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Abstract

Introduction: Fine-grained influenza surveillance data are lacking in the US, hampering our ability to monitor disease spread
at a local scale. Here we evaluate the performances of high-volume electronic medical claims data to assess local and
regional influenza activity.

Material and Methods: We used electronic medical claims data compiled by IMS Health in 480 US locations to create weekly
regional influenza-like-illness (ILI) time series during 2003–2010. IMS Health captured 62% of US outpatient visits in 2009. We
studied the performances of IMS-ILI indicators against reference influenza surveillance datasets, including CDC-ILI
outpatient and laboratory-confirmed influenza data. We estimated correlation in weekly incidences, peak timing and
seasonal intensity across datasets, stratified by 10 regions and four age groups (,5, 5–29, 30–59, and 60+ years). To test
IMS-Health performances at the city level, we compared IMS-ILI indicators to syndromic surveillance data for New York City.
We also used control data on laboratory-confirmed Respiratory Syncytial Virus (RSV) activity to test the specificity of IMS-ILI
for influenza surveillance.

Results: Regional IMS-ILI indicators were highly synchronous with CDC’s reference influenza surveillance data (Pearson
correlation coefficients rho$0.89; range across regions, 0.80–0.97, P,0.001). Seasonal intensity estimates were weakly
correlated across datasets in all age data (rho#0.52), moderately correlated among adults (rho$0.64) and uncorrelated
among school-age children. IMS-ILI indicators were more correlated with reference influenza data than control RSV
indicators (rho = 0.93 with influenza v. rho = 0.33 with RSV, P,0.05). City-level IMS-ILI indicators were highly consistent with
reference syndromic data (rho$0.86).

Conclusion: Medical claims-based ILI indicators accurately capture weekly fluctuations in influenza activity in all US regions
during inter-pandemic and pandemic seasons, and can be broken down by age groups and fine geographical areas. Medical
claims data provide more reliable and fine-grained indicators of influenza activity than other high-volume electronic
algorithms and should be used to augment existing influenza surveillance systems.
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Introduction

The last decade has seen dramatic developments in influenza

surveillance systems at the regional and national scales. In the US

however, despite intensified surveillance for influenza-like-illness

(ILI) and laboratory-confirmed virus activity [1], the volume of

information remains too sparse for detailed analyses at the state

and city levels [2]. Novel electronic surveillance data streams such

as Twitter and Google Flu Trends provide much higher volume

information; however these algorithms do not always accurately

capture local or national influenza patterns, especially during

pandemics or unusual epidemics [3,4]. Indicators based on

emergency department visits provide solid localized information

on a variety of influenza-related syndromes in near real-time,
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however, these data are not available throughout the US. In

contrast to influenza, relatively little attention has been focused on

respiratory syncytial virus (RSV), although the burden of this

pathogen is increasingly recognized, particularly among pediatric

age groups [5,6,7,8]. In the absence of an RSV vaccine, it is

important to optimize the timing of RSV prophylaxis in high-risk

infants according to the local RSV season, requiring the need for

improved RSV surveillance locally [9,10].

Electronic medical claims data provide a unique source of

information on diagnoses made by physicians and are routinely

used by pharmaceutical companies to monitor disease incidence

and anticipate drug or vaccine sales. So far however, this resource

has remained largely untapped by epidemiologists and public

health researchers. A few promising studies have suggested that

electronic claims data may be useful to monitor disease patterns of

diarrheal and respiratory viruses in the US and evaluate pediatric

vaccine coverage in Germany [11,12,13,14]. Here we demonstrate

the use of electronic medical claims records to monitor local and

regional respiratory virus activity during pandemic and inter-

pandemic seasons in the US.

Data and Methods

Ethics
All patient records and information were anonymized and de-

identified prior to being handed over to researchers; all records

were part of routinely collected information for health insurance

purposes. Dr Farid Khan, Director of Advanced Analytics, IMS

Health, granted access to the patient data. The database is not

accessible online but researchers interested in gaining access to the

data should refer to the IMS Health website: http://www.

imshealth.com/portal/site/imshealth. In keeping with similar

epidemiological analyses of large-scale insurance administrative

databases, no institutional board review was sought. Further, all

statistical analyses were based on aggregated incidence time series

rather than individual patient-level information.

General approach
Our general approach is to compare weekly influenza indicators

derived from electronic medical claims data against reference

influenza surveillance time series, and against control time series

unrelated to influenza (such as RSV surveillance data). Our

statistical measures include correlations in weekly incidences, peak

timing and seasonal estimates of epidemic intensity. Additionally

we use permutation tests to show that the estimated correlations

are stronger than those expected by chance between incidence

time series that share common winter seasonality, so as to confirm

that medical claims data capture signals truly specific of influenza

activity. Analyses are conducted at the national, regional, and local

scales, and stratified by age group.

Data Sources
IMS Health Medical Claims Data. We used data main-

tained by IMS Health, a private data and analytics business that

collects de-identified electronic CMS-1500 medical claim forms

from full-time office-based active physicians throughout the US.

Claims data are sourced from the practice management software

vendors directly from the physician’s office, or from the

intermediary billing systems that coordinate the insurance claim

transactions. In 2009, there were 560,433 active physician

practices in the US of which IMS Health collected data from

354,402, or an approximate coverage rate of 61.5%. IMS Health

receives the records within 1–2 weeks of the patient’s visit. For

validation purposes, we focused here on historic IMS Health data

from July 2003 to June 2010. Claims data were kindly compiled by

IMS Health for research purposes under a collaborative agree-

ment with the authors.

