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ABSTRACT

Background: Diffusion tensor imaging (DTI), which is a technique for measuring the degree and direction of
movement of water molecules in tissue, has been widely used to noninvasively assess white matter (WM) or gray
matter (GM) microstructures in vivo. Mean diffusivity (MD), which is the average diffusion across all
directions, has been considered as a marker of WM tract degeneration or extracellular space enlargement
in GM. Recent lines of evidence suggest that cortical MD can better identify early-stage Alzheimer’s disease
than structural morphometric parameters in magnetic resonance imaging. However, knowledge of the
relationships between cortical MD and other biological factors in the same cortical region, e.g. metabolites,
is still limited.

Methods: Thirty-three healthy elderly individuals [aged 50–77 years (mean, 63.8±7.4 years); 11 males and 22
females] were enrolled. We estimated the associations between cortical MD and neurotransmitter levels.
Specifically, we measured levels of γ-aminobutyric acid (GABA) and glutamate + glutamine (Glx), which are
inhibitory and excitatory neurotransmitters, respectively, in medial prefrontal cortex (mPFC) and posterior
cingulate cortex (PCC) using MEGA-PRESS magnetic resonance spectroscopy, and we measured regional
cortical MD using DTI.

Results: Cortical MD was significantly negatively associated with Glx levels in both mPFC and PCC. No
significant association was observed between cortical MD and GABA levels in either GM region.

Conclusion: Our findings suggest that degeneration ofmicrostructural organization inGM, as determined on the
basis of cortical MDmeasured by DTI, is accompanied by the decline of Glx metabolism within the same GM
region.
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Introduction

Over the last 30 years, various methods of magnetic
resonance imaging (MRI) have been developed and
used to assess brain alterations associated with
normal aging and aged-related neurodegenerative
diseases, such as mild cognitive impairment and

Alzheimer’s disease (Elman et al., 2017). Diffusion
tensor imaging (DTI), a reliable MRI technique for
measuring the degree and direction of movement of
water molecules in brain tissue, has been widely
used to noninvasively assess white matter (WM)
or gray matter (GM) microstructures in vivo
(Le Bihan et al., 1986). Fractional anisotropy
(FA), which is thought to be an index of WM
integrity calculated by DTI, can reflect the state
of neural fibers on the basis of the density, diameter,
or coherence of axons (Le Bihan et al., 2001). Mean
diffusivity (MD), which is the average magnitude
of diffusion across all directions, has been consid-
ered as a marker of WM tract degeneration or
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extracellular space enlargement in GM (Elman
et al., 2017; Neil et al., 2002).

Many previous DTI studies have revealed altered
FA and MD even in normal aging (Abe et al., 2008;
Benedetti et al., 2006; Garcia-Lazaro et al., 2016),
age-related neurodegenerative diseases, such as
mild cognitive impairment and Alzheimer’s disease
(Nesteruk et al., 2016; Nishioka et al., 2015), demy-
elinating diseases, such as multiple sclerosis
(de Kouchkovsky et al., 2016), and neuropsychiatric
diseases, such as depression and schizophrenia
(Jiang et al., 2017; Singh et al., 2016). Most of these
studies have focused on WM or deep GM such as
the hippocampus, because these brain regions have
high directionality in water diffusion (Manna et al.,
2015; Ziyan and Westin, 2008), whereas water
diffusion in the cerebral cortex has an isotropic
direction at the level of conventional DTI resolution
(Elman et al., 2017).

On the other hand, recent lines of DTI evidence
have shown that altered cortical MDmay reflect the
magnitude of microstructural organization in GM,
that is, patients with mild cognitive impairment or
Alzheimer’s disease have been reported to show
increased cortical MD, compared with healthy
controls in several GM regions including the poste-
rior cingulate cortex (PCC), entorhinal cortex,
amygdala, parahippocampal gyrus, middle temporal
gyrus, superior and middle frontal gyri and bilateral
supramarginal gyri (Lin et al., 2016; Ray et al., 2006;
Rose et al., 2008;Weston et al., 2015). Furthermore,
cortical MD begins to increase more generally in
middle age (Ni et al., 2010). Noteworthy, a recent
twin study showed that cortical MD is associated
with genetic factors, distinct from cortical thickness
or MD in WM (Elman et al., 2017), suggesting that
cortical MDmeasurement by DTI may have greater
potential use for assessing degeneration of micro-
structural organization in the GM associated with
normal aging or age-related diseases than morpho-
metric GM volume estimation in T1-weighted
imaging. However, knowledge of relationships
between MD and metabolite levels in the same
cortical regions is still limited.

