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Abstract: A dual QM and MM approach for computing equilibrium isotope effects has been described.
In the first partition, the potential energy surface is represented by a combined quantum mechanical
and molecular mechanical (QM/MM) method, in which a solute molecule is treated quantum
mechanically, and the remaining solvent molecules are approximated classically by molecular
mechanics. In the second QM/MM partition, differential nuclear quantum effects responsible for
the isotope effect are determined by a statistical mechanical double-averaging formalism, in which
the nuclear centroid distribution is sampled classically by Newtonian molecular dynamics and
the quantum mechanical spread of quantized particles about the centroid positions is treated
using the path integral (PI) method. These partitions allow the potential energy surface to be
properly represented such that the solute part is free of nuclear quantum effects for nuclear quantum
mechanical simulations, and the double-averaging approach has the advantage of sampling efficiency
for solvent configuration and for path integral convergence. Importantly, computational precision
is achieved through free energy perturbation (FEP) theory to alchemically mutate one isotope
into another. The PI-FEP approach is applied to model systems for the 18O enrichment found
in cellulose of trees to determine the isotope enrichment factor of carbonyl compounds in water.
The present method may be useful as a general tool for studying isotope fractionation in biological
and geochemical systems.

Keywords: combined QM/MM; path integral simulation; PI-FEP; equilibrium isotope effects; nuclear
quantum effects

1. Introduction

Stable isotope compositions in plants and organisms are sensitive to the environment in which
biosynthesis takes place. Analyses of the 18O enrichment of cellulose in tree rings could reveal
historical records of local climate and ecohydrological changes such as temperature, humidity,
and precipitation [1–4]. Isotope abundances of light elements are reported as the relative ratio of the
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heavy to light isotope of the sample with respect to a standard of known composition [5]. For example,
the 18O isotope enrichment of a biomass is given by

δ18O = 1000× (
Rsample

RVSMOW
− 1) (1)

where R = [18O]/[16O] is an isotope ratio, and VSMOW (Vienna standard mean ocean water) is the
international standard for oxygen and hydrogen. Another commonly used term is the equilibrium
isotope fractionation factor of different compounds A and B, or the same compounds in two different
media (also indicated by A and B), denoted by αA/B = RA/RB. Isotope fractionation factor is directly
related to the δ values in Equation (1) by αA/B = (δA + 1000)/(δB + 1000)). Thus, for example,
the enrichment of 18O of acetone in water can be described by the isotope fractionation factor between
the carbonyl compound and water in aqueous solution [6]. Remarkably, there is a global average
δ18O of 27‰ enrichment in cellulose of trees relative to the source water during its biosynthesis [7].
However, correlation between isotope signature and climate parameters could be challenging since
many dynamic, thermodynamic, and kinetic factors can influence the final composition [4], including
the isotope signal of stem water reflecting precipitation, the 18O enrichment of leaf water due
to evaporation that is sensitive to environmental temperature and humidity [8], and biochemical
fractionation during carbohydrate and cellulose biosynthesis [9]. A primary biochemical origin
responsible for the 18O fractionation of cellulose is the equilibrium isotope effects between carbonyl
groups and water during cellulose biosynthesis [6,10]. Thus, it is of interest to develop and test a
computational method for estimating isotope fractionation under different environmental conditions
in solution and in biological systems.

Isotope fractionation reports nuclear quantum effects (NQE) since the potential energy surface
determined by the electronic structure is independent of atomic mass [11]. On the other hand,
the chemical equilibria of the different isotopologues are critically dependent on interactions with
solvent molecules and the environment in which the isotope exchange occurs. Thus, it is of interest to
understand the interplay of NQE and intermolecular interactions on the observed isotope effects in a
given environment. The purpose of this study is to describe a molecular dynamics simulation approach
that integrates Feynman path integral with free energy perturbation (PI-FEP) calculations to determine
equilibrium isotope fractionation factor in condensed phases. The method has been developed
previously for studying kinetic isotope effects of enzyme-catalyzed reactions. Here, we make use of
acetaldehyde and acetone in water as model compounds for the carbonyl groups of carbohydrates to
illustrate the PI-FEP method for equilibrium isotope fractionation.