Diagnoses are coded in the physician offices using international

classification of diseases, 9th revisions (ICD-9). We extracted visits

for different outcomes, including ILI and RSV, as well as the total

number of visits for any reason for denomination purposes. We

created weekly time series based on the date of office visit. Several

ILI case definitions were tested with the expectation that the most

appropriate definition would produce a large and geographically

heterogeneous spike in disease rates during the 2009 A/H1N1

influenza pandemic period, as observed in other surveillance

datasets [15], and capture the timing and intensity of influenza

epidemics in the pre-pandemic period. Further, a suitable ILI

definition had to generate sufficient disease volume to ensure

stable weekly time series at the city level.

Based on preliminary analyses and previous work exploring the

spatial dynamics of the 2009 influenza pandemic [11], we elected

to use an ILI definition that includes a direct mention of influenza,

or fever combined with a respiratory symptom, or febrile viral

illness (ICD-9 487-488 OR [780.6 and (462 or 786.2)] OR

079.99). Code 079.99 was identified as the most commonly used

diagnosis code for patients for whom the physician prescribed

oseltamivir during the pandemic period. Few patients received an

influenza specific code 487–488, a finding that may reflect that few

physician offices utilized rapid influenza tests during the pandem-

ic, following CDC guidelines to focus laboratory resources on the

most severe cases [16]. To investigate the specificity of IMS-ILI

data for influenza and test the suitability of IMS data for

monitoring other winter-seasonal viruses, we also created RSV

diagnoses time series (IMS-RSV), based on three RSV-specific

ICD-9 codes: 079.6 (RSV infection), 466.11 (RSV-bonchiolitis)

and 480.1 (RSV pneumonia).

Weekly incidence time series were compiled and broken down

by 10 administrative regions (Text S1) and 4 age groups (under

5 yrs, 5–29, 30–59, 60 and over). Regional population size

estimates were available from the US census [17]. To test the

performances of the IMS-ILI data locally, we also compiled

weekly incidence time series for 21 cities within New York State

based on the first 3-digits of the physician’s zip code.

All patient records and information were anonymized and de-

identified; all records were part of routinely collected information

for health insurance purposes. In keeping with similar epidemi-

ological analyses of large-scale insurance administrative databases

[11,12,13,14], no institutional board review was sought. Further,

all statistical analyses were based on aggregated incidence time

series rather than individual patient-level information.

Reference influenza surveillance data. Publicly-available

influenza surveillance data from 2003–2010 were obtained from

two separate reference systems maintained by the CDC: (1) The

Outpatient Influenza-like Illness (ILI) Surveillance Network and

(2) the US Influenza Virologic Surveillance System [2] (see also

[18]). The CDC-ILI Surveillance system consists of a network of

healthcare providers who record the weekly proportion of patients

presenting with non-specific signs and symptoms that meet a case

definition of influenza like illness [1]. CDC Virus Surveillance data

come from ,140 laboratories throughout the US that report the

total number of respiratory specimens tested and the number of

laboratory tests positive for influenza virus on a weekly timescale

[1]. Both of these databases are available at the national and

regional levels (Text S1).

Negative control reference surveillance data (RSV). We

also compiled weekly national data on laboratory-confirmed RSV

activity during 2003–2010 from the CDC’s National Respiratory

Medical Claims Data for Influenza Surveillance in the US
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and Enteric Virus Surveillance System [9]. These data were used

both to validate the IMS-RSV indicator and as a non-influenza

control for IMS-ILI indicators. If IMS-ILI data are specific of

influenza activity, we would expect IMS-ILI time series to be

strongly correlated with reference influenza surveillance time

series, and far less so with reference RSV surveillance time series.

Local influenza surveillance data. To evaluate the perfor-

mances of IMS-Health at a local level, we focused on New York

City, where disease surveillance is particularly well-established

[3,19,20]. We used weekly city-level syndromic ILI surveillance

during 2003–2010, based on 95% of emergency department visits,

which are reference influenza time series included in the CDC-ILI

dataset for the broader mid-Atlantic region [3,19,20].

We also document 2009 pandemic disease patterns in 21 cities

or county regions of New York State based on medical claims

data, as there was important spatial heterogeneity in pandemic

activity in this state [3,11].

Statistical approach
Study period and spatial scales. We compared weekly ILI

and RSV indicators based on medical claims with weekly

reference surveillance data from July 2003 to June 2010. This

period included 6 pre-pandemic seasons (July 2003–June 2004,

July 2004–June 2005, July 2005–June 2006, July 2006–June 2007,

July 2007–June 2008, July 2008–April 2009), and the spring and

fall 2009 A/H1N1 pandemic waves (May–Aug 2009 and

September 2009–June 2010).

The spatial scale of most of our analyses was the region or city,

except for comparisons with RSV laboratory-confirmed surveil-

lance, for which retrospective data were available only nationally.

Influenza incidence measures. For week t and region i, we

defined the IMS-ILI incidence indicator as the ratio of all ILI visits

in the IMS dataset to the total number of IMS visits that week, per

100,000 population, as in [11]:

IMS_ILI_incidence(t,i) = [(IMS_ILIt,i/IMS_visitst,i)]*

[(populationi/100,000)].