In this study of healthy elderly people without
dementia, we examined the associations between
cortical MD and the levels of γ-aminobutyric acid
(GABA) and glutamine + glutamate (Glx), which
are inhibitory and excitatory neurotransmitters,
respectively, in the medial prefrontal cortex
(mPFC) and PCC by DTI and magnetic resonance
spectroscopy (MRS) using MEGA-PRESS (Bauer
et al., 2013; Jocham et al., 2012). Decreased levels of
GABA and Glx in several cortical areas including
mPFC and PCChave been reported to be associated
with aging (Goryawala et al., 2016; Grachev et al.,
2001) and to be found in patients with mild cognitive

impairment and Alzheimer’s disease (Antuono et al.,
2001; Huang et al., 2016; Riese et al., 2015), that
is, mPFC or PCC has been recognized as one of
the most important brain areas associated with
memory loss or cognitive decline in elderly people.
In addition, decreased Glx levels in certain GM
regions have been suggested to be associated with
neuronal dysfunction and loss in that GM region
(Segovia et al., 2001). We hypothesized that cortical
MD inmPFCand PCCcorrelates negatively with the
levels of GABA and Glx in the same volume of
interest (VOI).

Methods

Subjects
Thirty-three individuals [aged 50–77 years (mean,
63.8±7.4 years); 11 males and 22 females] were
enrolled in this study (Table 1) on the basis of the
following exclusion criteria: history of dementia,
neurological or psychiatric illness, diabetes mellitus,
chronic alcoholism, smoking, and obesity with a
body mass index above 25. All subjects were
right-handed, as assessed using the Edinburgh
Handedness Inventory (Oldfield, 1971), and pro-
vided their written informed consent. The study
protocol was approved by the Ethics Committee
of Gunma University.

Psychological measurements
The Montreal Cognitive Assessment (MoCA) was
administered to all subjects for the screening of
cognitive function (Ihara et al., 2013; Nasreddine
et al., 2005); although several cut-off points have
been proposed for MoCA, we used scores ≥ 20 to
exclude subjects with dementia and cognitive
impairment, in accordance with a previous report

Table 1. Demographic characteristics of study
subjects

MALE : FEMALE (n) 11 : 22
..............................................................................................................................................

Age (y) 63.8±7.4
Education (y) 14.0±1.9
MOCA (point) 26.3±2.6
JART—predicted full-scale

IQ (point)
112.2±7.6

Cambridge Neuropsychological
Test Automated Battery
Spatial recognition memory

(percent correct)
81.9±10.8

Rapid Visual Information
Processing (A’)

0.9±0.0

MoCA, theMontreal Cognitive Assessment; JART, Japanese
version of National Adult Reading Test; A’, signal detection
measures of accuracy, Mean ± SD.
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(Waldron-Perrine and Axelrod, 2012). The
Japanese version of the National Adult Reading
Test was then conducted to estimate premorbid
IQs (Matsuoka et al., 2006; Nelson, 1982). The
Cambridge neuropsychological test automated
battery [CANTAB (Morris et al., 1987); Cambridge
Cognition Ltd., Cambridge, United Kingdom] was
also administered to each subject of this study and
consisted of the following: the Spatial Recognition
Memory (SRM) test of visual spatial memory in a
two-choice forced discrimination paradigm and the
Rapid Visual Information Processing (RVIP) test,
which is a visual continuous performance task using
digits instead of letters.

