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Abstract

The prefrontal cortex (PFC) is involved in cognitive control of motor activities and timing of

future intensions. This study investigated the cognitive control of balance recovery in

response to unpredictable gait perturbations and the role of PFC subregions in learning by

repetition. Bilateral dorsolateral (DLPFC), ventrolateral (VLPFC), frontopolar (FPFC) and

orbitofrontal (OFC) cortex hemodynamic changes induced by unpredictable slips were ana-

lyzed as a function of successive trials in ten healthy young adults. Slips were induced by

the acceleration of one belt as the participant walked on a split-belt treadmill. A portable

functional near-infrared spectroscope monitored PFC activities quantified by oxyhemoglo-

bin (ΔO2Hb) and deoxyhemoglobin (ΔHbR) during the consecutive trial phases: standing,

walking, slip-recovery. During the first 3 trials, the average oxyhemoglobin (ΔO2Hbavg) in the

DLPFC, VLPFC, FPFC, and OFC cortex was significantly higher during slip-recovery than

unperturbed walking or the standing baseline. Then, ΔO2Hbavg decreased progressively

from trial-to-trial in the DLPFC, VLPFC, and FPFC, but increased and then remained con-

stant in the OFC. The average deoxyhemoglobin (ΔHbRavg) presented mirror patterns.

These changes after the third trial were paralleled by the progressive improvement of recov-

ery revealed by kinematic variables. The results corroborate our previous hypothesis that

only timing of the onset of a “good enough recovery motor program” is learned with practice.

They also strongly support the assumption that the PFC contributes to the recall of pre-exist-

ing motor programs whose onset timing is adjusted by the OFC. Hence, learning is clearly

divided into two steps delineated by the switch in activity of the OFC. Additionally, motor pro-

cesses appear to share the working memory as well as decisional and predictive resources

of the cognitive system.

Introduction

Motor tasks are generally driven by cognitive attentional control. Multiple imaging techniques

have investigated the role played by the prefrontal cortex (PFC) in motor tasks. Recently, the
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development of functional near-infrared spectroscopy (fNIRS) technology [1], based on the

quantification of oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR) dynamics (hemo-

dynamics), has also permitted to show that PFC activity, which varies over time to reflect flexi-

bility and adaptation [2, 3], is associated with multiple functions. These functions include the

performance of and attention to motor tasks [4–6] decision making [7], learning and motor

skill acquisition [3, 8, 9] and working memory [see 2, 10 for review]. In addition, Ono et al. [9]

posited that the PFC “plays a crucial role in holding the intention of future behavior until the

right timing for execution based on the environmental feedback”.

PFC activity has been associated with the control and adjustment of walking [11–15], and

balance recovery from unpredictable perturbation while standing [16]. Anterior PFC activity

has been associated with “storing future action plans and their timely retrieval” [17]. These

investigations, however, have focused on common motor tasks and have not considered the

PFC’s role in responding to sudden unpredictable perturbations of ongoing movements. Some

studies have even assumed that some of the PFC’s properties affect motor recovery in response

to perturbation, at a level corresponding to the progression of a learning process.

Recovery from abrupt perturbations while walking is critical to avoid fall-induced injuries.

Hence, understanding the organization of the protective mechanisms underlying the body’s

recovery from unpredictable perturbations may help to develop effective wearable technology

and specific exercise routines for improving balance to prevent injuries.

Previously we have shown that a) an adequate recovery from unpredictable trips can be

learned within 8 repeated trials, but can be initiated in the first trial if a vibrotactile cue is pro-

vided 250 ms prior to the perturbation [18, 19]; and b) PFC subregions including the dorsolat-

eral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), frontopolar

prefrontal cortex (FPFC), and orbitofrontal cortex (OFC) are involved in the trip recovery pro-

cess, and no significant increase in PFC activity is induced by vibrotactile cues (Lee et al. not

published yet).

Building on our previous findings, in this study we investigated how the activity of PFC

subregions evolves with the learning of slip recovery by trial repetition, and the association

between these changes and the kinematic and timing parameters characterizing the improve-

ment of the motor performance.

We used the repetition paradigm/block design to formulate three hypotheses. First, having

hypothesized that during practice by repetition it is sufficient to learn the timing of initiation

of a “generic good enough motor program” [19], we hypothesized that if this applies to slip

recovery, the recovery step time response should decrease with slip trial repetition and thus

improve kinematic behavior. Second, since PFC activity, as indicated by hemodynamic

changes, decreases while learning a motor task [1, 20, 21] or after learning, we hypothesized

that while learning the timing of the recovery response, PFC oxyhemoglobin concentration

(ΔO2Hb) should decrease progressively from trial to trial, and the decreasing profile of ΔO2Hb

should correlate or match with the progressive improvement of motor performance indicators.

