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The hydrophobicity and hydrophilicity of amino acids play a very important role in protein folding and its interaction with the
environment and other molecules, as well as its catalytic mechanism. Based on the two physicochemical indexes, a 2D graphical
representation of protein sequences is introduced; meanwhile, a new numerical characteristic has been proposed to compute
the distance of different sequences for analysis of sequence similarity/dissimilarity on the basis of this graphical representation.
Furthermore, we apply the new distance in the similarities/dissimilarities of ND5 proteins of nine species and predict the four
major classes based on the dataset containing 639 domains. The results show that the method is simple and effective.

1. Introduction

It is becoming increasingly important to accurately predict
structure and function of proteins because there is an increas-
ing amount of protein sequences collected. Now, manymeth-
ods have been proposed to gain the additional information
or knowledge about the sequence. Graphical representations
have become an effective aid in understanding numerical
characterizations of biological sequences. One method of
creating a graphical representation of a biologic sequence is to
create a mapping from the sequence of amino acids or bases,
in increasing sequence order, to a numeric characterization
of a property of the amino acid or base. According to the
numerical characterizations, we can further analysis and
research of biological sequences.

The graphical technique was firstly proposed by Hamori
[1] for representation of DNA sequences. And then many
graphical representations of DNA sequences were provided,
for example, 2D, 3D, and other graphical representations of
DNA sequences [2–10].

Graphical representation of protein sequences has
emerged recently [11–21]. On the basis of the genetic code,

Randić et al. [11–14] gave some graphical representations of
protein sequences. Recently, many graphical representations
of protein sequences are generated according to the
physicochemical properties of 20 AAs [15–21].

In order to have a more intuitive understanding about
the biological characteristics implied in the sequence and
analyze the similarity/dissimilarity of the protein sequences,
Randić and others [22–26] proposed many numerical char-
acterizations, such as𝑀,𝐷,𝑀/𝑀, 𝐿/𝐿(𝐷/𝐷), 𝐿𝑘/𝐿𝑘 matrix.
For example, 𝑀/𝑀 matrix is the quotient of the Euclidean
distance and the Graph distance between points in the curve;
𝐿/𝐿(𝐷/𝐷) represents quotient of the Euclidean distance and
the sum of distances between a pair of points in the curve.
Furthermore, these different characteristic invariants were
applied to compare the similarities of biological sequences.
However, the numerical characterization methods require
a great amount of calculation and lose some information
of sequences. So many simple and direct methods were
proposed in order to solve complex problems in the sequence
alignment. For instance, Randić et al. [27, 28] and He et al.
[19] directly apply the generating graphical representation of
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protein sequences to compare the similarities/dissimilarities
of the protein sequences of different species.

In this paper, a 2D graphical representation of protein
sequences is introduced based on the hydrophobicity and
hydropathy index. According to the graphical representation,
a newnumerical characteristic has been proposed to compute
the distance of different sequences for analysis of sequence
similarity/dissimilarity. Then, we use the new numerical
characteristic of graphical representation to analyze the sim-
ilarities/dissimilarities of ND5 proteins of nine species. For
illustrating the utility of our method, the correlation analysis
has been provided to compare between our results and the
results based on the other graphical representations with the
ClustalW’s results. Furthermore, we utilize our method to
predict protein structural class, the prediction accuracy of
All-𝛽, 𝛼 + 𝛽 class and the overall accuracy have obviously
improvement. The result indicates that EH and Hp indexes
have important function when the primary sequence folds
into secondary structure; it also indicates that our method is
simple and effective.

2. The Graphical Representation of
Protein Sequences

The hydrophobicity and hydrophilicity of AAs in a protein
play an important role in its folding and its interaction with
the environment and other molecules, as well as its catalytic
mechanism [29]. Based on the hydrophobicity (EH) [30] and
hydropathy (Hp) [31] indexwhichwere considered byKurgan
and Chen [32], we introduce a graphical representation of
proteins to analyze the evolutionary relationships of the
protein sequences and predict the structural class from the
primary sequences. At first, we considermapping of eachAA,
as follows:
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where the EH0
𝑡
and Hp0

𝑡
(𝑡 = 1, 2, . . . , 20) are the original

EH and Hp values of 20 AAs which are listed in columns 3
and 4 of Table 1, respectively. Based on (1), the 2D-Cartesian
coordinates of 20AAs are listed in columns 5 and 6 of
Table 1, respectively. Because the slope decides the direction
of a curve, we use an equation to construct a 2D graphical
representation for each protein sequence, as follows.