Three important factors—potential, precision, and efficiency—need to be considered in calculation
of the small free energy difference due to NQE resulting from isotope substitutions. First, the potential
energy surface governing nuclear motions of the solute molecule, i.e., the species in consideration
for isotope fractionation, must be “free of NQE”. Standard effective potentials developed for liquids
and biomolecular simulations are not appropriate since these empirical potential energy functions
incorporate implicitly NQE (and polarization for pairwise potentials) in the parameterization process
by reproducing experimental data (e.g., heat of vaporization and density) [12]. Yet, accurate gas-phase
potentials do not account for solute–solvent interactions [13]. On the other hand, empirical effective
potentials can be used (also desired to include solvent NQE implicitly) to describe intermolecular
interactions of the solvent for computational efficiency in dynamics simulations. Of course, one could
treat nuclear quantum effects both for the solute and solvent on an equal footing as in ab initio
molecular dynamics, but this limits potential applications to small systems. A combined quantum
mechanical and molecular mechanical (QM/MM) potential [14,15] fits this demand nicely since
the electronic structure of the solute molecule provides a true Born–Oppenheimer potential energy
surface. At the same time, it incorporates the effective “external” potential of the environment
through QM/MM interactions. Another important consideration is to properly treat the change of
the potential energy surface for the solute molecule due to instantaneous fluctuations of the solvent
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molecules [16]. This is naturally included in a QM/MM potential, whereas it would be difficult, if not
impossible, to parameterize empirical functions that change form (and parameters) in response to
solvent fluctuations in general. The use of a combined QM/MM method to model the potential energy
surface is the first partition of a system into QM and MM regions.

Secondly, it is essential to develop a procedure to provide the necessary precision to determine
the exceedingly small (with respect to fluctuations of kinetic energy) free energy difference due
to NQE responsible for the observed isotope fractionation of organic compounds in solution or in
biosynthesis [17]. The change in zero-point energy due to molecular vibrations of isotope exchange
undoubtedly makes a dominant contribution to αA/B, though other nuclear quantum effects also
contribute. In this context, the use of harmonic vibrational frequencies of isolated molecules in
vacuum based on optimized geometries may not be sufficient for estimating isotope effects. Here,
it is important to include anharmonic contributions. Further, isotope fractionation is concerned
with the effects of environment on chemical equilibria. Consequently, it is desirable to employ
statistical mechanical Monte Carlo and molecular dynamics simulations to determine the relative
free energies and equilibrium constants. The theoretical framework in our approach is discrete
path integral simulation, and, importantly, we achieve the required precision through free energy
perturbation [18] of atomic masses in a single simulation [17]. Consequently, we obtain directly the
ratio of the mass-dependent partition functions, i.e., the equilibrium constant, between the heavy (H)
and light (L) isotopologues:

R =
[H]

[L]
=

Qqm
H

Qqm
L

= < e−β∆VL→H
e f f >L (2)

where ∆VL→H
e f f is the difference in the quantum-mechanical (qm) effective potential [19] between the

light and heavy isotopes, < · · · >L indicates an ensemble average over the potential for species L,
and β = 1/kBT with kB being Boltzmann’s constant and T the absolute temperature. We emphasize
that the present path integral simulations are carried out for one isotopologue [17,20,21]—typically the
most abundant one—which is the light particle of oxygen (16O) in the present study (of course, there is
no difference if one chooses to carry out the simulation using the heavy particle). Note also that “L”
and “H” in Equation (2) are not limited to a single isotope exchange, but multiple substitutions of
different atoms can be simultaneously treated.

The third consideration is concerned with efficiency of configuration sampling, to obtain
converged results not only in path integral simulation, but also in solvent effects on NQE. This is
particularly important when highly heterogeneous environments are encountered, such as the active
site of a protein [17,22]. Both criteria are met in our algorithm, in which the quantum mechanical
average < · · · >L in Equation (2) is exactly separated into two simulation steps: one for configurational
sampling of the entire system and one for the NQE of quantized nuclei. First, we carry out a classical
mechanical, i.e., Newtonian molecular dynamics, simulation to generate an ensemble of nuclear
coordinates. For the present solution phase system consisting of about 5000 particles, one can easily
generate a 100-ns trajectory per day. Thus, convergence on solvent distribution can be adequately
obtained. In the second computational step, convergence in NQE is achieved because we determine
the relative NQE of the real system with respect to a known, free-particle reference state through
free-particle path-integral (FPPI) sampling. In FPPI simulation, the probability density of a free particle
distribution is known exactly [17,22,23]. Thus, different discretized paths are generated in a way
completely independent of each other, avoiding to be trapped in local minima that can cause abrupt
changes in PI average [24,25]. Therefore, the quantum mechanical average of a property, O, including
the ratio of partition functions in Equation (2), can be rigorously determined as follows [19]

< O >qm = << O >FP>CM (3)
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where the inner average < · · · >FP indicates that the discrete path integral simulation is carried out
using a free particle reference state, and the outer average < · · · >CM represents a classical mechanical
ensemble average from molecular dynamics or statistical Monte Carlo simulations [17,26,27].

The separation of the quantum mechanical path integral simulation (Equation (3)) into a classical
mechanical step and an FPPI sampling to account for quantum mechanical effects is the second
partition of a condensed phase system into QM and MM regions. Thus, the present approach may
be considered as a dual QM and MM technique for (1) the QM/MM representation of the potential
energy surface and for (2) the QM-MM sampling of the nuclear dynamics motions.