The opposite effects are expected from the deoxyhemoglobin (ΔHbR). Third, we hypothesized

that changes in PFC activity may differ between the subregions and thus provide clues about

the respective roles of the subregions.

Materials and methods

Participants

Ten healthy young adults (5 females and 5 males; age: 22.7 ± 3.2 yrs; stature: 174.9 ± 8.0 cm;

weight: 69.1 ± 11.6 kg) participated in this study. All were naïve to the purpose of the experiment,

and had never participated in studies of gait perturbations. Exclusion criteria included: self-
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reported neurological disorders (e.g., stroke, Parkinson’s disease, etc.); musculoskeletal dysfunc-

tions; peripheral sensory diseases (e.g., peripheral neuropathy, Type 2 diabetes, etc.); pregnancy;

left-footedness (kicking foot in response to a rolling ball); and a body mass index (BMI) greater

than 30 kg/m2 because BMIs over 30 may affect gait [22–24]. The study protocol was approved

by the University of Houston Institutional Review Boards, which accords with the Helsinki Decla-

ration. Prior to the study, each participant reviewed and signed an informed consent form.

Instrumentation

The equipment shown in Fig 1 has been used recently [25, 26]. The fall-inducing platform

including a programmable split-belt treadmill equipped with two force plates located beneath

each belt (Bertec, Columbus, OH, USA) and controlled by our custom software [18, 19, 27]

was used to induce slips by accelerating the left belt in the anterior direction (i.e., the perturba-

tion occurred at the foot level). A 48-channel wireless wearable fNIRS device (NIRSIT, OBE-

LAB Inc., Seoul, S. Korea) placed on the forehead recorded the hemodynamic changes during

each trial. This system is composed of laser and silicon photodiode with source—detector dis-

tances of 3 cm and operating at a scan rate of 8.138 Hz. A global signal regression is used to

minimize systemic body oscillations. A 12-camera motion capture system (Vicon Motion Sys-

tems, Oxford, UK) recorded the displacement of 35 reflective markers commonly used to mea-

sure the body segment kinematics. Nexus 1.8 software was used to sample the positions of the

markers and the ground reaction forces (GRFs) from the two force plates at a rate of 100 Hz.

Our custom software generates start, stop and event signals to synchronize all data acquisi-

tions, via a NI-6211card (National Instruments, Austin, TX, USA) for the motion capture sys-

tem and the fNIRS device.

Fig 1. Experimental pieces of apparatus.

https://doi.org/10.1371/journal.pone.0241562.g001
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Experimental protocol

All participants were outfitted with 35 reflective markers attached to body landmarks (head,

neck, shoulders, arms, trunk, knees, and feet) to match the requirement of the Plug-in-Gait

model [28] and wore the fNIRS device as well as an adjustable safety harness. Each participant

self-selected a walking speed by adjusting the treadmill speed (average 0.9 ± 0.1 m/s). Before

the trials, the fNIRS device was calibrated to prevent signal saturation from biological factors

(e.g., skin and hair color, skin and skull thickness, etc.) [29].

All participants completed 6 consecutive trials in which the slip perturbation was induced

randomly. Each trial included three periods: standing (15 s quiet standing); steady state walk-

ing at self-selected speed (the duration varied based on the randomness of the perturbation);

and post-perturbation period (from the perturbation onset to the end of the trial time). The

slip perturbation was applied randomly to the left foot but only during the loading phase (10%

of the gait cycle corresponding to the initial double-limb support [19, 30] between the 31st and

40th step by accelerating the left belt in the anterior direction at a rate of 10 m/s2, to induce a

backward slip. The accelerated belt returned to the pre-perturbation speed with the first heel

strike of the right foot (i.e., the first response step of the non-slip foot), because stepping is the

most common recovery response [31–33]. All trials ended 10 steps after the perturbation to

account for the number of steps required to return to normal walking [19, 30] and the latency

of the hemodynamic response subsequent to the perturbation (approximately 4 to 7 s) [34].

