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Abstract: Prevalence of type 2 diabetes increased from 2.5% of the US population in 1990 to 10.5%
in 2018. This creates a major public health problem, due to increases in long-term complications of
diabetes, including neuropathy, retinopathy, nephropathy, skin ulcers, amputations, and atheroscle-
rotic cardiovascular disease. In this review, we evaluated the scientific basis that supports the use
of physiologic insulin resensitization. Insulin resistance is the primary cause of type 2 diabetes.
Insulin resistance leads to increasing insulin secretion, leading to beta-cell exhaustion or burnout.
This triggers a cascade leading to islet cell destruction and the long-term complications of type 2
diabetes. Concurrent with insulin resistance, the regular bursts of insulin from the pancreas become
irregular. This has been treated by the precise administration of insulin more physiologically. There is
consistent evidence that this treatment modality can reverse the diabetes-associated complications of
neuropathy, diabetic ulcers, nephropathy, and retinopathy, and that it lowers HbA1c. In conclusion,
physiologic insulin resensitization has a persuasive scientific basis, significant treatment potential,
and likely cost benefits.

Keywords: insulin resistance; diabetes; metabolic disorder; obesity; insulin infusion; physiologic insulin
resensitization; PIR; treatment modality; neuropathy; nephropathy; retinopathy; cardiovascular
disease; chronic kidney disease; CKD

1. Introduction

The prevalence of type 2 diabetes has increased from 2.5% of the US population in
1990 and constituted 10.5% of the total US population or 13.0% of US adults in 2018 [1].
This is an astounding 320% increase in 28 years. In addition, a third of American adults,
approximately 88 million people, have prediabetes [2]. Patients with pre-diabetes will
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progress to diabetes at a rate of 5–10% per year [3]. While, currently, we have a major
diabetes-associated health care problem, a surge of new diabetes patients looms. An already
overburdened health care system can expect major increases in the long-term complications
of type 2 diabetes, which include neuropathy, retinopathy, nephropathy, ulcers, amputa-
tions, and atherosclerotic cardiovascular disease. Diabetes is a very expensive disease that
cost the US economy in 2017 an estimated $327 Billion in direct medical costs and another
$90 Billion in lost productivity. Given that the annual direct medical cost for treating dia-
betes increased from $245 Billion to $327 Billion per year between 2012 and 2017 [4], it is not
unreasonable to assume that the cost of treating diabetes in 2021 will approach $400 Billion.
This expenditure is high and increasing because it is directed toward a progressive disease
for which therapy is designed to slow the progression of diabetes-associated conditions
until death occurs.

We first turned our attention to the most current guidelines from the American Di-
abetes Association (ADA), which has recommend the use of medications classified as
sodium-glucose cotransporter 2 inhibitors (SGLT2is) and glucagon-like peptide 1 recep-
tor agonists (GLP-1 RAs) for individuals with T2D on Metformin AND diagnosed with
EITHER heart failure (HF) OR chronic kidney disease (CKD) [5], as clearly discussed by
Colling, et al. [6]. They conclude that “the introduction of SGLT2is and GLP-1RAs has led
to rapid changes in recommendations for the medical management of T2D” [6]. Moreover,
Colling, et al. detail classes of patients for whom preferential use of GLP-1RAs and SGLT2is
is and is notrecommended, and we urge a thorough review by practitioners [6]. The ADA’s
“Standards of Medical Care in Diabetes” was originally approved in 1988 and the work is
updated annually, most recently in December of 2020. Considerations and requirements
are discussed in “Introduction: Standards of Medical Care in Diabetes—2021” [7].

We also note that the Food & Drug Administration (FDA) has published a March 2020
Update to its Drug Safety Communications from 2015 [8]. Further, The American College
of Cardiology published on January 19, 2021, an expert analysis by Rishav Adhikari and
Michael Blaha, who found that (1) uptake of these cardioprotective drugs in 2020 remained
low; (2) cardiologists account for a minute percentage of prescribing for these drugs, even
though their primary benefit is cardiovascular risk reduction; and (3) barriers to adoption
by cardiologists include lack of knowledge about these medications and cardiologists’
perception that diabetes care is not their responsibility [9].