This indicator is an extension of the ILI incidence ratio used by

CDC and New York City [18], with additional standardization for

population size. The IMS-RSV incidence indicator was created in

the same way as the IMS-ILI indicator. To aggregate IMS data

nationally, we weighted weekly regional incidence estimates by the

number of physicians participating in surveillance in each week

and region.

We defined laboratory-confirmed influenza virus activity in

region i and week t as the standardized number of influenza

specimens testing positive for influenza, following:

Virus_activity(t,i) = flu_positivest,i,/total_specimens_testeds,i

Where flu_positivest,i, is the number of samples testing positive for

influenza in week t and region i, total_specimens_testeds,i is the

total number of samples tested in influenza season s and region i
[7]. An alternative is to standardize by the weekly number of

specimens tested (weekly percent virus positive), but this indicator

is more sensitive to sampling issues at the regional level, especially

at the start and end of the influenza season. We used the same

standardization for RSV laboratory-surveillance data.

Weekly correlation between surveillance time series. To

investigate whether the IMS-ILI indicator provided accurate

measurement of influenza epidemic patterns and following earlier

work [3,18], we computed the week-by-week Pearson’s correlation

between IMS-ILI and reference influenza surveillance time series

Since the estimated correlation could be explained in part by

shared winter seasonality across disease datasets, we also computed

the expected level of correlation under the null hypothesis where

correlation originates exclusively from winter seasonality rather

than influenza-specific factors. To do so, we generated 1,000

simulated datasets for each region and surveillance system by

permuting seasons.

A complementary test of the specificity of medical claims for

influenza surveillance was obtained by computing the correlation

between the IMS-ILI indicators and reference RSV surveillance

time series. These indicators share common winter seasonality but

are presumably prone to independent yearly and weekly

fluctuations specific to influenza and RSV.

Influenza and RSV peak timing. We compared the peak

timing of disease activity each season (defined as the week of

maximum weekly IMS- ILI incidence, IMS-RSV incidence,

CDC-ILI incidence, CDC influenza virus activity, and CDC

RSV activity in any given season). We computed the difference in

peak timing per season, and report the average and range of

differences by region.

Seasonal intensity of influenza and RSV epidemics. To

obtain a summary measure of influenza intensity by season, we

applied Serfling seasonal regression model to both medical claims

and reference ILI time series [3,21,22,23]. The Serfling approach

assumes that background non-influenza ILI incidence follows a

seasonal pattern, and that background seasonality does not

fluctuate between years. In this approach, a linear regression

model including harmonic terms and time trends is fitted to non-

influenza weeks (May-Oct), after exclusion of both pandemic

seasons. The model provides a seasonal baseline of the expected

level of ILI activity when influenza does not circulate. In

consequence, the burden of influenza on ILI can be estimated as

the cumulative difference between observed and baseline ILI each

respiratory season, which is a proxy for seasonal influenza

intensity. We repeated the analysis for all age and age-specific

data. A similar approach was used to compute seasonal estimates

of RSV intensity from weekly IMS-RSV indicators.

From laboratory-confirmed influenza time series, we defined

influenza seasonal intensity as the total virus percent positive each

respiratory season ( = sum of all influenza positive specimens/sum

of all specimens tested during the season), as in CDC summary

reports [2]. A similar approach was used to compute RSV

intensity from weekly laboratory-confirmed RSV surveillance. No

age breakdown was available for CDC’s viral activity data.

All analyses where performed in R; scripts are available from

the authors upon request.

Results

Regional comparisons
Overall patterns in influenza incidence. Weekly regional

influenza time series are displayed in Figure 1 for three

surveillance systems for the period 2003–2010: IMS-ILI, CDC-

ILI and CDC laboratory-confirmed influenza viral activity. All

datasets were characterized by strong winter seasonal peaks during

November-March, except for the unusual occurrence of spring

and fall pandemic peaks in 2009 in all regions. Between-season

fluctuations in influenza intensity were also observed, as expected

from variation in circulating strains and levels of population

immunity. All three surveillance systems captured the moderately-

sized spring 2009 pandemic wave in New England, and a large

spring wave in the New York City metropolitan region. In other

regions, laboratory-confirmed virus activity tended to overestimate

the impact of the pandemic spring wave, relative to the other

systems (Figure 1).

Week-to-week influenza incidence correlation. All three

influenza surveillance datasets were strongly synchronous, as

evidenced by high average week-to-week correlation across the 10

Medical Claims Data for Influenza Surveillance in the US
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regions (Table 1, all P,0.001). The IMS-ILI dataset was

particularly highly correlated with the two CDC surveillance

systems, with an average correlation above 0.89 (range across

regions and indicators, 0.80–0.97, P,0.001). The lag maximizing

the correlation between IMS-ILI and CDC-ILI time series ranged

between 0 and 1 wk across regions, indicating a slight lead in IMS

Health data. Similarly, IMS-ILI led CDC viral activity indicators

by 0–1 wk.

A season-by-season analysis revealed a clear drop in correlation

during the 2009 spring pandemic period, relative to pre-pandemic

seasons (average correlation in spring 2009, 0.32–0.45, range

across regions (20.50; 0.89); Text S1). All correlations returned to

high levels during the fall 2009 pandemic period (rho.0.88).

Permutations of respiratory seasons resulted in much lower

week-to-week correlation between the regional incidence time

series than in the original analysis (correlation ranging between

20.08; 0.67 across shuffled datasets; P,0.001 for difference with

original data). These results indicate that winter seasonality alone

was insufficient to explain the high level of synchrony observed

between these influenza surveillance time series.