For a protein sequence 𝑆 = 𝑠1𝑠2 ⋅ ⋅ ⋅ 𝑠𝑛, inspect it by
stepping one AA at a time. For step 𝑖 (𝑖 = 1, 2, . . . , 𝑛), a 2D
space point 𝑃𝑖(𝑥𝑖, 𝑦𝑖) can be constructed as follows:

𝑥𝑖 = 𝑖,

𝑦𝑖 =
Hp1
𝑡

EH1
𝑡

.

(2)

Let 𝑃0(𝑥0, 𝑦0) = (0, 0). When 𝑖 runs from 1 to 𝑛, we obtain a
series of points 𝑃1, 𝑃2, . . . , 𝑃𝑛, connecting the adjacent points
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Figure 1: The two curves of protein sequences I and II in the
coordinate value.

in turn; a 2D zigzag curve that contains 𝑛 + 1 points can be
obtained.

As an example, the 2D graphical representations of the
two short protein segments of Saccharomyces cerevisiae [27]
are plotted in Figure 1 to illuminate our approach.

In the curve, 𝑥-, 𝑦-coordinate values represent the posi-
tions of AAs in the sequence and the direction of the curve,
respectively. And we find that the protein sequences I and II
are generally similar except four AAs no matching.

3. The New Distance Metrics of Two Sequences

In order to have a more intuitive understanding about
implied biological characteristics in the sequence and analyze
the similarity/dissimilarity of different protein sequences,
many authors proposed different characteristic invariants
in different matrices, such as the 𝐷, 𝐸, 𝐿/𝐿, 𝑀/𝑀, 𝐿𝑘/𝐿𝑘
matrices [22–26]. However, the numerical characterization
methods require a great amount of calculation and may lose
some information of sequences. Therefore, some researchers
used the cumulative distance of every point to present the
distance of the sequences [20, 27, 28]. These numerical
characterizations can avoid losing some information of the
protein sequences.

We define the distance metrics between sequences 𝑆1 and
𝑆2 by (3) to compute the similarity of sequences:
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Table 1: The EH0
𝑡
and Hp0

𝑡
values of 20 AAs and their coordinates in the 2D-Cartesian derived from (1).

Amino acid Code EH0 Hp0 EH1 Hp1

Alanine A 0.62 1.8 0.62 2.29
Cysteine C 0.29 2.5 0.29 2.99
Aspartate D −0.9 −3.5 −0.9 −3.01
Glutamate E −0.74 −3.5 −0.74 −3.01
Phenylalanine F 1.19 2.8 1.19 3.29
Glycine G 0.48 −0.4 0.48 0.09
Histidine H −0.4 −3.2 −0.4 −2.71
Isoleucine I 1.38 4.5 1.38 4.99
Lysine K −1.5 −3.9 −1.5 −3.41
Leucine L 1.06 3.8 1.06 4.29
Methionine M 0.64 1.9 0.64 2.39
Asparagine N −0.78 −3.5 −0.78 −3.01
Proline P 0.12 −1.6 0.12 −1.11
Glutamine Q −0.85 −3.5 −0.85 −3.01
Arginine R −2.53 −4.5 −2.53 −4.01
Serine S −0.18 −0.8 −0.18 −0.31
Threonine T −0.05 −0.7 −0.05 −0.21
Valine V 1.08 4.2 1.08 4.69
Tryptophan W 0.81 −0.9 0.81 −0.41
Tyrosine Y 0.26 −1.3 0.26 −0.81
Protein I: WTFESRNKPAKDPVILWLNGGPGCSSLTGL.
Protein II: WFFESRNKPANDPIILWLNGGPGCSSFTGL.

Table 2: The slope difference distances of ND5 proteins of nine species by our approach.

Gorilla Pygmy Common Fin whale Blue whale Rat Mouse Opossum
Human 0.2731 0.1965 0.2125 0.7717 0.7816 0.8681 0.8075 1.5101
Gorilla 0.2662 0.2753 0.7824 0.7899 0.9509 0.8444 1.6152
Pygmy 0.1748 0.7747 0.7843 0.8898 0.8082 1.5345
Common 0.7588 0.7700 0.8909 0.7701 1.5315
Fin whale 0.1077 0.7588 0.7314 1.4427
Blue whale 0.7947 0.7452 1.4880
Rat 0.4995 1.4290
Mouse 1.3969

where 𝑙1, 𝑙2 denote the lengths of two sequences 𝑆1 and 𝑆2; 𝑦𝑆
1

,
𝑦𝑆
2

are their 𝑦-coordinate values, respectively. This distance
eliminates reflection of no equal length sequences, so the
numerical characterization is more effective.