Acquisition of MRS and DTI and T1-weighted
anatomical imaging data

MRS ACQUISITION

EditedGABAandGlxMRspectrawereacquiredusing
the MEGA-PRESS sequence (Mescher et al., 1998)
with the following acquisition parameters: TR= 2400
ms; TE= 68 ms; number of averages= 512 for the
mPFC and 256 for PCC. In both regions, the pre-
scribed MRS VOIs was 30× 20× 20 mm3. Based on
the chemical shift differencebetween the3ppmGABA
resonance and the 3.75 ppm Glx resonance, the
chemical shift displacement between GABA and Glx
in the direction of the excitation pulse (bandwidth=
3708 Hz, selective in the left–right direction), was
0.75 mm. In the directions of refocusing pulses
(bandwidth= 1106 Hz, selective in the anterior–
posterior direction and in the superior–inferior direc-
tion), the chemical shift displacement between GABA
andGlxwas 1.67mm.TheVOI inmPFCwas defined
as follows. After drawing “line a” exactly on the rostral
marginof thecorpuscallosumas theperpendicular axis
to the anterior commissure–posterior commissure

(AC–PC) line (see Fig. 1A), the VOI in mPFC was
set along “line a” and on the inferoposterior corner
locatedat the rostral edgeof thegenu.TheVOI inPCC
was set above the superior surface of the corpus callo-
sum together with the diagonal line of the VOI aligned
along“lineb,”whichis theperpendicularaxisacrossthe
posterior edge of the splenium to the AC–PC line (see
Fig. 1A).

We measured the full-width at half-maximum
(FWHM) of N-acetyl aspartate (NAA) peaks in
the MEGA-PRESS spectra to determine the quality
of shimming. The means±standard deviations
(SDs) were 6.864 ± 2.272 Hz in mPFC and 5.201
± 2.203Hz in PCC.We excluded the samples whose
FWHM values of NAA peaks were large (i.e.
FWHM>mean ± 2 SD). Although data from PCC
were successfully collected from all the participants,
those from mPFC of one participant were excluded
from the analysis because the FWHM of the NAA
peak was larger than the cut-off value. In addition,
we evaluated motion artifacts by visual inspection of
superimposed spectra for all the excitations during
scanning using MEGA-PRESS. As a result, two
samples obtained from mPFC were also excluded
owing to motion artifacts.

DTI AND T1-WEIGHTED ANATOMICAL IMAGING

DATA ACQUISITIONS

DTI data of the participants were acquired using a
clinical 3.0 Tesla Prisma MRI scanner (Siemens,
Erlangen, Germany) with a 12-channel head coil.
The entire brain was scanned by echo-planar imag-
ing with 30 noncolinear motion probing gradients at
a b-value of 1000 sec/mm2 and 5 T2-weighted b= 0
images. The acquisition parameters for the DTI
scan were as follows: TE= 84 ms, TR= 6500 ms,
50 axial slices, slice thickness= 3 mm, field of

Figure 1. Magnetic resonance spectroscopy (MRS) using MEGA-PRESS. The volumes of interest (30 × 20 × 20 mm3) in MRS, which were

located onmPFC and PCC, are shown in A; “line a” is set exactly on the rostral margin of the corpus callosum as the perpendicular axis to the

anterior commissure–posterior commissure (AC–PC) line. “line b” is drawn as the perpendicular axis through the anterior commissure to the

AC–PC line. The edited spectrum (i.e. black line) and fitted curve (i.e. red line), which were obtained for the signal quantification of GABA,

Glx, and Cr levels, are shown in B.
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view= 23 × 23 cm2, and matrix size= 128 × 128
(i.e. voxel size= 1.8 × 1.8 × 3.0 mm3). To improve
signal-to-noise ratio, the scanning was repeated
twice [number of excitation (NEX)= 2].

We also obtained high-resolution T1-weighted
images forGMmorphometry.MP-RAGE sequencing
yielding 176 continuous slices of 1.0 mm thickness
was carried out along the sagittal plane. The acquisi-
tion parameters were as follows: echo time= 2 ms;
repetition time= 2000 ms; inversion time= 990 ms;
flip angle= 9°; field of view= 256 mm; matrix
size= 256× 256; voxel size= 1× 1× 1 mm3.

