [85]. HSV infection in ECs also stimulates increased
thrombin generation and platelet activity [86]. Ebola virus infec-
tion is also associated with severe hemorrhagic complications,
manifesting as DIC which is driven by TF activity [87]. Geisbert
et al. showed that TF is increased at the mRNA and protein levels
in PBMCs from macaque monkeys infected with Ebola virus, with
TF-positive microvesicles also increased in plasma from infected
macaques [87]. A follow-up study from Geisbert et al. found that
inhibition of TF:FVIla, using recombinant nematode anticoagu-
lant protein c2, following exposure to Ebola virus, significantly
reduced coagulation, the cytokine storm, and mortality in rhesus
monkeys [88]. Infection of ECs with Dengue virus also induces
NF-kB-mediated TF expression [89].

Furthermore, HIV is associated with an increased risk of
thrombosis. TF expression on the surface of monocytes is
increased in humans infected with HIV [90]. Expression of TF
in HIV patients correlates with plasma levels of D-dimer and sol-
uble CD14, the LPS receptor that is released by monocytes after
LPS stimulation in vivo [90]. TF expression in human ECs is also
increased after infection with Zika virus, boosting thrombin gen-
eration [91], which likely contributes to the coagulopathy associ-
ated with Zika virus infection [92]. However, further studies are
required to decipher the relative roles of immunothrombotic reg-
ulators within innate immune cells, such as cGAS-STING and/or
type I IFN, and perhaps as yet unidentified mechanisms, in driving
TF induction and release upon viral infection.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) also drives a profound coagulopathy associated with COVID-
19, which is triggered by the key players of immunothrombo-
sis [18]. SARS-CoV-2-infected ECs release von Willebrand fac-
tor [93], promoting inflammation and coagulation by attracting
platelets and neutrophils to the site of infection. Neutrophil acti-
vation and subsequent release of NETs is increased by SARS-
CoV-2 infection [94, 95]. NETs then capture TF and TF-positive
microvesicles, triggering activation of the coagulation cascade
[51, 52, 96, 97]. TF and TF-positive microvesicles are also
increased in ECs and epithelial cells from patients with severe
COVID-19 [98, 99], propagating the coagulopathy associated
with COVID-19 infection, with TF-positive microvesicles a clini-
cal marker of severity in patients with COVID-19 [100, 101]. This
may be due to SARS-CoV-2-induced activation of the canonical
NLRP3 and noncanonical caspase-11 inflammasomes [102, 103],
resulting in TF release via pyroptosis. Thus, COVID-19 has been
termed a syndrome of dysregulated immunothrombosis [104].

© 2022 The Authors. European Journal of Immunology published by
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Targeting immunothrombosis to prevent
coagulopathies

Current clinically approved anticoagulant therapies, while highly
effective, are associated with increased risk of bleeding because
blood clotting, platelet aggregation, and fibrin cross-linking
are essential during normal hemostasis [105-109]. This life-
threatening bleeding risk is significantly increased with treat-
ment of sepsis and DIC [110]. Anticoagulant therapies exert their
function by decreasing activity of clotting factors in the com-
mon pathway of the coagulation cascade. The widely used anti-
coagulant heparin exerts its anticoagulant function by activat-
ing antithrombin, which in turn inactivates thrombin, FXa, and
FIXa [111]. Intriguingly, it has recently been shown that hep-
arin, or a chemically modified form of heparin without antico-
agulant function, also blocks HMGB1-mediated cytosolic deliv-
ery of LPS, thus, inhibiting caspase-11-driven pyroptosis to pre-
vent aberrant immunothrombosis and subsequent sepsis-induced
lethality in mice [112]. This hints at a potential solution to the
bleeding risk associated with existing anticoagulant drugs and an
exciting prospect for the development of new anticoagulant ther-
apies: could targeting both PRR-mediated induction of TF and/or
inflammasome activation within immune cells, rather than clot-
ting factors themselves, prevent coagulopathy while also elimi-
nating the associated bleeding risk?