Figure 1. Weekly time series of IMS Heath medical claims influenza-like-illness (ILI, red line), and reference influenza surveillance
time series, including CDC-ILI (dashed black line), and CDC laboratory influenza virus surveillance (dashed blue line), by region,
from July 7, 2003 through May 23, 2010. All time series have been rescaled for graphing purposes.
doi:10.1371/journal.pone.0102429.g001
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Comparison of influenza peak timing. Peak timing

provides a complementary measure of synchrony between

influenza surveillance systems. All three systems exhibited high

agreement in estimated influenza peak week across all regions

(average correlation $0.91, Table 1). Synchrony was particularly

high between IMS-ILI and CDC laboratory-confirmed virus

activity (average rho = 0.97), including during the pandemic

period (Table 1, Figure 2). Results were robust to national

aggregation of the data (Figure S1).

Comparison of seasonal influenza intensity. Although

the above comparisons of week-to-week fluctuations and peak

timing suggest a high level of synchrony between surveillance

datasets, especially in inter-pandemic seasons, there was less

agreement in seasonal estimates of ‘‘excess’’ influenza intensity

derived from Serfling models (Table 1, Figure 3). Correlation

between seasonal excess ILI estimates in IMS and CDC

surveillance was moderate (average rho = 0.52, range across

regions 0.09–0.92), with non-significant correlations in 7 of 10

regions (P$0.29). Correlation in seasonal intensity was even

weaker between IMS surveillance and CDC virus activity (average

rho = 0.11), with no region exhibiting significant correlation.

Similarly, correlation in seasonal influenza intensity estimates

was low between the two surveillance systems maintained by CDC

(average rho = 0.49 between CDC-ILI and CDC virus activity),

with only 2 regions showing significant correlation (Table 1).

Age patterns. Next, we repeated the previous analyses

stratified by four age groups (Table 2; see also Figure S2 for

age-specific time series). Correlations in weekly incidences and

peak timing remained excellent between IMS-ILI and CDC-ILI

for intermediate age groups (school-age children and young adults,

average rho$0.84), and more moderate among younger children

and seniors. In contrast, agreement in seasonal intensity estimates

between surveillance systems was strongest among seniors. Age-

specific CDC-ILI time series tended to be noisier for seniors, as

compared with other age groups, with most intense fluctuations in

the first 3 years of the study period. IMS-ILI time series in children

under 5 years displayed semi-annual peaks in summer and winter

in North-Eastern US, which remained unexplained and did not

coincide with influenza or RSV activity (Figure S3). Nevertheless,

pediatric IMS surveillance time series accurately captured non-

overlapping influenza and RSV activity in South-Eastern US

(Figure S4).

Analysis of RSV patterns
To check the specificity of medical claims data to monitor

influenza activity, we compared IMS-ILI indicators against

national reference surveillance data for RSV. The IMS-ILI

indicator was significantly less correlated with reference RSV

data than with reference influenza indicators on a national scale

(week-to-week correlation, rho$0.93 with CDC-ILI and influenza

viral activity, v. rho = 0.33 with laboratory-confirmed RSV, P,

0.05, Table 3). This analysis also confirmed the slight lead of the

IMS data over traditional surveillance when datasets are

aggregated nationally. Similarly, peak timing was more synchro-

nous between IMS-ILI and reference influenza surveillance than

with reference RSV data. Seasonal estimates of epidemic intensity

were significantly correlated between the IMS-ILI and CDC-ILI

surveillance systems, but not in the other datasets (Table 3).

We also check the consistency of RSV indicators derived from

medical claims data with reference RSV time series. The IMS-

RSV indicator was highly synchronized with reference RSV

laboratory surveillance data, with a 0-week lag maximizing

Figure 2. Synchrony in peak timing between the 3 surveillance systems, IMS-ILI, CDC-ILI, and CDC laboratory-confirmed virus
activity, by region. Red symbols illustrate the comparison between IMS-ILI (y-axis) and CDC laboratory surveillance (x-axis); while green symbols
represent the comparison between IMS-ILI (y-axis) and CDC-ILI (x-axis). Dots represents 6 pre-pandemic seasons, 2003–04 to 2008–09; squares
represent the spring 2009 pandemic wave, and triangles the main pandemic wave in fall 2009.
doi:10.1371/journal.pone.0102429.g002

Medical Claims Data for Influenza Surveillance in the US

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e102429



correlation between these datasets (rho$0.94, P,0.0001, for

week-to-week incidence and peak week correlation, Table 3).

Seasonal estimates of RSV intensity were moderately correlated

between the two datasets (rho = 0.77, P = 0.03, Table 3).

City-level influenza disease patterns
Next, we explored city-level disease curves (Figure 4). We focus

on the 2009 pandemic period in 21 cities and counties in New

York State, for which spatial heterogeneity has been well

documented [3,11]. Influenza pandemic patterns appear highly

heterogeneous at such a local scale. In particular, the New York

City boroughs display intense influenza activity in spring 2009

followed by a moderate outbreak in fall 2009, while locations in

upstate New York experienced a dominant fall wave. Comparison

of IMS-ILI time series for 4 boroughs of New York City with

available data (Manhattan, Queens, Bronx and Brooklyn),

revealed high consistency in IMS surveillance within this local

area (Figure 4: pairwise weekly correlation $0.87; P,0.0001).

This analysis confirms the robustness of the IMS system for local

disease monitoring, as we would expect high population connec-

tivity within New York City, resulting in highly synchronous

disease patterns between boroughs.