Normal walking resumed within 3 to 4 steps after a slip, corresponding to 4.2 ± 0.9 s. In all tri-

als, during standing and walking, participants were required to fix their gaze on an “X” placed

approximately 4.5 m ahead at eye level to stabilize their posture and minimize head move-

ments and side-to-side walking variations [25, 26]. Consecutive trials were separated by a rest

period (20 s) to allow brief relaxation of the torso and upper and lower extremities. Partici-

pants were given no information about the slip perturbation onset.

Data processing

Whole body kinematics were computed by the Plug-in-Gait model in Nexus 1.8 and MATLAB

(The MathWorks, Natick, MA, USA) was used to process the fNIRS data and GRFs. PFC activ-

ity was quantified by oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR) concentrations,

since an increase in PFC activity is associated with an increase in ΔO2Hb and a concomitant

decrease in ΔHbR [35]. The series of processing methods applied to both signals are shown in

Fig 2. All 48 channels of the fNIRS’ raw data (i.e., received optical power of the used wave-

length pair: 780 nm and 850 nm with emitting power of less than 1 mW) were low pass filtered

at 2Hz. This cut-off frequency was derived from a power spectral density analysis. The thresh-

old of a signal-to-noise ratio (SNR) of less than 30 dB was applied to reject unreliable or dis-

torted channels caused by environmental noise; SNR was defined as the ratio of a mean to a

standard deviation of the fNIRS’s filtered data for the first 5 s of the standing period (baseline

period). The SNR threshold was set based on a previous finding that it corresponded to an

effective extraction of reliable ΔO2Hb and ΔHbR signals in the presence of noise frequencies

less than 0.1 Hz caused by blood circulation [36]. The average number of rejected channels in

each trial was 5.0 ± 2.3. Next, the changes in optical density (ΔOD) relative to the baseline

period were computed for the accepted channels [37]. Since fNIRS is sensitive to motion arti-

facts [38], reducing the effects on ΔOD caused by head movements during walking and slip

perturbations was performed by the well validated movement artifact reduction algorithm

(MARA) [39]. A threshold for the moving standard deviation time series of the MARA was set

to 1 μM [39]. The computed ΔOD was filtered by a 0.02–0.2 Hz band pass filter to remove res-

piration, heart pulsation, equipment noise, and other irrelevant physiological effects [40]. The
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modified Beer-Lambert law (MBLL) was applied to compute ΔO2Hb and ΔHbR [37]. The dif-

ferential path length factor (DPF) values of 780 nm and 850 nm are 5.075 and 4.64 in respec-

tively. These values were referred from Choi et al. [41] that calculated DPF value by using the

equations from Boas et al. [42]. The outcome of these processing steps is illustrated by an

example presented in S1 Fig to illustrate the efficient filtering of the various artifacts before

subsequent computation. Normalization (aka baseline correction) was performed by subtract-

ing an average of ΔO2Hb and ΔHbR corresponding to the baseline period (i.e., the first 5 s of

the standing period) from the computed ΔO2Hb and ΔHbR for each measuring period. The 48

channels were grouped into eight subregions: right and left DLPFC, VLPFC, FPFC, and OFC,

as illustrated in Fig 3. For grouping, MNI transformation was conducted by individual location

coordinates in 4 positions: nasion (Nz), right pre-auricular (RPA), left pre-auricular (LPA),

and central zero (Cz) [43]. Rejected channels were padded by the average signal of the accepted

channels within each subregion. A multi-channel regression method (global regression) was

applied to each subregion to reduce possible signal contamination caused by extra-brain arti-

facts (e.g., scalp and systemic blood flow) [44]. Next, the average ΔO2Hb and ΔHbR (i.e.,

ΔO2HbAVG and ΔHbRAVG) within each subregion were computed for each period (standing,

walking, recovery); for these measures, the time corresponding to the recovery period onset

was shifted by a latency value computed as the time between perturbation onset and PFC activ-

ity onset. PFC activity onset was detected using the Moving Average Convergence Divergence

(MACD) filter [45]. To simplify data analysis, only latency values for bilateral DLPFC, VLPFC,

and FPFC were averaged for each trial, since OFC activity presents a specific pattern, as

described in the results section.

