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Abstract
ADAMTS13, a metalloproteinase, specifically cleaves unusually large multimers of von Willebrand factor (VWF), newly 
released from vascular endothelial cells. The ratio of ADAMTS13 activity to VWF antigen (ADAMTS13/VWF) and indica-
tors of the alternative complement pathway (C3a and sC5b-9) are both related to the severity of COVID-19. The ADAMTS13/
VWF ratio is generally moderately decreased (0.18–0.35) in patients with severe COVID-19. When these patients experience 
cytokine storms, both interleukin-8 and TNFα stimulate VWF release from vascular endothelial cells, while interleukin-6 
inhibits both production of ADAMTS13 and its interaction with VWF, resulting in localized severe deficiency of ADAMTS13 
activity. Platelet factor 4 and thrombospondin-1, both released upon platelet activation, bind to the VWF-A2 domain and 
enhance the blockade of ADAMTS13 function. Thus, the released unusually-large VWF multimers remain associated with 
the vascular endothelial cell surface, via anchoring with syndecan-1 in the glycocalyx. Unfolding of the VWF-A2 domain, 
which has high sequence homology with complement factor B, allows the domain to bind to activated complement C3b, 
providing a platform for complement activation of the alternative pathway. The resultant C3a and C5a generate tissue factor-
rich neutrophil extracellular traps (NETs), which induce the mixed immunothrombosis, fibrin clots and platelet aggregates 
typically seen in patients with severe COVID-19.
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Introduction

COVID-19 caused by SARS-CoV-2 infection is often associ-
ated with the acute respiratory distress syndrome (ARDS), 
and complicated with thrombosis of many organs, meeting 
the diagnostic criteria for disseminated intravascular coagu-
lation (DIC) [1]. During the clinical course, patients typically 

show a macrophage activation syndrome or cytokine storm, 
in which an excess production of inflammatory cytokines 
such as interferons, interleukins (IL), chemokines, tumor 
necrosis factors (TNFs) or colony-stimulating factors 
recruit more immune cells to the site of injury, thus lead-
ing to organ damage. Such thrombosis usually localizes to 
the lungs, termed ‘pulmonary intravascular coagulopathy’ 
[2], characterized by fibrin thrombus in pulmonary small 
arteries, and high plasma levels of inflammatory cytokines, 
ferritin, D-dimer, tissue-plasminogen activator (t-PA), and 
fibrinogen, together with slightly decreased platelet counts. 
Autopsies reveal pulmonary small vessels containing mixed 
microthrombi consisting of fibrin clots and platelet aggre-
gates with or without megakaryocytes [3]. Some of these 
microthrombi react with an antibody against von Willebrand 
factor (VWF). These findings, in part, meet pathological 
criteria for thrombotic microangiopathy (TMA), manifest-
ing thrombocytopenia, hemolytic anemia, and multi-organ 
failures, typically seen in such life-threatening diseases as 
thrombotic thrombocytopenic purpura (TTP) and hemolytic 
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uremic syndrome (HUS) [4, 5], but differing from common 
TMA, because circulating platelet counts are usually not 
severely decreased and hemolytic anemia is rare.

Thromboembolic complications associated with COVID-
19 are, therefore, assumed to be induced by several factors 
acting together, including coagulopathy, complementopathy 
and endotheliopathy, often under cytokine storm [6–8]. In 
fact, in COVID-19 patients, complement activation gener-
ates tissue factor (TF)-enriched neutrophil extracellular traps 
(NETs), which mediate both thrombosis and endotheliopa-
thy [9, 10]. Important indicators for disease progression 
and thrombosis include elevated plasma levels of activated 
complement components [11] and of VWF with moderately 
decreased activity of ADAMTS13 (VWF-specific cleaving 
protease) [12–14].

As yet, a relationship between complement activation 
and VWF in COVID-19 thrombosis has received little 
attention; however, complement is often activated in con-
cert with elevated VWF levels, as typically shown in con-
genital deficiency of ADAMTS13 activity [15–17]. Further, 
the A-domains of VWF share primary sequence homology 
with a 225 amino acid segment of complement factor B 
[18–20], indicating that both proteins are descended from a 
common ancestor, while factor B binds to complement C3b, 
a key protein of the complement activation cascade. These 
observations suggest that VWF participates in complement 
activation during COVID-19. The present review focuses on 
the role of VWF in COVID-19 associated ‘TMA’, in rela-
tion to the structure–function of VWF with the complement 
activation mechanism.

VWF, Weibel‑Palade body and ADAMTS13

VWF is exclusively produced by vascular endothelial cells 
(ECs) and stored in Weibel-Palade bodies (WPBs), which 
are small intracellular organelles of vascular ECs, not 
only for storage of unusually large VWF multimers (UL-
VWFMs) but also of various proteins involved in hemosta-
sis, inflammation, and angiogenesis, including factor VIII, 
VWF-propeptide, P-selectin, angiopoietin-2 (Ang-2), IL-8, 
t-PA, etc. [21, 22]. It is well established that in vitro, sev-
eral substances such as thrombin and histamine can release 
UL-VWFMs from cultured ECs [21, 22], while in vivo UL-
VWFMs are released from WPBs upon their stimulation 
with epinephrine and 1-desamino-8-D-arginine vasopressin 
(DDAVP) [23], plus some inflammatory cytokines.