Additional comparison of IMS-ILI indicators for New York

City against locally available reference influenza surveillance data

reveals strong synchrony between datasets (Figure 5). There was

high correlation in weekly incidences (rho = 0.86, P,0.0001), and

excellent correlation in peak timing (rho = 0.99, P,0.0001), and

seasonal intensity (rho = 0.93, P,0.001). Reassuringly, the spring

wave of the 2009 pandemic appeared as an outlier in both

datasets, confirming the unusually pronounced first wave of A/

H1N1 pandemic virus activity in this city.

Discussion

Although there has been important progress in influenza

surveillance systems in recent years [1,3,19,20], highly-resolved

spatial disease data based on medical diagnoses are still lacking [3].

Figure 3. Comparison of influenza seasonal intensity measured by the 3 surveillance systems, IMS-ILI, CDC-ILI, and CDC laboratory-
confirmed virus activity, by region. Red symbols illustrate the comparison between IMS-ILI (y-axis) and CDC laboratory surveillance (x-axis); while
green symbols represent the comparison between IMS-ILI (y-axis) and CDC-ILI (x-axis). Dots represents 6 pre-pandemic seasons, 2003–04 to 2008–09;
squares represent the spring 2009 pandemic wave, and triangles the main pandemic wave in fall 2009. As regards ILI, intensity is based on excess
incidence over baseline each season, estimated from Serfling seasonal regression. As regards CDC virus surveillance, intensity is based on the
cumulative percent positive each season (sum of virus positives/sum of specimens tested).
doi:10.1371/journal.pone.0102429.g003

Table 2. Age-specific correlations between IMS-ILI and CDC-ILI on a regional scale, 2003–04 to 2009–10.

Outcome/Age group ,5 yrs 5–19 yrs 20–64 yrs Over 65 yrs

Weekly incidence 0.72 (0.64–0.81) 0.89 (0.81–0.95) 0.84 (0.72–0.93) 0.70 (0.41–0.86)

Peak week 0.76 (0.41–0.96) 0.98 (0.92–1) 0.87 (0.5–0.99) 0.68 (0.21–0.96)

Intensity 0.54 (0.27–0.80) 0.28 (20.33–0.93) 0.64 (0.43–0.9) 0.76 (0.53–0.97)

Values indicate average Pearson correlation coefficients across 10 regions (range is provided in parentheses); values in bold are significant (P,0.05).
doi:10.1371/journal.pone.0102429.t002
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We have shown here that medical claims-based ILI indicators

derived from IMS Health accurately capture weekly fluctuations

and timing of influenza activity in all 10 US regions. Our analyses

indicate that high-volume all-age ILI indicators are reliable during

inter-pandemic and pandemic seasons and can be broken down by

age groups and fine geographical areas. Further, comparisons

against control RSV surveillance time series confirm the specificity

of the IMS-ILI indicator for influenza. In contrast, we found weak

agreement between the various surveillance systems in their

seasonal estimates of influenza intensity, especially for school-age

children.

Table 3. Correlations between IMS indicators for ILI and RSV activity vs traditional influenza surveillance datasets maintained by
the CDC.

IMS-ILI indicator and: IMS RSV indicator and CDC RSV activity

Outcome CDC-ILI CDC influenza viral activity CDC RSV activity

Weekly incidence 0.97 (1) 0.93 (0) 0.33 (0)* 0.94 (0)

Peak week 0.99 0.97 0.21 0.97

Intensity 0.90 20.10 0.43 0.77

Correlation between IMS-ILI and CDC RSV laboratory-confirmed viral activity can be considered as a control comparison testing the specificity of IMS-ILI for influenza
surveillance. Analyses performed at the national scale, 2003–04 to 2009–10. Values indicate Pearson correlation coefficients; values in bold are significant (P,0.05).
*Correlation for this control comparison is significantly weaker than for the other comparisons (P#0.05), indicating that the IMS-ILI indicator is specific of weekly
influenza activity while the IMS RSV indicator is specific of weekly RSV activity.
doi:10.1371/journal.pone.0102429.t003

Figure 4. Spatial variation in local influenza activity: 2009 influenza pandemic patterns in 21 cities and county regions of New York
State. Weekly IMS-ILI indicators are represented for the period May 2009 to April 2010.
doi:10.1371/journal.pone.0102429.g004
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The level of correlation found between reference CDC-ILI

surveillance data and IMS-ILI indicators (range across regions

0.83–0.97) compares favorably to that reported for Google Flu

Trends (range across regions 0.84–0.96, [18]). Google Flu Trends

were deliberately calibrated against CDC-ILI surveillance, relying

on a set of Google search queries that optimized the correlation

between the two systems [24]. However, Google Flu Trends were

unable to capture the spring wave of the 2009 pandemic,

prompting a major revision of the algorithm [3,25]. In contrast,

IMS-ILI surveillance was not calibrated against CDC surveillance

Figure 5. Comparison of the IMS-ILI indicator for New York City (top panel) against reference surveillance data available locally
from emergency department (ED) visits (middle panel). Seasonal regression models are fitted to both time series, as explained in the text
(blue dots represent non-epidemic observations used to fit the model). The bottom panels display correlations in weekly incidences, peak weeks and
seasonal intensity estimates (red dots; seasonal influenza; blue dots; fall 2009 pandemic wave; green dot; spring 2009 pandemic wave) between the
IMS dataset and reference data.
doi:10.1371/journal.pone.0102429.g005
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but nevertheless accurately captured increased influenza activity in

the Boston and New York regions in May-June 2009, two regions

particularly affected by the spring pandemic wave [3,15]. Other

limitations of the updated Google Flu Trends algorithm include

the failure to capture the correct timing and intensity of the recent

and well-publicized 2012–13 influenza season at various geo-

graphic scales, perhaps due to changes in media attention [3,4].