Might inhibition of the transcriptional processes that lead to
inflammasome activation and pyroptosis be particularly attractive
targets in this context? PAMP-induced type I IFN and JAK-STAT
signalling is required for expression of ISGs such as caspase-11.
Baricitinib, ruxolitinib, and tofacitinib are clinically approved JAK
inhibitors for the treatment of rheumatoid arthritis and myelopro-
liferative neoplasms [113], and thus, potentially could be rede-
ployed as inhibitors of immunothrombosis. Recently identified
STING inhibitors, such as the nitrofurans (C-176 and C-178) [114,
115], indole ureas (H-151) [114], and the acrylamides (BPK-21
and BPK-25) [116], which covalently modify STING, might also
be useful. Notably, a recent study showed that ex vivo treatment
with H-151 blocked induction of TF mRNA in primary human
ECs infected with SARS-CoV-2 [99]. In addition, H-151 reduced
lung SARS-CoV-2-induced TF mRNA levels in a mouse model of
COVID-19 [99].

Directly targeting inflammasome activation is another strategy
that has been shown to reduce immunothrombosis in several
models. MCC950 is a highly selective inhibitor of NLRP3 [117,
118] and attenuates platelet activation and multiorgan injuries in
a rat model of CLP-induced sepsis [119]. Similarly, the endoge-
nous, Krebs cycle-derived metabolite itaconate, and its potently
anti-inflammatory cell-permeable derivative, 4-octyl itaconate
(4-0I), also block NLRP3 activation [120], with 4-OI attenuating
lung injury in a murine model of LPS-induced coagulopathy
[121]. This warrants further testing of these preclinical inhibitors
of the canonical (NLRP3) and noncanonical (caspase-11)
inflammasomes as potential treatments for inflammasome-
driven immunothrombosis. Inhibition of GSDMD activation and
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pyroptosis occurs following treatment with dimethyl fumarate
(DMF) [122, 123]. DMF is a clinically approved drug for the
treatment of multiple sclerosis and psoriasis, and it exerts its
immunomodulatory effects in-part by blocking induction of
type I IFN [124] and inhibiting NLRP3 activation in a murine
experimental colitis model via activation of the regulatory tran-
scription factor Nrf2 [125]. Activation of Nrf2 is protective in
a model of LPS- and NF-kB-induced sepsis [126], which would
further support the testing of DMF as an anti-immunothrombotic
agent, as TF-driven thrombosis occurs via activation of NF-kB.
As such, DMF is currently being investigated as a potential broad
spectrum anti-inflammatory therapy for COVID-19 in the ongoing
RECOVERY trial [127].

Clinically approved anti-inflammatory
therapies as potential anticoagulants?

Recent clinical trials have also studied the effects of anti-
inflammatory therapies on thrombosis (discussed in detail in Refs.
[18, 109]). The anti-inflammatory drug, colchicine, utilized for
the treatment of gout and pericarditis, significantly lowered the
risk of ischemic events in the COLCOT trial when adminis-
tered to patients after myocardial infarction [128]. Colchicine
blocks immunothrombosis by inhibiting NET formation and
can also attenuate NLRP3 activation [129, 130]. A follow-up
trial, LoDoCo2, using low-dose colchicine, found that IL-18 and
myeloperoxidase (an enzyme released during neutrophil activa-
tion) were markedly decreased when administered to patients
with chronic coronary disease [131, 132], highlighting the impor-
tance of drug dosing in anticoagulation treatment. However, a
limitation of colchicine is that it is renally excreted, and thus, can
be toxic in patients with chronic kidney disease [133], restricting
its use as a treatment for cardiovascular diseases.

Concluding remarks

The past decade has seen a flurry of research in the area of
immunothrombosis. As targeting mediators of the coagulation
cascade downstream of inflammasome activation and pyroptosis
has not yielded any new, safer anticoagulant drugs [134], devel-
oping therapeutics that inhibit immunothrombosis during activa-
tion of the innate immune response to infection, for example, by
blocking TF expression and/or inflammasome or STING activa-
tion and subsequent pyroptosis, presents an exciting prospect. As
this occurs prior to the activation of the coagulation cascade and
generation of thrombin, the anti-inflammatory agents described
above may in turn provide a safer method of anticoagulation by
preventing any risk of unwanted bleeding, which has been termed
the Holy Grail of identifying new treatments for immunothrom-
bosis [135]. In the interim, redeployment of clinically approved
anti-inflammatory drugs for the safer treatment of aberrant coag-
ulation might well be a highly effective way to prevent the coag-
ulopathies associated with immunothrombosis.
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