In addition to acting as a carrier protein for coagulation 
factor VIII, plasma VWF has an essential role in primary 
hemostasis by anchoring platelets onto denuded vascular 
ECs [24]. The VWF-cDNA codes for 2813 amino acids 
including 3 structural domains: (1) a signal peptide [22 
amino acid (aa) residues], (2) the propeptide including the 

D1 and D2 assemblies (741 aa), and (3) the mature VWF 
subunit (2050 aa) including D’-D3-A1-A2-A3-D4-C1-C2-
C3-C4-C5-C6-CK [24, 25], where each of the A1-A2-A3 
domains has a loop structure, formed by intra-molecular 
disulfide bonds [26] (Fig. 1). Of note, it is well-known that 
a variety of ligands involved in thrombosis-hemostasis, com-
plement activation-regulation and various toxins can bind to 
specific domain on the monomeric VWF subunit as shown 
in Fig. 1: factor VIII [27], platelet GPIb [28], heparin [29], 
heparan sulfate [30], P-selectin glycoprotein ligand-1 [31], 
collagen type I [32], DNA of NETs [33], platelet factor 4 
(PF4) [34], thrombospondin-1(TSP-1) [35], β2-integrins 
[36], collagen type III [37], αIIbβ3 [38], αvβ3 [39], factor 
H [40], C3b [16], C3 [41], snake venoms: botrocetin [42], 
bitiscetin-1 [43], bitiscetin-2 [44], Staphylococcus aureus 
-Protein A [45] and -VWF binding protein [46], and patho-
logic E.coli-producing Shiga toxin [47]. Notably, the VWF-
A1 domain is cryptic under normal physiological conditions, 
but once exposed under high shear stress, it turns to active 
conformation, to which a variety of the ligands can bind. In 
spite of VWF’s ability to bind many proteins, the physiologi-
cal role(s) of this binding capacity is largely unexplored.

Mature VWF subunits are linked by disulfide bonds 
in a head-to-head and tail-to-tail configuration to form 
large multimers ranging from 500 × 103 to 15 × 106 dal-
tons [49]. Before being released into the circulation, UL-
VWFMs undergo proteolytic cleavage at the peptide bond 
of Y1605-M1606 [50, 51] by ADAMTS13 under the high 
shear stress generated in microvasculatures. In the absence 
of ADAMTS13, UL-VWFMs are not cleaved, and stay 
anchored or are released without proteolytic processing 
[52]. In early studies, the anchor protein was postulated to be 
P-selectin or αvβ3-integrins [39, 53], although a subsequent 
report excluded this possibility [54]. Later, the finding that 
VWF can bind to negatively-charged heparin [29], demon-
strated that VWF likely binds to heparan sulfate linked to 
syndecan-1 on the glycocalyx of vascular ECs [30].

Although several organs, including liver and vascular ECs, 
express ADAMTS13, the highest level of gene expression 
occurs in liver [55]. These studies revealed that ADAMTS13 
is localized to liver stellate cells [56], which help maintain 
plasma levels of ADAMTS13 activity. Although the function 
of ADAMTS13 secreted by vascular ECs has not been well 
characterized [57], it may co-operate with plasma ADAMTS13 
for the cleavage of newly-released UL-VWFMs on the surface 
of vascular ECs. Thus, a local inhibition of ADAMTS13 on 
the surface of the vascular ECs may foster the formation of 
thrombosis in COVID-19 patients. In vitro experiments in both 
rat primary hepatic stellate cells and human umbilical cells, 
suggest that a local reduction of ADAMTS13 activity may 
be caused by inflammatory cytokines such as IFN-γ, IL-4, 
and TNF-α which inhibit its production without inhibiting 
the release of UL-VWFMs [58]. In addition, TSP-1 and PF4, 
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both released from platelet α-granules upon activation can bind 
to the unfolded VWF-A2 domain, causing steric hindrance 

for ADAMTS13 binding, and thus blocking cleavage of UL-
VWFMs by ADAMTS13 [34, 35].