The remainder of the article will first address the three considerations in more detail in Section 2.
Then, computational details are provided for determining isotope fractionation factors of acetone and
acetaldehyde in water in Section 3. Results and discussion are presented in Section 4. The paper will
conclude with a summary of the main findings from this study.

2. Methods

Almost all enzyme reactions and solutions can be well described by the Born–Oppenheimer
approximation (except, for example, photochemical processes), in which the sum of the electronic
energy and the nuclear repulsion provides a potential energy function, or potential energy surface
(PES), governing the interatomic motions [28]. Therefore the molecular modeling problem breaks into
two parts: the PES and the dynamics simulations.

2.1. Potential Energy Surface

The potential energy function used in the present study follows a combined quantum mechanical
and molecular mechanical (QM/MM) approach, in which the electronic structure of the solute
molecule is described by a quantum chemical model and the rest of the solvent molecules are
approximated by molecular mechanical force fields [14,29–32]. Standard procedures are used in
this study, and a summary of modern QM/MM approaches to enable such a hybrid representation of
the system to produce an accurate description of intermolecular interactions can be found in an early
summary [14] and for a review of progresses in a previous work [15]. Although it is possible to treat
an entire solute–solvent-enzyme system fully by a fragment-based quantum chemical method such as
Hartree–Fock theory or Kohn–Sham density functional theory [33–37], the computational costs are
still too expensive for routine free energy simulations that require extensive sampling. Thus, arguably,
the most effective approach to model solvation and chemical reactions in enzymes remains a combined
QM/MM model [15], which offers both computational efficiency and accuracy [14].

Although not used directly in the present study, we note that a particularly important approach to
increasing computational accuracy is to develop dual-level QM/MM methods in which configurational
sampling is performed with a low-level (LL), presumably computationally efficient, QM model for
solute–solvent (XS) interactions (∆ELL

qm/mm(XS)), followed by a high-level (HL) QM treatment of the

solute, X, EHL
qm (X) to better represent the “QM” subsystem [38].

UDL = EHL
qm (X) + ∆ELL

qm/mm(XS) + Umm(S) (4)

where X and S denote solute and solvent coordinates, the subscripts specify the representation of the
system in parentheses, and the superscripts indicate the level of theory used in energy calculation.
Note that the acronyms, LL and HL, for the representation of the potential energy surfaces in this
section should not be confused with heavy and light isotopes in the rest of the paper. The key concept in
Equation (4) is to limit the time-demanding HL computation to the smaller part of the system, the solute,
in the gas phase, while the computationally efficient LL model is applied to solute–solvent interactions
for dynamics simulation. The latter must be repeated hundreds of million times (~100 ns time scale) for
configurational sampling, essential for understanding solvent effects and the contributions of protein
dynamics to catalysis. This is only possible using a relatively lower-level (LL) method for QM/MM
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interactions (but parameterized for an accurate description of solute–solvent interactions). Interested
readers are directed to some recent studies in the literature [39–44].

One should keep in mind that any combined QM/MM potential is an empirical model that
contains unavoidably empirical parameters [32,45]. Thus, it is useful to take advantage of the presence
of these well-defined parameters to optimize them [32,46,47] to achieve the desired accuracy for
describing solute–solvent interactions [32,45,48–53]. Note also that a molecular orbital method with
electron correlation or a DFT QM/MM potential does not guarantee higher accuracy than Hartree–Fock
theory or a semi-empirical method such as the Austin model 1 (AM1) or tight-binding density
functional theory (DFTB) [54–57], if the empirical QM/MM parameters have not been optimized
for the higher level of QM theory in use.

2.2. Path Integral-Free Energy Perturbation

The equilibrium constant, RA, between different isotopologues of substance A (Equation (1)) is
related to the free energy difference (∆GL→H

A ) resulting from an isotope exchange, and it is directly
computed by evaluating the ratio of their partition functions.

RA = e−β∆GL→H
A =

QH
A

QL
A

(5)

The QM partition function of the hybrid (quantized and classical nuclei) system QY
A (Y = H, L)

by Feynman path integral [19,58,59] may be expressed as follows

QY
A = NY

∫
dS
∫

drY
A

∮
D[rY

A]e
−βVe f f (rY

A ,S) (6)

where NY is a normalization factor, rY
A is the reference coordinates of all quantized particles, S denotes

coordinates for the rest of the system, and Ve f f (rY
A, S) is an effective quantum mechanical potential,

and
∮

D[rY
A] · · · denotes a path integral over all closed paths that begin and end at rY

A over the
imaginary time that the path is traversed.