Clearly, costs will rise, side effects and FDA warnings will always be prevalent,
and disability will continue to occur. However, there is a complimentary treatment that
reverses the major underlying pathophysiologic mechanism that leads to T2DM with far
fewer negatives, if any. This treatment is effective because it directly reverses insulin
resistance (IR), not just the individual manifestations of diabetes. Moreover, unlike other
medications cited, side effects are minimal, if at all. For nearly forty years, researchers
and clinicians have utilized a treatment modality that dynamically administers periodic
infusions of insulin that bio-mimic the non-diabetic’s natural secretions and rest periods of
insulin from the pancreas [4]. There have been multiple articles describing this treatment
approach that have reported efficacious clinical outcomes on various diabetic comorbidities.
Although effective, the exact cellular and molecular mechanisms behind the use of periodic
infusions of insulin was undetermined. This article has two purposes: (1) To explore insulin
resistance pathophysiology and (2) to review literature for clinical outcomes and molecular
mechanisms that support the use of physiologic insulin resensitization as an effective
treatment modality to address insulin resistance, of which diabetes and its complications
are the most common results.

2. The Rise of Type 2 Diabetes

In general, two main hypotheses were generated for the etiology and pathogenesis of
type-2 DM. The first hypothesis is that the development of insulin resistance (IR) is behind
type 2 diabetes. IR causes hyperglycemia, which is the cause of most diabetic complications.
IR also causes hyperinsulinemia, i.e., the over-production of insulin by βbeta cells. Over
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time, beta cells will be exhausted and die, which leads to further disease progression and
more hyperglycemia. The second hypothesis concerns the defect in insulin secretion, which
is well reported in type 2 diabetes.

As stated, type 2 diabetes is driven by IR. A common perception of type 2 diabetes
progression is that the IR is countered by increasing insulin secretion until the beta cells
in the pancreas can no longer keep up with the insulin demand and die progressively of
exhaustion [3]. Another possible sequence of events is that the IR could begin with a defect
in insulin secretion. A defect in the first phase of insulin secretion is well known to be an
early characteristic of type 2 diabetes [10,11]

Therefore, an alternative explanation for the progression of type 2 diabetes is that
impaired insulin secretion is a corollary to the progression of obesity, thus, triggering a
cascade leading to islet cell destruction and the long-term complications of type 2 diabetes.
In this manuscript, we offer the hypothesis that it is an insulin secretion defect that drives
the IR responsible for the pathophysiology of type 2 diabetes.

3. Physiologic Hormone Secretion

Hormones that are released in an oscillatory pattern have receptors that are physi-
ologically designed to bind the ligand, bring it into the cell, separate the receptor from
its ligand and return the receptor to the cell surface. This rest period, or trough, of these
oscillations gives sufficient time for this physiologic sequence to take place prior to the next
peak in this cycle. When hormone receptors designed to respond to pulses of its ligand
are exposed to constant stimulation with the hormone, the receptors down-regulate and
become “tolerant” or “resistant” to stimulation. The amount of down regulation can be
variable; for example, the gonadotropin-releasing hormone receptor is an example of a
receptor that is particularly sensitive to down-regulation from a constant stimulation by its
ligand. Leuprolide is a long-acting agonist of the gonadotropin-releasing hormone receptor
that is given as an injection and stimulates the receptor continuously for 1–3 months. This
receptor agonist down-regulates the receptor to the extent that the sex hormone secretion is
blocked. In fact, leuprolide is used to block puberty or to achieve a chemical castration in
the treatment of hormone-sensitive cancer [12].

3.1. Physiologic Insulin Secretion

Physiologic insulin consists of discrete oscillatory secretions and distinct rest periods to
stimulate ligand/receptor activation. The beta cell secretes insulin with a dynamic periodic-
ity of 4–8 min, and most commonly 5–6 min, based on the body’s demands (Figure 1) [13].