The body kinematics and GRF signals were low pass filtered at 10 Hz [46]. To assess kine-

matic and kinetic responses following slip perturbations, trunk angular dispersion (AD), trunk

range of motion (ROM), COM ROM, minimum COM (Min COM) position, and response

step time of the right foot (i.e., non-slip foot) were quantified [19, 25–27]. Trunk AD, trunk

Fig 2. Flowchart of fNIRS signals processing. SNR = signal noise ratio; OD = optical density; MBLL = modified Beer-Lambert law.

https://doi.org/10.1371/journal.pone.0241562.g002
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ROM, COM ROM, and Min COM position were computed as an average during the standing,

walking, and recovery periods [19]. References and planes in which the values are computed

are shown in Fig 4. Trunk AD corresponds to one standard deviation of the trunk angular

Fig 3. fNIRS channels. Array and subregions mapping: Dorsolateral PFC (yellow); Frontopolar PFC (red);

Ventrolateral PFC (green); Orbitofrontal PFC (blue).

https://doi.org/10.1371/journal.pone.0241562.g003

Fig 4. Reference lines for torso kinematics. Lines are superimposed on a representative body segments skeleton

derived from the motion capture system.

https://doi.org/10.1371/journal.pone.0241562.g004
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displacements in the sagittal plane. Trunk ROM quantifies the motion magnitude in degrees

between the flexion and extension extrema in the sagittal plane. Since the participants differed

in height, COM positions were normalized to the initial COM position in the sagittal plane.

COM ROM indicates the magnitude of motion in cm between the maximum elevation and

minimal depression along the vertical direction with respect to the horizontal reference. The

response step time from the start of the slip perturbation to the first heel strike of the non-slip

foot (i.e., right foot) is extracted from the GRFs [19, 30]. All variables were computed for each

period, except latency and response step time that were computed only for the recovery

period.

Statistical analyses

Minitab1 (PennState University, PA, USA) was used to perform statistical analyses. The analy-

sis was applied to oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR), as recommended

recently [34, 47, 48], and to kinematic variables. Initially, a three-way ANOVA assessed the

effects of gender, period (standing, walking, recovery) and trial (1–6) for all metrics. The Sha-

piro-Wilk test confirmed that the outcome measures were normally distributed. Gender was

not a significant factor (p> 0.1) for any of the outcome measures, so one-way ANOVAs were

applied to all variables to determine both the effect of period for the first trial and repeated

measure ANOVAs were initially used to determine the effect of trial in the recovery period.

Latency, and response time were analyzed as a function of trial only for the recovery period.

Post hoc analysis using the Tukey-Kramer method (multiple comparisons) compared the dif-

ferences between periods and between trials, respectively. Then, due to a conspicuous break

point in all hemodynamic profiles as a function of trial in the recovery period, particularly for

the OFC subregion, piecewise regressions (trial 1–3 and 3–6) were fitted to all outcome mea-

sures using trial 3 as the break point. Finally, the strength of association between averaged PFC

activity (all regions) and averaged kinematic variables was measured by the Pearson’s correla-

tion coefficient. Significance was set at p< 0.05.

Results

PFC hemodynamics

As expected, the concentrations in oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR)

varied concomitantly in opposite directions. For simplicity, as the results were identical in

term of significance, only ΔO2HbAVG variations are presented. Results corresponding to

ΔHbRAVG are illustrated in supporting documents. The respective ANOVAs applied to

ΔO2HbAVG indicated a significant effect of the period for the first trial (Table 1A) and a signifi-

cant effect of the trial for the recovery period (Table 1B) for all PFC subregions with the excep-

tion of OFC. Identical outcomes were obtained for ΔHbRAVG.

A representation of hemodynamic changes and significant differences as a function of the

period for the first slip trial is shown in Fig 5. Activity in the whole PFC/any subregion was

negligible while standing. In the DLFPC, the activity increased significantly (p< 0.01) bilater-

ally during walking and increased significantly (P< 0.05) again during recovery. Activity in

the VLPFC and FPFC increased only during recovery (p< 0.00001); very small increases in

activity in the OFC as a function of period were insignificant. ΔHbRAVG presented a mirror

effect (see S2 Fig). The patterns of changes in hemodynamics and significant differences as a

function of trials for each PFC subregion of the recovery period are shown in Fig 6. There was

a negligible non-significant (p>0.1) difference between the first three trials in all PFC subre-

gions followed by a monotonous decrease in ΔO2HbAVG as a function of trial for the DLFPC,

VLFPC, and FPFC (piecewise regressions), while concomitant activity in the OFC switched
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significantly (p< 0.000) from a low level to a higher level and remained at the same level over

the last 3 trials (Fig 6). This feature is supported by the piecewise linear regressions, with higher

r2 compared to corresponding single linear regressions (Table 2A). ΔHbRAVG showed a mirror

effect (see S3 Fig).