If the path integration is discretized and represented by a ring of P quasi-particles called beads,
the effective potential may be expressed as

Ve f f (r
Y
A, S) =

M

∑
q=1

P
2βλ2

q

P

∑
i
(rq

i − rq
i+1)

2
+

1
P

P

∑
i

U
(

r{M}
i , S) (7)

where the path rY
A for the M-quantized particles is collectively denoted by rY

A ={
rq

i ; i = 1, · · · , P; q = 1, · · · , M} with the convention of rP+1 = r1, U(r{M}
i , S) is the QM/MM

potential energy of the ith slice of the path, and λq is the de Broglie thermal wavelength of a particle of
mass mq(λ2

q = β}2/mq) with } being Planck’s constant divided by 2π. In this work, the path integral

over quantized nuclei in Equation (6) may be denoted by
∫

drY
A
∮

D[rY
A] =

∫
dRY

A =
M
∏
q

P
∏
i

∫
drq

i δ(rq),

and the normalization factor is NY = ∏
q
(P/2πλ2

q)
3P/2.

Although it is not feasible to obtain a converged result of the partition function (Equation (6)) for
a condensed phase system, the ratio of Equation (5) can be reasonably precisely determined using
Zwanzig’s free energy perturbation (FEP) theory [18].
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QH
A

QL
A

=
NH∫ dS

∫
dRH

A e
−βVe f f (r

H
A ,S)

NL
∫

dS
∫

dRL
Ae
−βVe f f (r

L
A ,S)

=
∫

dS
∫

dRL
Ae
−βVe f f (r

H
A ,S)∫

dS
∫

dRL
Ae
−βVe f f (r

L
A ,S)

(8)

Here, we have switched the integration variable by RH
A = (NH/NL)RL

A [22]. In fact, the scaling
factor of the normalization constants is equal to the square root of the ratio of heavy and light isotopic
masses, which is employed in the bisection sampling algorithm to obtain the ratio of the bead spread for
different isotopes [22]. Multiplying and dividing the Boltzmann factor of the denominator, we obtain

QH
A

QL
A

=
∫

dS
∫

dRL
Ae
−β[Ve f f (r

H
A ,S)−Ve f f (r

L
A ,S)]

e
−βVe f f (r

L
A ,S)∫

dS
∫

dRL
Ae
−βVe f f (r

L
A ,S)

=< e−β∆VL→H
e f f (A)

>L

(9)

which is the FEP expression in Equation (2).
Note that the development and application of the FEP theory [60] are among the most significant

advances in the past 30 years in molecular simulations (for a special issue on this subject, see a past
paper [61]). Accurate free energy difference in solvation between two molecules can be obtained using
FEP, and this is particularly advantageous in the present context since the change in discretized path
due to isotope exchange is relatively small in FEP standard [61], giving rise to nearly complete overlap
of solvent configurational distributions. Thus, a single simulation is sufficient in PI-FEP [62].

2.3. Double Averaging

Although Equation (9) can be directly used in path integral molecular dynamics or Monte Carlo
simulations, in practice, the increased computational costs severely limit the capability of sufficient
sampling of phase space. This becomes a major problem for biological systems to compute kinetic
and equilibrium isotope effects of enzymatic processes [21,28]. There are two main reasons for this
challenge if Equation (9) was directly used. (1) For each closed path, one must perform P times
more energy and gradient calculations than a classical trajectory, and this can be difficult when a
combined QM/MM potential is used. (2) At a given set of (centroid) coordinates, one has to perform an
integration over all, i.e., converged, paths to obtain a mean force for the quantized particles embedded
in a bath configuration. The combination of (1) and (2) only represents effectively a single integration
step (cf. 1 fs) in molecular dynamics simulation.

To circumvent these difficulties, we first rewrite the quantum mechanical partition function by
multiplying and dividing a common factor as follows

QY
A = Qcm f p

A

∫
dS
∫

dR(r)e−βVe f f (rY
A ,S)∫

dS
∫

dsAe−βU(sA ,S)
∫

dR(sA) exp[− P
2λ2

q

P
∑
i

(
∆rq

i

)2
]

(10)

where ∆ri = ri − ri+1. The classical mechanics-free particle partition function Qcm f p
A is a product

of a purely classical system and free particles in terms of Feynman path integral with the position
expectation values equal to the classical coordinates, sA [19,63]:

Qcm f p
A = Qcm

A QY
FP = {

∫
dS
∫

dsAe−βU(sA ,S)}{NY
A

∫
dR(sA)e

− P
2λ2

q

P
∑
i
(∆rq

i )
2

} (11)

where sA denotes the classical position vectors of quantized particles, and U(sA, S) is the potential
energy of the system treated entirely classically. Applying the same trick of multiplying and dividing
the Boltzmann factor of the classical system in the numerator, we obtain
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QY
A = Qcm f p

A

∫
dS
∫

drY
Ae−βU(rY

A ,S)