Beta cells in the islets are in close contact to one another, which allows islets to secrete
insulin in such a pattern, but it requires a network of autonomic nerves to allow the pancre-
atic beta cells to coordinate this dynamic profile [14]. The insulin pulses are responsible
for timing of dynamic glucagon secretion that occur normally anti-synchronous from the
cycling of insulin [15]. Measuring the cycling of insulin is made more difficult by the fact
that the beta cells secrete the insulin into the portal circulation and the concentrations in
the portal vein are five times higher than in the peripheral circulation due to hepatic extrac-
tion [16]. The insulin receptor in its upregulated state senses a basal level of insulin that is
about 30% of the total, and 70% is due to pulses secreted over that baseline. The increase in
insulin at meals is accounted for by an increase in the amplitude of the insulin spikes and
not a change in the time between oscillations. Although there is a high rate of clearance of
insulin by the liver, C-peptide is secreted in an equimolar ratio to insulin, but C-peptide
reaches the peripheral circulation without hepatic clearance. The deconvolution method of
measuring the spike frequency from the peripheral blood depends on the differential kinet-
ics of insulin and C-peptide [16]. Insulin resistance (IR) is associated with a reduction in
the amplitude of insulin cycling and an increase in the basal level of insulin, creating more
of a constant rather than oscillatory pattern of insulin stimulation of its receptor. Although
obesity is associated with an increase in beta cell mass, by the time type 2 diabetes develops,
there has been a 65% reduction in beta cell mass due to apoptosis associated with increased
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levels of amylin that is secreted in equimolar amounts to insulin [17]. This reduced beta cell
mass loses the ability to maintain insulin oscillation, and a reduction in glucose-stimulated
insulin secretion leads to hyperglycemia. The peripheral level of insulin is higher with an
increased ratio of proinsulin to insulin, but the peaks in insulin secretion are not as high
as in people with normal glucose tolerance. The lack of insulin pulses decreases hepatic
clearance of insulin leading to peripheral hyperinsulinemia [18]. The insulin receptor can
bind insulin in two ways, with high affinity and with low affinity. The affinity decreases
as the insulin levels increase. Thus, the changing of receptor affinity for insulin is another
property that contributes to hyperinsulinemia [19].
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Figure 1. A three-minute moving average (continuous line) of the fasting plasma insulin, C-peptide
and glucose concentrations taken at one-minute intervals. The dashed line shows the “unsmoothed”
data. Smoothing reduces the rapid fluctuations, which are probably due to “noise,” and also blunts
the amplitude. The simultaneous insulin and C-peptide cycles disappear after 50 min. Reproduced
from [13].

3.2. Insulin Sensitivity and Physiologic Secretion

The importance of oscillatory secretion signals in insulin sensitivity has been demon-
strated in several ways. In patients with type 2 diabetes, an overnight infusion of somato-
statin gave the beta cell a rest from constant stimulation by insulin and restored insulin
pulse mass and normal insulin secretion [20]. Hepatic IR in dogs was achieved with a
constant infusion of insulin that produced a 50% increase in the portal vein level of in-
sulin [21]. Even more convincing was a study in which physiologic insulin delivery in
patients with type 1 diabetes was compared to a constant infusion of insulin. A euglycemic
insulin (1 mU/kg/min) clamp was performed on two occasions. On one occasion, it was
infused continuously and, on the other occasion, it was infused for 3 min followed by a
7-min rest period. Despite a 40% reduction in the insulin dose, the suppression of hepatic
glucose output was the same. When the total amount of insulin infused was held constant,
the hepatic glucose output was 25–30% less in the cyclical condition [22]. It has also been
shown in people with normal glucose metabolism that the dynamic pattern of insulin
secretion enhances peripheral glucose uptake more than a continuous infusion [23].

4. Mechanisms of Insulin Resistance

Normally, insulin is secreted in a physiologic pattern, mediated by a pancreatic neu-
ronal network connecting cells residing in the islets of Langerhans [24,25]. Dysfunctional
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insulin rhythmicity can occur from a variety of insults (i.e., obesity, auto-immune disorders,
toxins, trauma, stress etc.) that lead to inflammation of this network. When physiologic
patterns of insulin secretion are disrupted, beta cells secrete insulin asynchronously. As
a result of constant ligand/receptor exposure, a negative feedback loop downregulates
insulin receptor responsiveness. In addition, lack of physiologic peaks and troughs leads
to refractory delays in receptor activity. Finally, disrupted pulsation leads to unopposed
glucagon levels, which decrease transcription of insulin receptors [26].