Importantly, the gold standard for influenza surveillance remains

laboratory-confirmed viral activity. It is noteworthy that influenza

viral activity was more highly correlated with IMS-ILI surveillance

than with Google Flu Trends (rho = 0.89 v. 0.70 for regional data,

this study and [18]). These encouraging results suggest that IMS-

ILI may be a more specific indicator of influenza patterns than

Google Flu Trends.

Using retrospective IMS Health data based on the actual day of

the physician’s visit, we identified a lead of about 0–1 week

between IMS-ILI and reference CDC influenza indicators,

indicating increased timeliness of IMS data. The slight lag

associated with reference surveillance systems, relative to IMS

Health data, may result from delays associated with laboratory

testing and temporal aggregation of disease encounters. In

contrast, past work suggests there is essentially no lag between

reference influenza surveillance systems and Google Flu Trends in

the US [18]. Here we focused on providing a historical validation

of the IMS Health data, and did not attempt to test the real-time

availability of these data. However, if IMS Health claims data

were to be used for prospective surveillance purposes, timeliness

would depend on the ability to generate timely weekly reports,

perhaps based on a known pattern of trickling in of medical claims

following physician encounters. Our strategy of stabilizing the

IMS-ILI indicator by denominating with the total number of visits

will likely secure the reliability of IMS Health data in near real-

time use, even before all claims have been submitted.

The level of agreement in estimates of seasonal intensity by the

various influenza surveillance systems was only moderate or weak,

especially for school-age children. This is not surprising perhaps as

the intensity of an epidemic is more difficult to capture than its

timing [26]. As with any ILI surveillance system, IMS-ILI and

CDC-ILI data include a background level of activity originating

from the contribution of non-influenza respiratory pathogens,

which can be filtered by seasonal regression models [22]. This

approach however was insufficient to provide a high level of

correlation in seasonal intensity estimates at the regional scale in

our study. It is possible that different proportions of pediatricians

in the IMS and CDC surveillance systems, sample sizes issues,

and/or the increased contribution of non-influenza pathogens at

younger ages, obscures comparisons of intensity. Interestingly,

IMS-ILI data in young children were markedly different from

reference RSV time series, suggesting these indicators do not

capture RSV activity patterns in a major way.

Although laboratory-confirmed virus activity is highly specific

for influenza, it remains unclear whether such data should be

considered a gold standard for epidemic intensity. Between- season

variation in sampling intensity and diagnostic sensitivity may bias

the percent virus positive metric, as can fluctuations in co-

circulating respiratory pathogens. For instance, the CDC-ILI and

IMS-ILI indicators had similar intensity in spring 2009, while at

the same time departing from influenza virus surveillance data,

suggesting an inflated impact of the spring 2009 pandemic wave in

laboratory surveillance. Intensified sampling of respiratory spec-

imens during the first few weeks of pandemic activity, combined

with a minimal contribution of co-circulating respiratory patho-

gens in the spring, would explain these discrepancies. On the other

hand, the percent virus positive metric never exceeds ,40% even

in the most severe influenza seasons, perhaps due to detection

issues [27]. Consequently, others have proposed a combination of

ILI and percent virus positive as the most appropriate indicator of

influenza intensity [27]. Although attractive and particularly well

correlated with influenza-related mortality [28], this composite

indicator is not available at a local scale where viral sampling

remains too sparse. Similarly, the integration of local Google Flu

Trends indicators with regionally-available percent virus positive

data has been put forward to monitor influenza activity in US

cities [29]. The performances of this hybrid surveillance approach

should be quantified however, especially as Google Flu Trends is

prone to important under- and over-estimation issues [3]. Overall,

further theoretical and simulation work should concentrate on

identifying the most appropriate indicators of disease intensity at

weekly and seasonal time scales and evaluate putative biases.

Although we were unable to systematically validate city-level

IMS-ILI indicators throughout the US due to unavailability of a

gold standard at the relevant spatial scale, our comparison focused

on New York City was promising. At the local level, IMS-ILI data

revealed important spatial heterogeneity in pandemic patterns

between cities in New York State, together with great consistency

between well-connected boroughs of New York City, indicating

the robustness of this system to monitor local disease spread.

Although a thorough validation of IMS-RSV disease indicators

at local and regional scales was beyond the scope of this study, we

noted a clear promise in the IMS data for tracking RSV activity.

More work in this area would be worthwhile as local indicators of

RSV activity are urgently needed to guide the timing of

prophylaxis in individual locations [9,10], until vaccines become

available. Further, availability of local RSV data could help shed

light on the transmission dynamics of this less-studied pathogen

and the surprising level of spatial heterogeneity in seasonal

epidemics [10,30].

Our study is subject to several limitations. Our study period was

relatively short, 2003–2010, which includes only 6 inter-pandemic

and 2 pandemic seasons. Although IMS surveillance started in

2001, the number of participating physicians and data volume

increased substantially in the first two years, which we chose to

discard from this study. Nevertheless, we were able to capture a

variety of influenza seasons dominated by all 3 influenza subtypes,

ranging from mild and double-peaked winter epidemics (2006–07),

to the localized spring 2009 pandemic wave, and the very spiky

and unusual fall 2009 pandemic wave. Further, we did not test the

performances of IMS Health data for real time surveillance in a

prospective manner, which would require a careful study of the

dynamics of accumulation of claims into the IMS Health data

warehouse.