∫
dR(rY

A)e
−β∆U(rY

A ,S) exp[− P
2λ2

q

P
∑
i
(∆rq

i )
2
]

∫
dR(sA) exp[− P

2λ2
q

P
∑
i
(∆rq

i )
2
]∫

dS
∫

dsAe−βU(sA ,S)
(12)

In Equation (12), the difference potential ∆U(rY
A, S) is given below

∆U(rY
A, S) =

1
P

M

∑
q

P

∑
i

{
U(rq

i , S)−U(sq
A, S)

}
(13)

Making use of the constraint that the average positions of the discretized path for each particle,

i.e., the centroid positions rq
A = 1/P

P
∑

i=1
rq

i , correspond to the coordinates of the classical system,{
rq

A ≡ sq
A

}
[64–67], we find that Equation (12) is reduced exactly to the simple form as a double

average [17,22,26,27,68,69]:

QY
A = Qcm f p

A << e−β∆U(rY
A ,S) >FP,r>U (14)

In Equation (14), the outer average < · · · >U is obtained according to the potential U(rA, S),
which is of QM/MM type, and the simulation is carried out purely by classical mechanics in nuclear
degrees of freedom. The inner average < · · · >FP,r represents a free-particle sampling,

< · · · >FP,r=

∫
drP {· · · } δ(r)e−(P/2λ2)∑P

i (∆ri)
2∫

drP δ(r)e−(P/2λ2
m)∑P

i (∆ri)
2 (15)

but it is constrained to match the path integral centroid coordinates with the classical atomic positions.
The physical interpretation of Equation (15) is the free energy difference (after taking natural logarithm
and multiplying by −RT) between the real (quantum) system and a “free-particle” reference state.

Given the expression for the quantum mechanical partition function in Equation (14), the ensemble
average of the operator Ô can be evaluated by reweighting the classical mechanical average, a.k.a.,
umbrella sampling [70]:

< Ô >=
<< O(sA, S)e−β∆U(rY

A ,S) >FP,r>U

<< e−β∆U(rY
A ,S) >FP,r>U

(16)

Other practical methods can be used to compute these averages such as centroid molecular
dynamics [71–74] and ring-polymer molecular dynamics [75]. The double averaging approach, which is
also called quantized classical path method [17,26,68,76], has been applied to model systems like
single-electron-in-hard-spheres [27] as well as real systems like enzymes [77]. In PI-FEP, we separate
the PI quantum average into hybrid classical molecular dynamics and free-particle path-integral
simulations. The theory is exact, but the separation is especially useful because it first allows the
solute–solvent-protein (system-bath) conformation to be extensively sampled (outer average), which is
then followed by free energy simulation (inner average) to account for NQE. The latter free-particle
sampling also results in faster convergence by avoiding the ring-polymer distribution from being
trapped in local minima. This is because each new path (beads distribution) is generated independently
from the previous distribution and they are 100% accepted (i.e., configurations explored) from the
FP-probability density.
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2.4. Equilibrium Isotope Effects

The PI-FEP method presented in this article has been introduced previously for studying kinetic
isotope effects of enzyme-catalyzed reactions [17], but its application to computing isotope fractionation
factor is new. The equilibrium isotope fractionation factor can be expressed in terms of the ratios of
partition functions:

αA/B =
RA
RB

=

(
QH

A
QL

A

)(
QL

B
QH

B

)
(17)

Equation (17) is equivalent to evaluating the relative probabilities between the heavy and light
isotopes of two different compounds A and B, or the same compounds in different phases. This can be
conveniently accomplished using FEP by perturbing the atomic mass from one isotope into another,
e.g., L to H [17]. Note that a number of recent studies have occured with similar, if not identical,
approaches for computing isotope effects [78–82]. The key concept in our method is that only one
path-integral simulation of a given isotopic substance is needed to yield the free energy difference,
i.e., the ratio of the partition function, of another isotope, resulting in good precision for calculations of
isotope effects [17,69]. Consequently, not only H/D primary kinetic isotope effects (which are relatively
large and easily treated) can be computed, but also heavy atom and secondary isotope effects (difficult
in computation because they are close to 1) can be determined accurately [62]. This method is called
path-integral free energy perturbation (PI-FEP) theory.

To compute αA/B (Equation (17)) using Equation (16), two simulations (X = A, B) are needed to
obtain the ratio of the partition functions for a system with light-to-heavy isotope substitution:

QH
X

QL
X

=
< δ(rX − sX) < e−β∆∆UL→H

X e−β∆U(rL
X ,S) >FP,L>U

< δ(rX − sX) < e−β∆U(rL
X ,S) >FP,L>U

(18)

where the subscripts FP,L specify an FP-ensemble average carried out using the potential energy
for the light isotope, ∆U(rL

X , S) is the difference (Equation (13)) between the average potential of the
P-discrete beads of the light particle and that of the classical (centroid) system, δ(rX − sX) requires that
the centroids are constrained to classical coordinates, and ∆∆UL→H = ∆U(rH

X , S)− ∆U(rL
X , S).