Processing and analysis of MRS and DTI data

MEASUREMENT OF GABA AND GLX LEVELS

BY MRS
Prior to signal averaging, each scan was frequency-
and phase-aligned by spectral registration (Near
et al., 2015) using the FID-A toolkit (https://
github.com/cic-methods/fid-a) inMATLAB (Math-
Works, Natick,MA,USA) tominimize the effects of
frequency and phase drifts. Motion-corrupted
averages were removed as described previously
(Near et al., 2013; Simpson et al., 2017). Averaged
difference spectra and sum spectra were then line-
broadened using a 5-Hz Lorentzian filter, and zero-
order phase corrections were applied manually to
ensure upright peaks. First-order phase corrections
were also applied manually in some cases because
the first point in the FID did not always correspond
exactly to the top of the echo. Following preproces-
sing, GABA and Glx signals from the difference
spectra and creatine (Cr) signals from the sum
spectra were quantified using the AMARES package
provided in jMRUI software (Naressi et al., 2001;
Vanhamme et al., 2001). GABA, Glx, and Cr were
modeled as a triplet, a doublet, and a singlet of
Lorentzian peaks, respectively. Because the editing
efficacy for Glx has not been determined in the
current sequence, Glx signals are shown in an arbi-
trary unit value.

MEASUREMENT OF MD WITHIN MRS VOIS
Diffusion tensor data were converted into the NIfTI
format usingMRIConvert (http://lcni.uoregon.edu/
~jolinda/MRIConvert). The data were preprocessed
using FMRIB Software Library (FSL) version 4.1.5
(http://www.fmrib.ox.ac.uk/fsl). This procedure
included the following: (1) eddy current correction,
(2)motion correction by registering all the diffusion-
weighted data to the b= 0 images, which were
corrected first, (3) brain extraction, (4) calculation
of diffusion tensor and diagonalization, and (5)
transformation to the MNI space. After these
processes, the MD map in the MNI space was
automatically constructed using FSL.

Then, the obtained T1-weighted anatomical
images were segmented into GM, WM, and cere-
brospinal fluid (CSF) using FAST (FMRIB’s auto-
mated segmentation tool) (Zhang et al., 2001) in
FSL software (available from http://fsl.fmrib.ox.
ac.uk.proxy.bib.uottawa.ca/fsl/fslwiki/) (Jenkinson
et al., 2012; Smith et al., 2004; Woolrich et al.,
2009; Zhang et al., 2001) to calculate the relative
volume of each tissue within MRS VOIs. After the
binary GM masks within MRS VOIs were formed
from segmented GM images and MRS VOIs
(Fig. 2), Statistical Parametric Mapping (SPM;
http://www.fil.ion.ucl.ac.uk/spm/) was used to cor-
egister different spaces between the binary GM
masks and theMDmap in each subject. The thresh-
old of GM mask was set to the default SPM param-
eter of 0.8. Because MD is markedly higher in CSF
than in the brain tissue, the map of MDs lower than,
0.102 × 10-2 mm2/s was generated to attenuate the
CSF effect onMDmeasurement withinMRSVOIs,
in accordance with the previous method described
by Albrecht et al. (2007), i.e. the above-mentioned
cut-off values were set at 3 SDs above the mean
measured tissue MD. Finally, we calculated mean
MD from nonzero voxels of the MD map within
binary GM masks of MRS VOIs, i.e. mPFC and
PCC.

Statistical analysis
The metabolite ratios are presented in the results
section of this study, i.e. raw GABA/Cr and Glx/Cr,
and GM corrected GABA/Cr and Glx/Cr, which
were divided by the relative volume of GM within
each VOI in MRS in accordance with previous

Figure 2. Binary mask of GM within mPFC VOI for measurement of

MD. The figure shows a segmented GM image together with mPFC

VOI in MRS (yellow) and a binary mask of GM within mPFC VOI in

MRS (red) in the original space.
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studies (Fujihara et al., 2015; Jocham et al., 2012).
To assess the relationship among demographic char-
acteristics, CANTAB scores, and metabolite ratios
in MRS, Pearson’s correlation test were performed.
In addition, we also performed regression analysis,
in accordance with a previous report (Yildiz et al.,
2014). A p-value of< 0.05 was set as statistically
significant. Student’s t-test was conducted to esti-
mate gender differences in demographic character-
istics. All the statistical analyses were carried out
using SPSS version-24 (IBM Corporation).