4.1. Implications for Treatment

A genetic aspect to insulin resistance (IR) involves abnormal insulin signaling and
leads to type 2 diabetes. The children of parents with type 2 diabetes have IR that leads to
type 2 diabetes later in their adulthood. These children exhibit higher levels of insulin and
beta-cell dysfunction [27]. Even people who are just close relatives of people with type 2
diabetes often have impaired insulin oscillatory patterns [28].

4.2. Diet

From a dietary perspective, the Framingham study suggests that diets with a lower
glycemic index are associated with greater insulin sensitivity [29]. A low carbohydrate
diet is associated with a reduction in IR compared to a high carbohydrate diet [30]. The
improvement in insulin oscillation was proportional to residual insulin sensitivity after
weight loss [31]. This is, and has been, an approach that targets a reduction in a precursor
of the disease manifestations and not just a single symptom. However, it has proved very
difficult to obtain patient cooperation in adopting and maintaining an appropriate diet that
minimizes carbohydrates and results in achieving and maintaining weight loss [32,33].

4.3. Medication

From the medication perspective, as one might predict for a disease driven by IR, in-
sulin sensitizing medication such as metformin or the thiazolidinediones prevent or restore
the abnormal insulin secretion associated with IR [34,35]. Repaglinide and glucagon-like
peptide-1 agonists increase the insulin peak amplitude without affecting oscillatory fre-
quency [36]. When people with diabetes require insulin, it is given as a subcutaneous
injection in a manner that exposes the insulin receptor to a constant level of insulin. Inter-
estingly, some of the common ways of measuring insulin sensitivity are based on fasting
insulin and glucose values such as homeostatic model assessment for insulin resistance
(HOMA-IR) [37], which may underestimate the role that physiologic insulin cycling plays
in IR. All the medications described above deal with controlling the effects of existing
diabetes, and not on treating its underlying causes.

As the occurrence of diabetes continues to rise along with the ballooning costs of
treatments, pharmaceutical companies continue to seek proprietary compounds for de-
velopment. In recent years, the US FDA has approved several drugs with novel mecha-
nisms of action. These include GLP-1 agonists, Dipeptidyl peptidase-4 (DPP-4) inhibitors
and sodium-glucose transport protein 2 (SGLT2) inhibitors. Thiazolidinediones’ such as
rosi- and pioglitazone are the only approved insulin sensitizing drugs that use insulin
sensitization as the only mechanism. Physiologic insulin resensitization (PIR) is a true
sensitizing strategy, as well. Rosiglitizone costs about $180–$190 a month but gives an in-
crease of fat cells that fill with fat and increase obesity and therefore include cardiovascular
safety concerns.

Although this review was written to focus on approaches that are true insulin sensitiz-
ers, such as insulin and the thiazolidinediones, glucagon-like peptide-1 (GLP-1) agonists
and sodium-glucose cotransporter-2 (SGLT-2) inhibitors, through their independent mecha-
nisms, have shown a positive effect on insulin resistance. The interested reader can refer to
recent reviews on the molecular mechanisms of action of these medications [38,39], since
the subject is beyond the scope of the present review.
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It is encouraging to see reductions in major cardiovascular endpoints and positive data
for those suffering with renal complications of diabetes. However, the magnitude of such
benefits from these novel drugs are limited in scope, while many patients are unable to
tolerate due to material adverse side effects [40,41]. In addition, recent guidelines published
5 March 2018, from the American College of Physicians (ACP) on diabetic management
outline that over-aggressive HbA1c control can be counterproductive and harm patients due
to complications of hypoglycemia and other untoward effects. This evidence-based review
includes data from the landmark ACCORD trial that was terminated prematurely, because
intensive glycosylated hemoglobin management led to increased morbidity and mortality.
As such, ACP guidelines now target a HbA1c between 7–8%, rather than previous targets of
6.5–7%. Thus, the standard of practice for diabetic management is in flux, highlighting the
need to modify treatment modalities for optimal clinical outcomes [42]. Another important
development was the reclassification by the FDA of insulin to the biologic regulatory
framework in March of 2020, highlighting the physiologic importance of this hormone
peptide in regulating carbohydrate metabolism [43].