4. The Similarity/Dissimilarity Analysis of
Nine ND5 Proteins

We use the novel quantitative description of the graphical
representation of protein sequences to analyze the sim-
ilarities/dissimilarities of ND5 proteins of nine species
(Human (AP 000649, 603aa), gorilla (NP 008222, 603aa),
pygmy chimpanzee (pygmy) (NP 008209, 603aa), com-
mon chimpanzee (common) (NP 008196, 603aa), fin whale
(NP 006899, 606aa), blue whale (NP 007066, 606aa), rat
(AP 004902, 610aa), mouse (NP 904338, 607aa), and opos-
sum (NP 007105, 602aa)).

The distances among ND5 proteins of nine species are
computed based on (3), and their similarities/dissimilarities
are listed in Table 2. The smaller distance represents the
two species are more similar. Observing Table 2, we find
the fin whale-blue whale is the most similar. The human,
gorilla, pygmy, and common are also similar, and the rat
and mouse are similar. Furthermore, we find the opossum
is the dissimilar to the other eight species. And we obtain
the human is more similar to pygmy and common than
human and gorilla. These results about the similarity are
consistent with the known fact of evolution and reduce the
computational complexity.

To illustrate the effectiveness of ourmethod, theClustalW
is used to compute the similarity of sequences and construct
the phylogenetic tree [34]. ClustalW is a multiple sequence
alignment program for biological sequences, which attempts
to calculate the best match for the selected sequences and
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Table 3: The distance matrix for ND5 proteins of nine species calculated by ClustalW.

Gorilla Pygmy Common Fin whale Blue whale Rat Mouse Opossum
Human 10.7 7.1 6.9 41.0 41.3 50.2 48.9 50.4
Gorilla 9.7 9.9 42.7 42.4 51.4 49.9 54.0
Pygmy 5.1 40.1 40.1 50.2 48.9 50.1
Common 40.4 40.4 50.8 49.6 51.4
Fin whale 3.5 45.3 46.8 52.7
Blue whale 45.0 45.9 52.7
Rat 25.9 54.0
Mouse 50.8

lines them up so that the identities, similarities, and differ-
ences can be observed. Then, the distance matrix for ND5
proteins of nine species is calculated byClustalWand listed in
Table 3. In order to illustrate the effectiveness of our method,
we give the scatter plot of correlation analysis from element
by element of Tables 2 and 3. If the points are all round the
trend line, this shows that the correlation is better between
our method and ClustalW. Furthermore, the scatter plots of
correlation analysis are obtained about the results of Yao et al.
method [15], Wen and Zhang method [17], Abo El Maaty et
al. method [35], and Wu et al. method [36] with the distance
matrix of Table 3. Observing Figure 2, our method is better
than other graphical representation approaches of proteins.

5. The Prediction of Structural Class Using
𝑘-NN Algorithm

Protein function, regulation, and interactions can be learned
from their structure [37, 38], which promotes development
of novel methods for the prediction of the protein structure.
And knowledge of protein structure plays an important role
inmolecular biology, cell biology, pharmacology, andmedical
science.

Protein secondary structural is generally classified into
four structural classes: all-𝛼, all-𝛽, 𝛼/𝛽, and 𝛼 + 𝛽. The all-𝛼
and all-𝛽 classes represent structures that contain mainly 𝛼-
helices and 𝛽-strands, respectively. The 𝛼/𝛽 and 𝛼 + 𝛽 classes
include both 𝛼-helices and 𝛽-strands where the 𝛼/𝛽 class
consists of mainly parallel 𝛽-strands and 𝛼 + 𝛽 class includes
antiparallel strands. We obtain that the dataset includes 640
domains that share sequence identity below 25% [33] in
http://biomine.ece.ualberta.ca/Structural Class/SCEC.html.
In this paper, we use the dataset that only includes 639
protein domains deleting a wrong domain.

In this work, the 𝑘-Nearest Neighbor (𝑘-NN) classifiers
algorithm is used to predict the structural class. The 𝑘-NN
algorithm is the simplest among those used in machine
learning and can determine the attribute of a query point
by taking the weighted average of the 𝑘-NN to the point,
and as such is a highly effective inductive inference method
[39]. Given a sequence 𝑆, we calculate the distance metrics
of sequence 𝑆 with other sequences and select the 𝑘-nearest
sequences. The distance metrics 𝐷(𝑆1 − 𝑆2) between two
sequences 𝑆1 and 𝑆2 are calculated using (3). In the 𝑘
sequences, we use the 𝑁1, 𝑁2, 𝑁3, 𝑁4 to indicate the

numbers of sequences which belong to all-𝛼, all-𝛽, 𝛼/𝛽, and
𝛼 + 𝛽 class, respectively. If the 𝑁1 or (𝑁2 or 𝑁3 or 𝑁4) is
the maximum, sequence 𝑆 is, respectively, predicted for all-
𝛼, all-𝛽, 𝛼/𝛽, and 𝛼 + 𝛽 class. According to the calculation
process, we list the performance results of our method using
the jackknife test when 𝑘 = 29 in Tables 4 and 5 (i.e., to say
𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 = 29).