3. Computational Details

To illustrate the present dual QM/MM strategy for computing equilibrium isotope fractionation
factor using the PI-FEP strategy [17], we chose the small organic solutes acetone and acetaldehyde as
model compounds for the 18O enrichment of carbohydrates in water. Thus, a total of three separate
simulations are needed, the isotope exchange of acetone, acetaldehyde, and water in aqueous solution.
A main goal is to test the convergence of solvent configurational sampling through double averaging.
Thus, the semi-empirical parameterized model 3 (PM3) Hamiltonian [55] was used to represent the
solute molecule. The accuracy of the computed absolute fractionation factor can certainly be improved
if a more accurate QM model such as a DFT representation of the solute were used, but we have not
further explored these choices. It would be of interest to perform a systematic investigation in future
studies. The solvent molecules were described by the TIP3P three-point charge model for water [83].

Each solute molecule is dissolved in a cubic box of about 34 × 34 × 34 Å3, consisting of 1338
water molecules. Periodic boundary conditions along with particle mesh-Ewald was used to treat
long-range electrostatic interactions using the isothermal-isobaric (NPT) ensemble at 25 ◦C and 1 atm
to generate the classical trajectory for the outer averages of Equation (18). In FP path-integral sampling,
a smoothing function was used to feather intermolecular interactions to zero between 13.0 and 13.5 Å
since we do not expect long range effects are critical to NQE. Overall, at least 10 ns molecular dynamics
simulations were discarded as equilibration for each system, followed by about 500 ps simulations for
averaging. As in the past, atoms that are within two covalent bonds of the atom (oxygen) with isotope
exchange are quantized and represented by 32 or 64 beads. We have previously carried out extensive
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tests of the convergence of FP sampling using different quasi-particles [22], and the present choice has
consistently yielded converged results. In this work, we further evaluated the convergence of FPPI
sampling with respect to the number of quasi-particles used to represent each quantized particle path.
We have also tested the effect of different intervals for saving classical coordinates on the computed
nuclear quantum effects.

A practical issue in path integral simulations is to obtain converged results within a tolerable
amount of simulation time, especially at a precision needed for computing isotope effects. To this
end, we have employed a bisection sampling technique [22,69], based on the approach developed
by Ceperley for free particle sampling in which the initial and final beads are not connected [59,84].
In our implementation, the bisection sampling was performed similar to the original algorithm [59,84],
but we enforced the first and last beads to be identical to enclose the ring-polymer. We then impose the
condition that the centroid position matches the corresponding atomic coordinates by rigid-body
translocation [22,69]. Since free-particle distribution is known exactly at a given temperature,
each ring-polymer distribution is generated according to this distribution and thus 100% accepted.
Furthermore, in this construction, each new configuration is created independently, starting from a
single initial bead position, allowing the ring-polymer configurations to move into completely different
regions of configurational space. This latter point is especially important to enhance convergence to
avoid being trapped in a local minimum of the classical potential in path integral sampling. Using this
sampling technique, the PI-FEP method has been applied to a range of condensed-phase and enzymatic
systems [17,22,50,62,69,77,85,86].

In the bisection sampling scheme, the perturbed heavy isotope positions are related to the lighter
ones by

rq
i,L

rq
i,H

=
λqL

θ
q
i

λqH
θ

q
i
=

√
mq,H

mq,L
; i = 1, 2, · · · , P; q = 1, 2, · · · , M (19)

where rq
i,L and rq

i,H are the coordinates for bead i of the corresponding light and heavy isotopes of the
classical atom q, mq,L and mq,H are the masses for the light and heavy nuclei, and θ

q
i is a position vector

in the bisection sampling scheme [22]. In our PI-FEP (or PI-FEP/UM) simulation scheme, the position
vectors for the perturbed beads, e.g., the heavy isotope, are made identical to the reference (i.e., light)
isotope distribution [17]. As a result, bead positions of the perturbed mass are solely determined
by the square root of mass ratio (Equation (19)), reflecting the quantum mechanical spread of the
particle density.

All simulations have been carried out using CHARMM (version 42b1, Harvard University,
Cambridge, MA, USA, www.charmm.org) [87], in which all techniques described in this article
have been implemented [17].