In summary, we have shown that the medical claims-based

surveillance is a very promising tool to study influenza and RSV

activity at regional and local scales in inter-pandemic and

pandemic seasons. While there has been great progress in the

last decade in building sophisticated spatial simulation models of

pandemic influenza spread in the US and globally [31,32,33],

proper model validation against empirical disease patterns is still

sparse due to the lack of fine-grained epidemiological data [11].

There has been considerable interest in novel surveillance systems

such as Google Flu Trends to fill the void, particularly in large

cities such as New York [34]. It has recently become clear however

that search query indicators may not always capture true disease

patterns and miss critical epidemiological features such as out-of-

season pandemic outbreaks [3]. Alternative choices include high-

volume medical databases maintained in the private sector, such as

IMS Health, and similar data streams generated in the public

sector, such as Biosense [35,36] and Electronic Health Records

Medical Claims Data for Influenza Surveillance in the US
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from ambulatory clinics [37]. One important obstacle to a wider

use of large medical claims databases is perhaps their prohibitive

cost for public health research, although this will become less of an

issue in the future as the cost of electronic health data is declining.

In conclusion, we believe medical claims data offer a unique

opportunity to provide rapid disease information to the scientific

and public health communities for local situational awareness, to

refine existing influenza transmission models, and support

pandemic response in future outbreaks.

Supporting Information

Figure S1 Synchrony in peak timing between IMS-ILI
indicators and reference surveillance systems, including
CDC-ILI (A), CDC laboratory-confirmed influenza virus
activity (B), and CDC laboratory-confirmed RSV activity
(C). Comparisons are based on nationally-aggregated data. Red

circles represent 6 pre-pandemic seasons, 2003–04 to 2008–09;

green dots represent the spring 2009 pandemic wave and blue dots

the main pandemic wave in fall 2009.

(TIF)

Figure S2 Age-specific ILI time series in the Boston
region (region 1) based on CDC surveillance and IMS
Health.
(TIF)

Figure S3 Comparison of IMS-ILI, CDC-ILI and IMS-
RSV indicators in the Boston region (region 1) for

children under 5 yrs. Note the semi-annual pattern of activity

in IMS-ILI data (large peak in winters and smaller peaks in

summers), which is most pronounced in the North-East. The

bottom panel suggests that IMS-ILI does not align with RSV

activity but instead accurately captures unusually early influenza

activity in fall 2003 (severe A/H3N2 Fujian season) and fall 2009

(A/H1N1 pandemic; see also Figure S4).

(TIF)

Figure S4 Comparison of IMS-ILI, CDC-ILI and IMS-
RSV indicators in the Atlanta region (region 4), for
children under 5 yrs. In this region, RSV is known to display

very early timing of activity and predates influenza in most years,

except for the 2003–04 influenza season and 2009 fall pandemic

wave. The bottom panel confirms that the pediatric IMS-ILI

indicator does not capture RSV activity patterns (see also Figure

S3).

(TIF)

Text S1 Description of supplementary text.

(DOC)

Author Contributions

Conceived and designed the experiments: CV VC BG LS. Analyzed the

data: CV VC FK DO JG SB. Contributed reagents/materials/analysis

tools: FK DO. Wrote the paper: CV VC DO SB JG FK BG LS.

References

1. Brammer L, Budd A, Cox N (2009) Seasonal and pandemic influenza

surveillance considerations for constructing multicomponent systems. Influenza

Other Respi Viruses 3: 51–58.

2. CDC website. Influenza activity in the US. Available: http://www.cdc.gov/flu/.

Accessed 2005 Oct 12.

3. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L (2013) Reassessing

Google Flu Trends data for detection of seasonal and pandemic influenza: a

comparative epidemiological study at three geographic scales. Plos Computa-

tional Biology 9: e1003256.

4. Butler D (2013) When Google got flu wrong. Nature 494: 155–156.

5. Fleming DM, Cross KW (1993) Respiratory syncytial virus or influenza? Lancet

342: 1507–1510.

6. Fleming DM, Pannell RS, Cross KW (2005) Mortality in children from influenza

and respiratory syncytial virus. J Epidemiol Community Health 59: 586–590.

7. Zhou H, Thompson WW, Viboud CG, Ringholz CM, Cheng PY, et al. (2012)

Hospitalizations associated with influenza and respiratory syncytial virus in the

United States, 1993–2008. Clin Infect Dis 54: 1427–1436.

8. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, et al. (2009)

The burden of respiratory syncytial virus infection in young children.

N Engl J Med 360: 588–598.

9. Haynes AK, Prill MM, Iwane MK (2013) Respiratory Syncytial Virus Activity -

United States, July 2011-January 2013. MMWR-Morbidity and Mortality

Weekly Report 62: 141–144.

10. Light M, Bauman J, Mavunda K, Malinoski F, Eggleston M (2008) Correlation

between respiratory syncytial virus (RSV) test data and hospitalization of

children for RSV lower respiratory tract illness in Florida. Pediatric Infectious

Disease Journal 27: 512–518.