Kinematics

The changes in kinematics (TAD, TROM, COM ROM, Min COM, and right foot RST) as a

function of period in the first trial are shown in Fig 7. As expected, the magnitude of each vari-

able was significantly greater in the recovery period than in the walking (p< 0.001) and stand-

ing (p< 0.0001) periods. COM ROM and Min COM magnitudes were also significantly

greater (p< 0.001) in the walking than in the standing period. The increase in trunk sway and

ROM magnitudes in healthy young adults was insignificant between standing and walking at

the self-selected slow speed because stability was not compromised during this walking

condition.

Changes in kinematics variables and response step time as a function of trial in the recovery

period are shown in Fig 8. As observed for PFC activity (Fig 6), the value of all variables (OFC

excepted) associated with recovery movements were insignificant for the first 3 trials (p> 0.1)

and then evolved progressively trial after trial in the direction of recovery improvement/stabil-

ity (Fig 8). These change pattern similarities are supported by the piecewise regression analysis,

with higher r2 compared to corresponding single linear regressions (Table 2B).

PFC hemodynamics-kinematics correlations

Correlations between average hemodynamics and kinematics measurements, including

response step time, were computed to further demonstrate the association between cognitive

Table 1. ANOVAs applied to oxyhemoglobin data.

PFC subregions Effect DF F Pr > F Partial Eta Squared

A. ANOVA applied to ΔO2HbAVG for Periods, 1st trial

DLPFCL Period (3) 2, 9 26.127 .000� 0.659

DLPFCR Period (3) 2, 9 26.567 .000� 0.663

VLPFCL Period (3) 2, 9 24.848 .000� 0.648

VLPFCR Period (3) 2, 9 27.090 .000� 0.667

FPFCL Period (3) 2, 9 43.073 .000� 0.761

FPFCR Period (3) 2, 9 48.141 .000� 0.781

OFCL Period (3) 2, 9 .720 .496 0.051

OFCR Period (3) 2, 9 .346 .710 0.025

B. ANOVA applied to ΔO2HbAVG for recovery period, all trials

DLPFCL Trial (6) 2, 59 4.145 .003� 0.277

DLPFCR Trial (6) 2, 59 3.326 .011� 0.235

VLPFCL Trial (6) 2, 59 4.207 .003� 0.280

VLPFCR Trial (6) 2, 59 3.891 .004� 0.265

FPFCL Trial (6) 2, 59 3.956 .004� 0.268

FPFCR Trial (6) 2, 59 4.593 .001� 0.298

OFCL Trial (6) 2, 59 10.634 .000� 0.496

OFCR Trial (6) 2, 59 7.524 .000� 0.411

PFC subregion sides are identified by L = left, R = right. α = 0.05,

� = significance.

https://doi.org/10.1371/journal.pone.0241562.t001
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learning and motor processes. Details of individual subregions correlations with kinematic

variables are presented in S1 and S2 Tables. For simplicity here, since the pattern of changes in

DLPFC, VLPFC, FPFC with learning (trial #) were symmetric (left vs right) and similar (Fig 6)

the activities of these subregions were combined into an overall average to represent the global

activity. The OFC activity was not included as the role of this area, which will be discussed spe-

cifically, appears to be very distinct. The computation showed that all measures related to kine-

matics correlated significantly with PFC (DL,VL,F) activity (|correlation coefficient| > 0.98,

p< 0.0001) as shown in Table 3. Due to the inherent sign of Min COM relative to the standing

reference level, the correlation was negative for that variable. Correlations� |0.80| were con-

sidered as high. Furthermore, the invariance before and after the flip in the OFC activity (Fig

6) indicates that spurious hemodynamic activity that could have been associated with motion

induced physiological effects are not of significant importance. This allows to rule out their

eventual influence on correlations and emphasize a parallelism between cognitive processes

and motor responses.