4.4. Physiologic Insulin Resensitization

An alternative approach to counter IR in the euglycemic clamp of constant insulin
infusion would be to reintroduce physiologic insulin delivery. This has been done by insert-
ing an intravenous access connected to a precision infusion pump that can be programmed
to dynamically deliver physiologic insulin typical of normal glucose metabolism. A more
detailed description of physiologic insulin can be described as periodic cycling of up to 3
IU of regular insulin infused dynamically every 4–8 min (usually 5–6 min), based on the
body’s utilization for 2 to 4 h based on an individual patient weekly basis. Oral glucose
is given to simulate a meal and to keep blood glucose in a therapeutic and safe range.
Patients are observed until glucose is stable after the dynamic insulin infusion is adminis-
tered [44]. The mechanism of PIR is directed at the pathophysiology of IR, found in type 2
diabetes. Through upregulation of the insulin receptor/ligand complex, it may be possible
to bio-modulate physiologic response in a beneficial manner. Peripheral administration of
IV insulin in a rhythmic pattern would then be able to replace lost physiological signals
critical to cellular glucose metabolism. With improved ability to drive glucose into the
mitochondrial oxidative phosphorylation cascade, improved energy production (in the
form of ATP) could then occur. As such, energy depleted tissues would have the building
blocks necessary to undergo healing, repair, and cellular restoration [45].

Physiologic insulin resensitization requires a pulsatile insulin delivery comparable to
that of a healthy pancreas. Understanding this type of insulin delivery is necessary; over
the years, scholars have studied and reported on this concept. Notably, in 2012, researchers
Matveyenko et al. reported that pulsatile insulin delivery into the systemic circulation is
more efficacious than constant insulin infusion [46]. The Matveyenko study also found that
the timing of the insulin receptor is perfectly suited to entrain to the episodic delivery of
insulin via the sinusoids directly to hepatocytes, and they concluded that hepatic insulin
signaling is delayed and impaired when insulin is delivered in a nonpulsatile manner [46].

Ten years earlier, Porksen, et al., discussed pulsatile insulin secretion and reported that,
in type 2 diabetes mellitus, both IR and impairment of insulin secretion characterizes the
metabolic problem of the disease. High frequency of insulin oscillations in these patients
corresponds to serial secretory insulin bursts [47].

This treatment approach has been reported to achieve physiological insulin concentra-
tions in the portal vein based on animal work [48]. This treatment, with some variation
on the amount of insulin and treatment frequency, has been evaluated in case series and
clinical trials that are reviewed herein.
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5. Studies of Physiologic Insulin Resensitization (PIR) Treatment
5.1. Foot Ulcer and Peripheral Neuropathy

Tucker et al. described two cases in which symptoms of diabetic neuropathy resolved
with PIR. One was a 73-year-old male who displayed slow wound healing, erectile dys-
function, and numbness in his feet with a foot ulcer. Intermittent treatment with PIR
achieved wound healing, numbness resolution, and a decrease in his insulin requirement
from 120 to 28 units per day. The second was a 74-year-old female who experienced slow
wound healing, a foot ulcer, weight gain, stage 4 chronic renal disease, numbness, pain,
and tingling in her lower extremities. Over several months of receiving insulin adminis-
tered in a physiologic manner, she experienced wound healing, improved sensation, and
discontinuance of the gabapentin formerly taken for neuropathy pain. She also lost 15 kg,
her daily insulin requirement dropped from 60 to 25 units per day, and her HbA1c dropped
from 9.9 to 7.1% [49]. In another study Elliott et al. described a case series of 5 patients who
were treated with physiologic insulin 1 h 3 times a day up to 5 days a week. The mean
time to complete healing of foot ulcers was predicted from the literature to be 133 days,
but the wounds in the 5 patients healed in a mean of 84 days [50]. The 37% reduction in
the healing time was interpreted as providing a significant cost savings [51]. Dailey et al.
randomly allocated 19 patients (12 men, 7 women) to either standard diabetic insulin-based
care or to that care and additional day per week of 3 sessions of physiologic insulin over an
8-h period. When compared to baseline perceptions, patients receiving physiologic insulin
reported significant improvement in diabetic nephropathy when compared to the control
group (p = 0.0144) [52]. Eliott et al. reported on a study of 412 patients, 76% of whom
experienced painful diabetic neuropathy and who were treated with 3 h of physiologic
insulin per week for 3 months. Of those with painful diabetic neuropathy, 142 (47.5%
experienced complete resolution of pain, 136 (45.5%) experienced partial resolution of pain
and 21 (7%) experienced no improvement [51].