4. Results and Discussion

First we consider the convergence of path integral simulations for computing the ratio of the
quantum mechanical partition function (Equation (18)) with respect to the number of beads to represent
the discretized paths or ring polymers. Acetaldehyde and water in aqueous solution are used in this
test. We quantized all atoms that are within two covalent-bond range, including all three atoms of
water, and all non-hydrogen atoms and the hydrogen atom bonded to the carbonyl carbon (four atoms).
This has been a scheme we adopted in the past for studying kinetic isotope effects of enzymatic
reactions, which is kept here. Since we do not know the exact value of the quantum mechanical
partition function in the present case using the combined QM/MM-PM3/TIP3P potential, we can
only check the asymptotic behavior with increasing number of beads, which approaches the exact
quantum result when P→ ∞ . For each system, we used a 100 ps trajectory from a Newtonian MD
simulation, during which atomic coordinates were saved in every 100 fs (1 fs integration step is used in
all MD simulations). A total of 1000 configurations were saved. Then, for each classical configuration,
FPPI averaging was performed, in which the first 10 ring-polymer configurations were discarded.

www.charmm.org
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We note that there is no particular reason for not including these configurations since we do not
need to carry out an equilibration as the FP ring-polymer configurations are generated according
to their quantum mechanical distribution. Then, 200 configurations were used for averaging (the
inner average in Equation (18) for each classical, i.e., centroid configuration). The results are reported
by averaging over all solvent configurations (the outer, CM average). Thus, a total of 200,000 path
integral configurations were included in averaging. This translates to 210,000× P QM/MM energy
calculations in each case, where P = 2n and n = 2 to 7 with an increment of 1 (the power over 2 is
required in the bisection sampling scheme).

Figures 1 and 2 display, respectively, the ratio R = [18O]/[16O] for water and for aldehyde,
an alchemical equilibrium constant by mutating the naturally most abundant isotope 16O into 18O
through free energy perturbation. The equilibrium constants are greater than unity because the
compounds containing the lighter isotope have higher vibrational frequencies and zero-point energy
than the heavy isotopologues. In both cases, the computed R quickly and monotonically approaches
its average value. In comparison to the average values obtained using 128 beads, the deviations are 0.5
(0.5)%, 0.4 (0.3)%, and 0.05 (0.2)% for water (acetaldehyde) using 16, 32, and 64 beads, respectively.
Clearly, in both systems, the use of four and eight beads is not sufficient for path integral convergence
(having absolute errors of about 4% and 1.5%, respectively, in the two cases). We find that the use of
32 beads offers a good balancing of the computational costs and precision, consistent with previous
studies of kinetic isotope effects in enzymatic reactions [77,88]. Interestingly, the estimated isotope
fractionation factors of acetaldehyde relative to water, i.e., equilibrium enrichment of the aldehyde in
aqueous solution, are relatively invariant with respect to different number of beads (Figure 3), although
the smallest value, P = 4, tested has relatively larger deviations than the rest.
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quasi-particles P used in path integral simulations of acetaldehyde in aqueous solution. For most
points, the error bars are small and hidden behind the data symbols.
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We next examine the effect of solvent sampling on the computed (ratio of) NQE. Figure 4
displays the computed Q18/Q16 ratios for water, acetaldehyde, and acetone in water, obtained over
1000-configuration blocks saved at different intervals of MD steps, ranging from every 1 fs to 100 fs
(1 fs integration steps). For each configuration, 200 random closed paths after discarding the first
10 configurations, represented by 32 quasi-particles for acetaldehyde and acetone and 64 for water,
were used in the free-particle path-integral averaging. Thus, each point in Figure 4 represents an
average over 200,000 path integral configurations (12.8 to 25.6 M QM/MM energy calculations to
obtain the heavy to light isotope ratio). These configurations were divided into 10 separate blocks,
from which standard deviations were determined based on these block-averages. The standard
deviations for the carbonyl compounds were small in Figure 4. The variations of these eight separate
averages, which were used together to determine the final isotope fractionation factor discussed next,
reflect the dynamic fluctuations of the solvent configurations. For these small molecules in a rather
homogeneous solvent, the fluctuations are relatively small, although they are certainly noticeable and
cannot be neglected.
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Figure 4. Computed 18O/16O equilibrium isotope fractionation for water, acetaldehyde, and acetone
in water from eight sequential separate averages, in which the solvent configurations (outer average
of Equation (18)) are saved ranging from every 1 to 100 time steps. For each configuration generated
from Newtonian molecular dynamics at 25 ◦C and 1 atm, free-particle path-integral simulations are
carried out to sample 210 random closed paths, of which the first 10 are discarded. For each block,
1000 configurations are included. Thus, each point in the figure corresponds to a FPPI averaging over
200,000 paths. 32 quasi-particles for acetaldehyde and acetone and 64 beads are used to represent
each discretized path. The error bars for each point are estimated from 10 separate block-averages;
those for acetaldehyde are smaller than the size of the symbols displayed, whereas those for water
from 32-bead simulation are not shown for similarity to 64-bead. The fluctuations of the block averages
mainly feature solvent configuration fluctuations.
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The computed equilibrium isotope enrichments for acetaldehyde and acetone, relative to its
abundance in water are given in Table 1. In both cases, the 18O isotope is enriched at the carbonyl
position relative to that of water. As is well-known, carbonyl compounds can rapidly undergo
isotope exchange with water, especially for unhindered carbonyls, through formation of hydrates.
This reaction has been attributed to be a primary biochemical factor responsible for the 18O enrichment
found in carbohydrates such as celluloses in trees. As a result, the much higher 18O enrichment in CO2