Results

All the subjects showed MoCA scores ≥ 20, and
the predicted IQs were higher than 90 in all the
participants (mean ± SD= 112.2 ± 7.6; see Table 1).
Pearson’s correlation test showed that in mPFC
and PCC, NAA level, Cr level, raw GABA/Cr or
Glx, or GM corrected GABA/Cr or Glx/Cr did not
significantly correlate with age, education years,
predicted IQ, MoCA score, or CANTAB test
scores, i.e. SRM and RVIP scores. Furthermore,
MD in mPFC and PCC did not significantly corre-
late with age, education years, predicted IQ, MoCA
score, or the above-mentioned CANTAB test
scores. The MD in mPFC or PCC did not correlate
with Cr level in each VOI, respectively.

The raw Glx/Cr levels in mPFC and PCC were
significantly negatively correlated with MD in each
VOI (r= − 0.477, p= 0.008 and r= − 0.486,
p= 0.004, respectively). The GM corrected Glx/Cr
levels in mPFC and PCC were also significantly
negatively correlated with MD in each VOI

(r= − 0.443, p= 0.014 and r= − 0.487, p= 0.004,
respectively) (Fig. 3). No significant correlations
were observed between MD in mPFC and Glx level
in PCC and between MD in PCC and Glx level in
mPFC. Furthermore, raw orGMcorrectedGABA/Cr
in mPFC and PCC did not significantly correlate with
MD in either VOI.

In regression analysis, the rawGlx/Cr inmPFCand
PCC could predict MD in each VOI (β= − 0.477,
t= − 2.871, p= 0.008, and β= − 0.486, t= − 3.94,
p= 0.004). Also, the GM corrected Glx/Cr in
mPFC and PCC could predict MD in each VOI
(β= − 0.443, t= − 2.617, p= 0.014, and
β= − 0.487, t= − 3.102, p= 0.004). To control fur-
ther for possible effects of GM, WM and CSF frac-
tions were used in separate regression models for raw
Glx/Cr, as reported by Fujihara et al. (2015) andYildiz
et al. (2014). All these models revealed that neither
GM, WM, nor CSF explained the further variance
in the models (mPFC: |β|< 0.463, |t|< 1.064,
p> 0.297; and PCC: |β|< 0.131, |t|< 0.617,
p> 0.542). These regression models showed that
only raw Glx/Cr has a predictive effect on MD in
each VOI (mPFC: β= − 0.471, t= − 2.724,
p= 0.011; and PCC: β= − 0.478, t= − 2.908,
p= 0.007). Also, GM corrected Glx/Cr has a predic-
tive effect on MD in each VOI (mPFC: β= − 0.422,
t= − 2.68, p= 0.021; and PCC: β= − 0.477,
t= − 2.975, p= 0.006).

Discussion

The results of this study show that cortical MD is
significantly negatively correlated with Glx levels in

Figure 3. Scatter plots showing correlation between cortical MD and GM corrected Glx/Cr in mPFC and PCC. Squares indicate male subjects

and circles indicate female subjects.
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both mPFC and PCC in healthy elderly individuals.
On the other hand, no significant association was
found between GABA level and cortical MD in
both VOIs.