Discussion

Differences between periods (standing, walking, recovery) and successive trials (1–6) were sig-

nificant for all outcome measures. Parallel changes in kinematic, kinetic, and hemodynamic

data in the recovery period, trial after trial, show an association between PFC activity and

motor behaviors while learning. However, learning appears to be effective only after a number

Fig 5. Oxyhemoglobin concentrations (ΔO2HbAVG) for the first slip trial. Average values across all participants (N = 10) for left and right prefrontal cortex

(PFC) subregions (top to bottom panels) as a function of the period (standing, walking, recovery): A) Left and right dorsolateral PFC (DLPFCL/R); B) Left and

right ventrolateral PFC (VLPFCL/R); C) Left and right frontopolar FPFC (FPFCL/R); D) Left and right orbitofrontal cortex (OFCL/R). Error bars indicate

standard error of the corresponding means. Asterisks: significant differences (� p< 0.05, �� p< 0.01, ��� p< 0.0001).

https://doi.org/10.1371/journal.pone.0241562.g005

PLOS ONE Prefrontal cortex learning motor timing

PLOS ONE | https://doi.org/10.1371/journal.pone.0241562 November 9, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0241562.g005
https://doi.org/10.1371/journal.pone.0241562


Fig 6. Oxyhemoglobin concentrations (ΔO2HbAVG) as a function of trials. Average values across all participants

(N = 10) for left (●) and right (●) prefrontal cortex (PFC) subregions (top to bottom panels) as a function of the trial

number: A) Left and right dorsolateral PFC (DLPFCL/R); B) Left and right ventrolateral PFC (VLPFCL/R); C) Left and

right frontopolar PFC (FPFCL/R); D) Left and right orbitofrontal cortex (OFCL/R). Error bars correspond to the

standard error of the corresponding means. Piecewise linear regressions (---) use trial 3 as the break point (see bottom

graph and text for justification). ��� p< 0.0001.

https://doi.org/10.1371/journal.pone.0241562.g006
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of “observations”. Furthermore, specific significant differences in hemodynamics between the

different PFC subregions can be associated with different functions.

The contributions of the PFC subregions to slip recovery and learning an adapted strategy

are clearly differentiated (Figs 5 and 6). Initially, when compared to the standing reference, for

which PFC activity (ΔO2Hbavg) is negligible, DLPFC activation is significantly while walking

and even greater during slip recovery. The VLPFC and FPFC, however, are highly activated

only during the recovery, while OFC activity does not appear to increase much during walking

or slip recovery. During learning by trial repetition, which, according to all kinematic and

hemodynamic indicators, is evident only after the third trial, the VLPFC and FPFC activity

decreases progressively while the OFC activity switches to a significantly higher level, and then

remains invariant. Hence, when unpredictable movement perturbations occur, a two-stage

decision process appears necessary.

One distinction between the DLPFC and the other subregions is that the DLPFC is largely

implicated in walking whereas the VLPFC, FPFC, and even the OFC are involved only mini-

mally (Fig 5). The absence of a significant increase in activity in these latter subregions when

walking (compared to standing) is not surprising since walking is largely automatized (see dis-

cussion below on redistribution of activities with learning) and requires little cognitive control

[8], at least in healthy young adults; older adults or individuals affected by disorders may need

more cognitive control [34, 49]. In contrast, the increase in activity when walking indicates

that despite automatization, walking requires some attentional demand associated with main-

taining both the walking task goal and the active dynamic balance control [see 50 for review],

and in the present context, the likely expectation of a perturbation. As cognitive control may

need to be higher for treadmill than over the ground walking [51] it is logical to assume that

within a similar context, the observed PFC activities could slightly differ in magnitude but not

in pattern in a ground walking context. The role of monitoring appears to be played by the

DLPFC alone without burdening the other subregions. Similarly, the results obtained by Koen-

raadt et al. [13], which were found for a comparable walking period of 35 seconds, but for the

Table 2. Comparisons of piecewise and single linear regressions.

A R2

PFC subregions Piecewise (T3-6) (T1-6)

DLPFCL 0.99 0.93

DLPFCR 0.98 0.83

VLPFCL 0.97 0.78

VLPFCR 0.87 0.80

FPFCL 0.98 0.87

FPFCR 0.99 0.84

B R2

Kinematics Piecewise (T3-6) (T1-6)

TAD 0.97 0.82

TROM 0.97 0.84

COM ROM 0.97 0.88

Min COM 0.96 0.85

RST 0.98 0.92

Tx-y = Trials included in regression.

TAD = Trunk angular dispersion, TROM = trunk range of motion, COMROM = center of mass range of motion,

MIN COM = Minimum of COM, RST = response step time.

https://doi.org/10.1371/journal.pone.0241562.t002
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whole PFC, show significant PFC activity during the first part of the walking period and a

decrease in activity during the last part of the walking period. This difference supports our

assumption that a certain level of attention needs to be maintained as long as a perturbation,

although theoretically unpredictable, is anticipated. From these patterns of PFC activity two

types of differentiations can be distinguished: between phases (pre-learning vs learning) and

between subregions as discussed below.