The following evaluation of the predicted results used
several quality measures in this work, including the predic-
tion accuracy (ACC), sensitivity, specificity, and Matthews
correlation coefficient (MCC). In the section, the ACC
was used to evaluate the results of our method and other
published approaches:

Accuracy = TP + TN
TP + TN + FP + FN

,

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FP

,

MCC

=
TP × TN − FP × FN

√(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)
,

(4)

where TP and TN are the numbers of correctly classified
sequences of positive and negative samples, respectively. FP
and FN are the numbers of incorrectly classified sequences
of negative and positive samples, respectively.The simple and
intuitive of ROC curve is given that can accurately reflect a
specificity and sensitivity analysis method and is the compre-
hensive representation of the test accuracy. Meanwhile, the
area under the ROC curve (AUC) is given to evaluate the
predicted probabilities.

Observing Table 4, the results indicate that the overall
prediction accuracy with our method achieves 60.82% in
the 639 domains, which is the highest among the compared
methods, including IB1, C4.5, Naive Bayes, logistic regression
[33], and Liao’smethod [20]. InChen’s article [33], the authors
declared that 𝛼+𝛽 class was the most difficult to predict than
the other three structural classes. However, the prediction
accuracy of 𝛼 + 𝛽 has evidently improved using our method.
And the all-𝛽 class and overall accuracy are also higher
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Figure 2: Continued.
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Figure 2: The correlation analysis between ClustalW and other methods.

Table 4: Comparison of Jackknife Accuracies of Different Classification and algorithm.

Dataset Algorithm Accuracy (%)
All-𝛼 All-𝛽 𝛼/𝛽 𝛼 + 𝛽 Overall

639 domains (25% sequence identity)

SVM [33] 73.91 61.04 81.92 33.92 62.34
IB1 [33] 53.62 46.10 68.93 34.50 50.94
C4.5 [33] 59.42 49.35 58.19 28.65 48.44

Naive Bayes [33] 55.07 62.34 80.26 19.88 54.38
Logistic regression [33] 69.57 58.44 61.58 29.82 54.06
𝑘-NN [20] 54.35 36.36 77.97 37.06 51.96
Our method 54.71 62.87 72.32 53.37 60.82

Table 5: The other four Jackknife performance of different classification using our method.

Classes Sensitivity (%) Specificity (%) MCC (%) AUC (%)
All-𝛼 52.97 61.40 11.64 60.93
All-𝛽 61.36 64.89 25.97 61.63
𝛼/𝛽 65.25 91.58 50.36 87.51
𝛼 + 𝛽 52.14 57.14 8.21 53.51

than other methods. The result demonstrate that EH and
Hp index possess very important function when the primary
sequence folds into secondary structure especially in the 𝛼+𝛽
class. Furthermore, using ourmethod, the other performance
values and the ROC curves by utilizing individual four classes
and corresponding AUC values are given in Table 5 and
Figure 3, respectively. Observing Table 5, the predictions for
the 𝛼/𝛽 class have higher quality with 65.25% for sensitivity,
91.58% for specificity, and 50.36% for MCC. In Figure 3,
the AUC values for each of the four classes are above 0.5
(for random predictions). Although the overall prediction
accuracy with our method is lower than the method of SVM
[33], our approach is simpler and less time consuming.

6. Conclusions

The hydrophobicity and hydrophilicity of AAs play an
important role in folding for secondary structure. Based
on the two physicochemical indexes, a 2D graphical rep-
resentation of protein sequences is proposed in the paper.
This graphical representation of protein sequences has the
better visibility and can reflect more information of protein
sequences. In order to obtain the intuitive understanding
of sequences implying biological characteristics and make
the similarity comparison conveniently, a new distance is
suggested based on the graphical representation of protein
sequences. We firstly apply the new distance to analyze the
similarities/dissimilarities of ND5 proteins of nine species,
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and correlation analysis is given to compare our results
and other graphical representations with ClustalW’s result.
Furthermore, using the new distance of graphical represen-
tation, the four major classes are predicted based on the
dataset containing 639 domains that share sequence identity
below 25%. The prediction result shows that the method
can improve the prediction accuracy for All-𝛽, 𝛼 + 𝛽 class
and the overall accuracy. In particular, using our method
can evidently improve the prediction accuracy of the 𝛼 + 𝛽
class. The result demonstrates that EH and Hp index have
important function when the primary sequence folds into
secondary structure. The calculation methodology is more
simple, convenient, and fast. In addition, the method can be
extended to other physicochemical properties of amino acids
and will be useful to study and solve some bioinformatics
problems.
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