introduced in carbon fixation by RuBisCO is quickly lost through the carbonyl-hydrate equilibrium
from small sugar compounds. An experimental measurement of the 18O enrichment of acetone in water
yielded a fractionation factor of 1.027 [6], coincidentally the same as the average enrichment in trees.
We were not able to find an experimental isotope fractionation value for acetaldehyde. The computed
value of δ18O about 39‰ for acetone is in reasonable agreement with experimental data, in view of
the semi-empirical potential energy function used. The present semi-empirical PM3 method is perhaps
among the fastest electronic structure models, allowing for adequate condensed-phase sampling.
However, the harmonic vibrational frequencies for carbonyl groups are about 14% higher than
experimental data (1979 cm−1 from PM3 vs. 1731 cm−1 from experiments for acetone), contributing to
the absolute errors in the computed isotope effects. The computational accuracy may be improved by
using a higher level of theory that can provide a good description of molecular vibrations.

Table 1. Computed ratio of partition functions and 18O enrichments of CH3CHO and CH3COCH3 in
aqueous solution at 25 ◦C and 1 atm using the PM3/TIP3P QM/MM potential.

H2O CH3CHO CH3COCH3

Q18/Q16 1.0828± 0.0024 1.1204± 0.0014 1.1251± 0.0007
δ18O 1 0.035 0.039

We also performed calculations for the site-specific isotopic exchange of a deuterium at the C1
carbon of acetaldehyde for a proton on the methyl group. The fractionation ratio of deuterated-C2
isotopomer over that at the C1 position is related to the equilibrium constant K for the following
isotopic exchange

CH3CHO + CH3CDO � CH2DCHO + CH3CHO

In this case, K is given by the ratio of the two ratios of D/H partition functions for the H-to-D
replacements in CH2DCHO and CH3CDO, and we have computed both pairs in the gas phase and in
aqueous solution. The computed results are listed in Table 2. For the D/H ratio, the values are much
greater than those of oxygen isotopes because of the large mass difference, leading to greater difference
in vibrational frequency and zero-point energy. Both in the gas phase and aqueous solution, we found
that the methyl position is enriched by more than 200‰ per hydrogen of the methyl group. If the
symmetry factor of three equivalent positions is considered, the present PM3/TIP3P model yields a
predicted enhancement of about 700‰ at the C2 position over that at the C1 position. Interestingly,
there is little solvent effect on this isotope fractionation factor.

Table 2. Computed ratio of 2H/1H partition functions and equilibrium isotope fractionation factor
of CH3CHO in the gas phase and in aqueous solution at 25 ◦C and 1 atm using the PM3/TIP3P
QM/MM potential.

CH3C[D/H]O [D/H]CH2CHO

Gas Aqueous Gas Aqueous

Q2/Q1 19.20± 0.36 19.63± 0.98 23.72± 0.86 24.01± 1.12
αC2/C1 1 1 1.24 1.22
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5. Concluding Remarks

We have described the application of a dual QM and MM approach for computing equilibrium
isotope effects, (1) to treat the potential energy surface by a QM/MM potential, and (2) to partition the
quantum mechanical statistical mechanical ensemble average into a double classical mechanical and
quantum mechanical averaging. These partitions allow the potential surface to be properly represented
such that the solute part is free of nuclear quantum effects for path integral simulations, whereas effects
of the solvent environment is represented by an effective potential that can reproduce experimental
properties of the liquid. The double-averaging simulation approach has the advantage of sampling
solvent configurations, using straightforward molecular dynamics simulations for simple solutions
as illustrated in this study, or applying various enhanced sampling techniques for complex systems.
Importantly, the use of a free particle reference state, coupled with bisection sampling, in path integral
simulations helps achieve fast convergence, (a) to avoid being trapped in local minima, and (b) to
generate closed path distributions according to a known distribution. Furthermore, the precision
needed for determining isotope fractionations is obtained through free energy perturbation theory
to alchemically mutate the closed paths for one isotope into another, enforcing the correspondence
of the centroid positions to those of classical coordinates. The PI-FEP approach is used to determine
the isotope fractionation factor of oxygen in carbonyl compounds as a model for the observed isotope
enrichment in tree rings. Additionally, the site-specific fractionation factor of D/H isotopomers of
acetaldehyde has been estimated. The present method may be applied to systems of geochemical and
ecohydrological relevance to gain an understanding of isotope fractionation.
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