11. Gog J, Ballesteros S, Viboud C, Simonsen L, Bjornstad ON, et al. (2013) Spatial

transmission of 2009 pandemic influenza in the US. Plos Computational

Biology: 2014: In Press.

12. Schuck-Paim C, Taylor R, Lindley D, Klugman KP, Simonsen L (2013) Use of

near-real-time medical claims data to generate timely vaccine coverage estimates

in the US: The dynamics of PCV13 vaccine uptake. Vaccine 31: 5983–5988.

13. Cortese MM, Tate JE, Simonsen L, Edelman L, Parashar UD (2010) Reduction

in gastroenteritis in United States children and correlation with early rotavirus

vaccine uptake from national medical claims databases. Pediatr Infect Dis J 29:

489–494.

14. Kalies H, Redel R, Varga R, Tauscher M, von Kries R (2008) Vaccination

coverage in children can be estimated from health insurance data. BMC Public

Health 8: 82.

15. Nelson MI, Tan Y, Ghedin E, Wentworth DE, St George K, et al. (2011)

Phylogeography of the spring and fall waves of the H1N1/09 pandemic

influenza virus in the United States. J Virol 85: 828–834.

16. (2009) 2009 pandemic influenza A (H1N1) virus infections - Chicago, Illinois,

April-July 2009. MMWR Morb Mortal Wkly Rep 58: 913–918.

17. U.S. Census Bureau website. Population estimates. Available: http://www.

census.gov/popest/estimates.php. Accessed 2014 Jan 1.

18. Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, et al. (2011) Monitoring

Influenza Activity in the United States: A Comparison of Traditional

Surveillance Systems with Google Flu Trends. PLoS One 6.

19. Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, et al. (2007)

Monitoring the Impact of Influenza by Age: Emergency Department Fever and

Respiratory Complaint Surveillance in New York City. PLoS Med 4: e247.

20. Olson DR, Paladini M, Lober WB, Buckeridge DL (2011) Applying a New

Model for Sharing Population Health Data to National Syndromic Influenza

Surveillance: DiSTRIBuTE Project Proof of Concept, 2006 to 2009. PLoS Curr

3: RRN1251.

21. Serfling RE, Sherman IL, Houseworth WJ (1967) Excess pneumonia-influenza

mortality by age and sex in three major influenza A2 epidemics, United States,

1957–58, 1960 and 1963. Am J Epidemiol 86: 433–441.

22. Costagliola D, Flahault A, Galinec D, Garnerin P, Menares J, et al. (1991) A

routine tool for detection and assessment of epidemics of influenza-like

syndromes in France. Am J Pub Health 81: 97–99.

23. Viboud C, Grais RF, Lafont BA, Miller MA, Simonsen L (2005) Multinational

impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering

pandemic. J Infect Dis 192: 233–248.

24. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, et al. (2009)

Detecting influenza epidemics using search engine query data. Nature 457:

1012–1014.

25. Cook S, Conrad C, Fowlkes AL, Mohebbi MH (2011) Assessing Google flu

trends performance in the United States during the 2009 influenza virus A

(H1N1) pandemic. PLoS One 6: e23610.

26. Viboud C, Bjornstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006)

Synchrony, waves, and spatial hierarchies in the spread of influenza. Science

312: 447–451.

27. Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M (2011) Predicting the

epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method.

PLoS Med 8: e1001051.

28. Goldstein E, Viboud C, Charu V, Lipsitch M (2012) Improving the estimation of

influenza-related mortality over a seasonal baseline. Epidemiology 23:829–38.

29. Shaman J, Karspeck A, Yang WY, Tamerius J, Lipsitch M (2013) Real-time

influenza forecasts during the 2012–2013 season. Nature Communications

4:2837.

30. Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L, et al. (2013)

Latitudinal variations in seasonal activity of influenza and respiratory syncytial

virus (RSV): a global comparative review. PLoS One 8(2): e54445.

Medical Claims Data for Influenza Surveillance in the US

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e102429

http://www.cdc.gov/flu/
http://www.census.gov/popest/estimates.php
http://www.census.gov/popest/estimates.php


31. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, et al. (2006)

Strategies for mitigating an influenza pandemic. Nature 442: 448–452.
32. Germann TC, Kadau K, Longini IM Jr, Macken CA (2006) Mitigation

strategies for pandemic influenza in the United States. Proc Natl Acad

Sci U S A 103: 5935–5940.
33. Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, et al. (2009) Seasonal

transmission potential and activity peaks of the new influenza A(H1N1): a Monte
Carlo likelihood analysis based on human mobility. BMC Med 7: 45.

34. Shaman J, Karspeck A (2012) Forecasting seasonal outbreaks of influenza. Proc

Natl Acad Sci U S A 109: 20425–20430.

35. Benoit SR, Burkom H, McIntyre AF, Kniss K, Brammer L, et al. (2013)

Pneumonia in US hospitalized patients with influenza-like illness: BioSense,

2007–2010. Epidemiol Infect 141: 805–815.

36. Rha B, Burrer S, Park S, Trivedi T, Parashar UD, et al. (2013) Emergency

department visit data for rapid detection and monitoring of norovirus activity,

United States. Emerg Infect Dis 19: 1214–1221.

37. Plagianos MG, Wu WY, McCullough C, Paladini M, Lurio J, et al. (2011)

Syndromic surveillance during pandemic (H1N1) 2009 outbreak, New York,

New York, USA. Emerg Infect Dis. 17:1724–6.

Medical Claims Data for Influenza Surveillance in the US

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102429