Pre-learning phase

During the first three trials, the absence of changes in PFC activity (Fig 6) indicates an

absence/no appearance of cognitive changes in response to the perturbation. This is corrobo-

rated by the absence of significant changes in strategy/ motor response dynamics and onset

delay of recovery response (Fig 8). It is logical to assume that the correlated kinematic behav-

iors (Table 3) are the consequences of and not the cause of cognitive control. Hence, this

“absence of initiative” phase may suggest that the first three trials may correspond to a neces-

sary number of observations to develop/predict an adapted recovery strategy. This hypothesis

is in agreement with the results of previous studies showing that movement learning under

unpredictable mechanical perturbation [52, 53] or even cyclic repetition [54] is based on infor-

mation from a few preceding trials that may improve performance. Clearly, using a few obser-

vations before initiating a predicted response is more computationally and cognitively efficient

than initiating a succession of motor programs requiring multiple/substantial reorganization

because the switching cost is not negligible from the motor [55, 56] and cognitive point of

Fig 7. Kinematic variations for the first trial. Average values across all participants (N = 10) as a function of period: A) Trunk angular dispersion (TAD); B)

trunk range of motion (TROM); C) center of mass range of motion (COM ROM); D) Minimum of COM (Min COM). Error bars indicate standard error of the

corresponding means. Asterisks: significant differences (� p< 0.05, �� p< 0.01, ��� p< 0.0001).

https://doi.org/10.1371/journal.pone.0241562.g007
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Fig 8. Kinematic variations and response time as a function of trials. Average values across all participants (N = 10).

From top to bottom: TAD = Trunk angular dispersion; TROM = Trunk range of motion; COM ROM = Center of

mass range of motion; Min ROM = Minimum of COM; Step Time = first response step time. Error bars correspond to

the standard error of the corresponding means. Piecewise linear regressions (---) use trial 3 as the break point (see Fig

5 and text for justification).

https://doi.org/10.1371/journal.pone.0241562.g008

PLOS ONE Prefrontal cortex learning motor timing

PLOS ONE | https://doi.org/10.1371/journal.pone.0241562 November 9, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0241562.g008
https://doi.org/10.1371/journal.pone.0241562


view [57]. Under this assumption, the absence of activity change in all PFC subregions is not

surprising. Furthermore, recent studies also indicate that buffering of information is unlikely

to occur in the PFC [see 10 for review], despite its acknowledged large role in working memory

[10, 58–61], motor planning [62], task switching [63] and memory updating [64]. However, it

cannot be fully dismissed that the lack of significance in changes of PFC activity could partly

result from the limited resolution of the fNIRS and the inherent delays of responses. Although

numerous studies have investigated motor learning and the role of the PFC in motor learning

(as cited above), little attention has been paid to the first few trials. They are usually included

in blocks (averages), although movement performance in the first block/batch is usually dis-

tinct from successive blocks [e.g., 54], it is still used to model learning as a continuous progres-

sive process. Most learning models use an exponential fitting including the set of initial

movements, regardless of the nature of the experiment (with or without unpredictable pertur-

bations). According to our present and previous results [19], stepwise regressions would recog-

nize the two steps in learning/adapting to unpredictable perturbation by acknowledging a

discontinuity/non linearity in the process. In the case of unpredictable perturbations, we

hypothesize that the pre-learning period of observation may be used to determine “what” must

be adapted to improve the motor response, which is compatible with the demonstration that

prediction based on an internal model [see 65 for example] precedes control in motor learning

[66]. We also assume that “what” is not the recovery motor program itself, which is presum-

ably accomplished by the DLPFC [67], but only the time at which a “good enough” recovery

motor program must be triggered to rapidly regain stability [19]. Our assumption is strongly

supported by the immediate adjustment of the recovery motor program when a “warning” cue

is provided 250 ms before the mechanical perturbation [18].

Learning phase

The improvement of performance with trials is associated with the switch of OFC activation

and the parallel decrease in the DLPFC, VLPFC, and FPFC activity. The OFC has been associ-

ated with multiple roles including being a center of cognitive maps [68], “economic” decision

making, based on a comparison of subjective values [69, 70], motivational, emotional and

social behaviors [71], as well as being the “oracle” predicting behavioral outcomes [72] and

learning that controls decision making [7, 73]. The OFC has also been claimed to regulate

“online” goal-directed action selection based on the value of a reward [74]. Although these

functions (decision, prediction, regulation) have been established from experiments exploring

cognitive processes, the corresponding conclusions/assumptions may apply to the sensory-

motor processes involved in movement planning, control and learning and not solely to sen-

sory-cognitive or cognito-cognitive processes. Hence, as OFC activity switches only after the

3rd trial and remains relatively constant thereafter, it is hypothesized that:

Table 3. PFC (DL,VL,F)—kinematics correlations.