5.2. Diabetic Nephropathy

Villaverde et al. described three cases of chronic kidney disease, one in a patient
with diabetes and two with pre-diabetes, that improved in response to physiologic insulin
resensitization over 5–6 months. The estimated glomerular filtration rate (GFR) increased
from 33, 34 and 54 cc/min to 55, 42 and 74 cc/minute, respectively. Blood urea nitro-
gen and creatinine improved from means of 27 and 1.7 mg/dL to 13 and 1.2 mg/dL,
respectively. Not only is reversal of chronic kidney disease difficult to accomplish, but de-
laying renal replacement therapy is also associated with significant economic savings [53].
Manessis et al. reported an uncontrolled series of 17 patients with type 2 diabetes of greater
than 2 years duration and stage 3 chronic kidney disease (GFR 30–60 cc/min) treated with
weekly dynamic physiologic insulin for 3 months. The GFR increased by 12% from base-
line (47.6 ± 10 cc/min to 53.3 ± 11.9, p < 0.01), creatinine decreased by 7% from baseline
(p < 0.05), and systolic blood pressure decreased by 6% from baseline (p < 0.05) [54]. Quach
and Manessis conducted a trial of 17 patients with chronic kidney failure. Patients received
a total of 10 physiologic insulin infusion procedures over three months. GFR improved
by an average of 10.8% and creatinine decreased by 6.8% [55]. Dailey et al. compared two
randomly assigned groups of 49 patients who received either intensive diabetes treatment
only (26) or intensive treatment plus physiologic insulin infusions (23). Creatinine clearance
(CrCl) declined significantly in both groups, as expected, but the rate of CrCl decline in the
group receiving physiologic insulin (2.21 ± 1.62 mL/min/yr) was significantly less than
in the control group (7.69 ± 1.88 mL/min/yr, p = 0.0343) [52]. An overall summary of the
physiologic insulin resensitization effect on diabetic nephropathy is provided in Table 1.

5.3. HbA1c

Tucker et al. reported a 74-year-old female who presented with numerous com-
plications after 20 years of T2D that included slow wound healing, foot ulcers, kidney
disease, neuropathy, and hypertension. Her comparisons before and after PIR treatment
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included HbA1c reduction from 9.9 to 7.1, improved wound healing and discontinuance of
Gabapentin for neuropathy, and discontinuance of her Humalog completely [49].

Table 1. Summary of benefits from physiologic insulin resensitization in treating diabetic nephropathy.

Improvements in the Progression of Diabetic Nephropathy

Halting the Progression of CKD: CrCl (18 months) [52] 348%

Reversals of CKD: Improved EGFR (3.75 months) [53] 44%

Reversals of CKD: Improved EGFR (3 months) [54] 12%

Aoki et al. treated 20 patients with brittle type 1 diabetes for periods of 7–71 months
with physiologic insulin and the mean HbA1c declined from 8.5% to 7.0% [56]. Aoki
reported on another study of 31 patients with type 1 diabetes, many with diabetes compli-
cations, who were controlled on a physiologic insulin regimen with injections administered
4 times a day. These patients were treated with additional oscillatory intravenous insulin
for 1 h during meals 3 times a day, 1 day a week, for 7 to 71 months. The HbA1c fell
from 8.5% to 7.0%. Major hypoglycemic reactions fell from 3 to 0.1 per month, and minor
hypoglycemic reactions fell from 13 to 2.4 per month [44].