Glx level is very likely related to excitatory neuro-
transmission, because glutamate is considered to be
the major component of the Glx signal (Bauer
et al., 2013; Fujihara et al., 2015). The dominant
pathway for glutamine production is via metabolism
of neurotransmitter glutamate, so Glx represents the
integrated metabolic and neurotransmitter functions
of glutamate in the brain (Jahng et al., 2016; Yuksel
and Ongur, 2010). The glutamate level in a certain
GM region is suggested to be associated with neuro-
nal dysfunction and loss in that GM region (Segovia
et al., 2001). Thus, previous MRS studies showed
that a decreased Glx level can be observed
in neurodegenerative conditions, such as aging
(Goryawala et al., 2016; Grachev et al., 2001), mild
cognitive impairment and Alzheimer’s disease
(Antuono et al., 2001; Huang et al., 2016; Riese
et al., 2015), in several GM regions including
mPFC and PCC, which implies neuronal dysfunc-
tion and loss in these GM regions. Consistently,
cognitive performance or cognitive symptoms have
been reported to positively correlate withGlx levels in
elderly people (Zahr et al., 2008) and patients with
mild cognitive impairment (Nikolova et al., 2017)
and Alzheimer’s disease (Walecki et al., 2011). Then,
an increased cortical MD, which has been observed
in aging and the above-mentioned diseases (Lin et al.,
2016; Ni et al., 2010; Ray et al., 2006; Weston et al.,
2015), may reflect the decline in the magnitude of
microstructural organization in the GM associated
with aging and age-related diseases, i.e. a breakdown
of cytoarchitectural barriers such as the cell mem-
brane or a shift in the concentration of water between
intra- and extracellular spaces (Elman et al., 2017;
Neil et al., 2002; Sundgren et al., 2004; Van Camp
et al., 2012). Considering the above-mentioned
previous reports on Glx level and cortical MD, the
significant negative association between cortical MD
and Glx level in mPFC and PCC observed in this
study suggests that age-related neuronal loss, which
can be detected on the basis of cortical MD in DTI,
leads to the decline of Glx metabolism within the
above-mentioned GM regions.

In this study, no significant association was
found between GABA levels and cortical MD in
both mPFC and PCC. Similarly to Glx levels,
previous MRS studies have shown that the
GABA levels in mPFC and PCC are lower in
healthy elderly people and patients with Alzhei-
mer’s disease and mild cognitive impairments
than in controls (Bai et al., 2015; Riese et al.,
2015). Moreover, cognitive dysfunction has been

reported to be associated with decreased GABA
levels in mild cognitive impairment and Alzhei-
mer’s disease (Porges et al., 2017). Although
such observations suggest that not only Glx levels,
but also GABA levels reflect age-related neuronal
loss, this speculation is inconsistent with the find-
ings of our study. There are some difficulties in
explaining the different findings on Glx and GABA
levels in this study, but an asymmetric degeneration
of glutamatergic neurons and GABAergic neurons
during aging might contribute to our results
regarding GABA in this study, that is, terminals
and synapses of glutamatergic neurons, not those of
GABAergic neurons, are reported to be predomi-
nantly affected in early-stage Alzheimer’s disease
(Huang et al., 2016; Kashani et al., 2008; Proctor
et al., 2010). Additional studies including age-related
neurodegenerative disorders, i.e. mild cognitive
impairment and Alzheimer’s disease, should be
carried out. Furthermore, the lack of significant
GABAobservationsmight have been due to the small
sample size in this study.

Amajor limitation in this study is its small sample
size, which may have influenced our statistical
results. In addition, owing to the lack of data
from subjects with age-related neurodegenerative
disorders, i.e. mild cognitive impairment or Alzhei-
mer’s disease, there are some limitations in this
study. Although some previous MRS studies have
shown the significant associations between cognitive
function test scores and the levels of several cortical
metabolites, i.e. NAA, GABA or Glx (Jessen et al.,
2013; Porges et al., 2017), we failed to find such
significant associations, which may be due to the
small number of subjects in this study. In addition,
young subjects should also be enrolled. Further
MRS studies with larger sample sizes including
subjects of various ages and with age-related neuro-
degenerative disorders will reinforce our findings in
the future.

In conclusion, the level of Glx, which reflects
excitatory neurotransmission, was associated
with cortical MD in mPFC and PCC in GM.
These findings might support a hypothesis, i.e.
neuronal loss detected on the basis of cortical
MD in DTI can cause a decline of Glx metabo-
lism in these GM regions in elderly people.
The results of this study can lead to a better
understanding of the association between micro-
structural organization and neuronal metabolism
in GM during aging.
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