TAD TROM COMROM Min COM RST

PFC (DL,VL,F) 0.980 0.981 0.981 -0.983 0.991

0.000 0.000 0.000 0.000 0.000

Cell Contents

Pearson correlation

P-Value

TAD = Trunk angular dispersion, TROM = trunk range of motion, COMROM = center of mass range of motion, Min COM = Minimum of COM, RST = response step

time.

https://doi.org/10.1371/journal.pone.0241562.t003
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1. OFC activity, which is modulated and/or gated by different pathways [2, 75–77], is likely to

occur subsequent to a disinhibition from a primary/higher decision center that delays its

activation until the most efficient/appropriate program parameter to be adjusted by learn-

ing has been identified. This primary decision process may take place in the PFC, which

holds intension for future action [9] and more particularly the DLFPC, which has a direct

connection with the OFC [78] and contributes to the inhibition of inappropriate responses

[79]. Note that the connectivity between structures and PFC subregions and its complexity

is beyond the scope of the present study. Obviously, this process relies on the existence of at

least a generic motor program/internal model [18] in the long term memory. This consti-

tutes the prior knowledge to predict behavior [73]. This “good enough” recovery program

is transferred to the working memory (PFC) and the OFC controls the adjustment of the

onset delay.

2. OFC functions (i.e., estimation/prediction of the timing of the recovery motor program,

prediction of outcome, reward associated with improvement of the motor outcome, deci-

sion to reduce timing delay) need to be performed at each iteration. This necessary cogni-

tive control may explain why in this recovery phase the OFC activity remains similar over

the subsequent trials, while activity decreases in the other subregions.

The decrease in DLPFC, VLPFC, and FPFC activity with learning (Fig 6) concurs with pre-

vious results obtained from diverse cognitive and motor tasks [1, 9, 80–82]. The decrease has

been associated with a relaxation of cognitive control over motor performance during learning

[83], and the correlated transfer of activity to other brain regions [3, 8, 80] and/or brain net-

work reconfiguration to “facilitate different facets of cognitive computation” [84].

Conclusion

The singularity of OFC activity relative to other PFC subregions led us to posit that learning

includes two steps, at least in the context of unpredictable perturbations, and that processing

requirements rather than the type of information (cognitive vs motor) to be processed produce

the patterns of activity. Our hypothesis is in line with the understanding that before becoming

more automatic (by learning), cognitive decisions must be made to “improve” their outcomes

and that both cognitive (e.g., emotion, decision) and motor (motion) information share the

PFC processors to a large extent. Reconfiguration of the network underlying the processing of

information is associated with organizing the flow of information as a function of required

processing [84]. The question remains though: what brain area orchestrates this plasticity? Or

is reconfiguration subject to rules derived from life experience (learning) and set by the context

and functionality of the elements of the network as proposed by Khambhati et al. [84]. This lat-

ter proposition is supported by a model based on machine learning and association of nodes as

a function of their functionality. Here, the OFC appears as a necessary element of the network

for the cognitive control of the timing of recovery motor programs.

Limitations

Although providing consistent results positively supporting our hypotheses, the current study

was performed with 10 participants, which does not represent a large cohort. The mechanisms

underlying recovery from unpredictable slip (or trip) perturbation while walking focus on a

concept applied to healthy young adults. It may be assumed that the corresponding generic

process would be to some extent similar in healthy older adults. However, older adults may be

affected by cognitive impairments that could influence the organization of their responses.

Hence, investigations including such a group, as well as high risk of falling populations are
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necessary to further understand the implicated cognitive mechanisms. A study involving spe-

cific older patients is currently underway in our laboratory. The investigation was limited to a

cognitive decisional aspect most likely taking place in the PFC. Hence, the roles/influences of

other brain areas also involved in motor activities and learning [85] and more particularly in

walking [49] are considered but not investigated in the present study. Finally, the use of a

treadmill allowed to control the perturbation and results may slightly differ in over the ground

walking; however, it would be expected that the concept and role of OFC remain the same.
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