5.4. Cost Reduction

All the studies above reflected reduced burden of disease. However, they did not
study the actual or potential saving that may have accrued because of the intervention.
Another study gave data for the likely savings that are possible. Elliott et al. reported an
observational study that included 1524 patients with diabetes who had two or more com-
plications and who were treated with 3-h (weekly or at longer intervals) physiologic insulin
for 2 years [51]. The number of expected hospital admissions was 47 out of 100 patients
per year, but only 5 were observed and the number of expected and observed emergency
room visits per year was 58 and 7, respectively (p < 0.0001) [51].

6. Conclusions

Based on the evidence, loss of dynamic physiologic insulin signaling plays a major
role in the pathophysiology of insulin resistance (IR). Given that IR is the accepted basis
for type 2 diabetes. It, therefore, seems logical that the treatment of type 2 diabetes would
be improved by switching from standard insulin treatment to a treatment that bio-mimics
the normal physiologic insulin signaling process. Skjaervold et al. have been exploring
the pharmacology of intravenous physiologic insulin administration as a prelude to a
closed-loop intravenous insulin pump to replace the insulin pumps presently available
that use a constant infusion of insulin administered by a subcutaneous route [57]. One
can imagine that the next step in such a progression will be the inclusion of glucagon
pulses in between the insulin pulses to further mimic the physiology of human insulin and
glucagon secretion.

We firmly believe that the evidence supports the assertion that physiologic insulin
secretion is crucial in the maintenance of normal cellular insulin sensitivity. Hence, using
physiologic insulin resensitization is a logical approach to restoring normal insulin function.
The case studies and clinical trials examining efficacy presented in this paper are insufficient
to prove the hypothesis that biomimicry of the physiologic insulin administration in this
manner is broadly efficacious. Randomized clinical trial are needed. However, these reports
and studies have consistently shown improvement in the usually refractory conditions that
are associated with diabetes. Moreover, they demonstrate that physiologic insulin resensiti-
zation can affect several of the untoward manifestations of diabetes and, thus, appears to
address the root causes of IR. They also suggest that the complications, hospitalizations,
medication costs, and emergency room visits may be reduced using physiologic insulin
resensitization (Tables 2 and 3).
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Table 2. Clinical Outcomes Utilizing Physiologic Insulin Resensitization.

Decreases in Hemoglobin A1c [49,58]

Reversals of Diabetic Neuropathy [49]

Improvements in Wound Healing [49]

Decreases in Insulin Requirements [49]

Improvements in Estimated Glomerular Filtration Rate (eGFR) [53,54]

Decreases in Systolic Blood Pressure (SBP) [54]

Reduce/Arrest Progression of Diabetic Nephropathy [49,52,54,58]

Table 3. Summary of study results discussed in this article.

Reference Finding Study Design Results

Tucker et al. Neuropathy Case Series Improved; discontinued
Gabapentin

Tucker et al. Foot Ulcer Case Series Healed quickly

Tucker et al. HbA1c Case Report HbA1c decreased 2.8

Elliott et al. Foot Ulcer Case Series Healed 1/3 more quickly

Dailey et al. Nephropathy Controlled Trial Improved (p = 0.0144)

Elliott et al. Neuropathy Pain Case Series 93% improved, 47.5% resolved

Villaverde et al. Nephropathy Case Series 41% increase in GFR

Manessis et al. Nephropathy Case Series 12% increase in GFR

Quach et al. Nephropathy Case Series 11% increase in GFR

Dailey et al. Nephropathy Controlled Trial Reduced decline in GFR

Aoki et al. HbA1c Case Series HbA1c decreased by 1.5 T1D

Aoki et al. HbA1c Case Series HbA1c decreased by 1;
improved glycemic control

Elliott et al. Hospitalizations Case Series Reduced hospitalizations

This needs further research that examines the treatment’s effect on a broad array
of diabetes complications. These studies should also include examining the cost of the
treatment versus the costs avoided by it. If randomized controlled studies replicate the
outcomes of case reports and studies examined in this review, administration of insulin
in a physiologic manner represents a promising approach to reduce or avoid the looming
increases in disease, disability, death and cost that will occur as the 88 million pre-diabetics
progress to overt diabetes in the United States.
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