Fig. 1   Structural domains of 
human von Willebrand factor 
(VWF) and its binding ligands. 
The cDNA of mature human 
VWF subunit includes the 
following structural domains: 
D’-D3-A1-A2-A3-D4-C1-
C2-C3-C4-C5-C6-CK. The 
monomeric mature VWF 
subunit begins with amino 
acid residue number 763 and 
ends with 2813 (2050 amino 
acid residues). As shown in the 
upper panel, each A domain has 
a loop structure linked by an 
intramolecular disulfide bond. 
ADAMTS13 cleaves at the 
peptide bond of Y1605-M1606. 
LLG = Leucine-Leucine-
Glycine motif, RGD = Arginine-
Glycine-Aspartate motif. The 
lower panel lists the natural 
ligands that bind to each VWF 
domain involved in thrombo-
sis/hemostasis, complement 
activation/inhibition, and 
others. TSP-1 = thrombospon-
din-1, PF4 = platelet factor 4, 
PSGL-1 = P-selectin glyco-
protein ligand-1, NETs = neu-
trophil extracellular traps, 
SA-Protein A = Staphylococ-
cus aureus Protein A. SA-
VWFbp = Staphylococcus 
aureus VWF binding protein. 
Note that the ligands shown 
by the red bars bind to VWF 
domains in a shear-dependent 
manner. The binding of platelet 
GPIb to the A1-domain initiates 
platelet activation, alongside 
the enhanced proteolysis by 
ADAMTS13 [48], as does 
factor H [40]. Notably, both 
TSP-1 and PF4, released 
from α-granules of platelets 
upon activation, bind to the 
A2-domain, preventing cleavage 
by ADAMTS13. (See text in 
detail.)
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Pathological features of COVID‑19 
thrombosis

In COVID-19, the spike (S) protein of SARS-CoV-2 is 
cleaved by the host's serine protease (TMPRSS2) to form 
S1 and S2 moieties. The two moieties remain together as 
the S1 moiety binds to the host’s angiotensin-converting 
enzyme-2 (ACE-2) and the S2 moiety fuses with the host 
cell [59]. Many organs have high levels of ACE-2 mRNA: 
lung, heart, aorta, urinary tract, lymph-nodes, testis, ovary, 
salivary gland, mammary gland, gastrointestinal tract, 
brain (amygdala, cerebral cortex, brain stem) [60], plate-
lets, and megakaryocytes [61].

Autopsies of COVID-19 patients who died of ARDS 
showed extensive necrosis of alveolar cells, type 2 alveo-
lar cell hyperplasia, and fibrin deposition in the alveolar 
cells as well as considerable infiltration of CD4-T cells, 
but little infiltration of CD8-T cells [62, 63]. Pulmonary 
arterioles contained an incompletely occluded hyaline 
thrombus about 1–2 mm in diameter; vascular remodeling 
in alveolar capillaries was abnormal with the normal ves-
sel hierarchy of the alveolar plexus substituted by bizarre 
blood vessel formation, termed ‘intussusceptive angiogen-
esis’. This was significantly increased in patients with long 
hospital stays [62]. Moreover, autopsies of patients who 
died of ARDS revealed numerous intrapulmonary arteri-
ole thrombi including fibrin, CD61-positive platelets and 
megakaryocytes, with positive immunostaining of VWF 
[63]. These patients also had hypercellular bone marrow 
[64, 65]. The pathogenesis of mixed thrombi of fibrin and 
platelets in the lungs with or without megakaryocytes, and 
without a significant reduction of circulating platelets, is 
unknown. However, megakaryocytes in human lungs have 
long been known [66], while the ratio of platelets to red 
blood cells is higher in the cubital artery in the arm than 
in the vein, suggesting that the lung may produce platelets 
[67]. Proof that the human lung is a source of platelets is 
lacking, although in mice, half of the platelets in the circu-
lating blood are produced in the lungs, and the other half 
in the bone marrow [68]. Notably, the following studies 
also identified ‘megakaryocytopathy’ occurring in hepatic, 
cardiac and renal microvasculatures [64, 65], as well as in 
cortical capillaries in the brain of a deceased COVID-19 
patient who had experienced a brain fog [69].

From the early era of COVID-19, it has been noted that 
in severe cases, the plasma level of VWF antigen is mark-
edly increased (278–772% of normal), and ADAMTS13 
activity is moderately decreased (40–89% of normal), 
resulting in an average ADAMTS13/VWF ratio of 
0.18–0.35 [70, 71], usually without severe thrombocytope-
nia. A mild-to-moderate reduction in plasma ADAMTS13 
activity in COVID-19 patients has been thought simply to 

reflect a severe inflammation reaction because VWF is a 
marker of the acute phase, and is assumed to be a conse-
quence of UL-VWFMs released from vascular endothe-
lial cells under cytokine storms. Subsequent investiga-
tions have confirmed that a low ADAMTS13/VWF ratio 
in patient plasma is associated with a high prothrombotic 
risk [11–13]. Indeed, these patients sometimes have a vari-
ety of autoimmune complications, such as immune throm-
bocytopenia (ITP) [72], Guillain–Barré syndrome [73], 
antiphospholipid syndrome (APS)  [74],  immune 
TTP  [75], and more recently anti-factor H associated 
aHUS [76]. However, anti-PF4 antibody [77, 78] rarely 
appears after SARS-CoV-2 vaccination. Root-Bern-
stein [79] recently proposed as an explanation that SARS-
CoV-2-associated autoimmunity may be enhanced by 
coexisting bacterial or viral infections, as these pathogens 
have primary amino acid sequence homology with many 
human serum proteins. However, a direct link between 
the autoantibodies and the mild-to-moderate reduction 
of ADAMTS13 activity in COVID-19 patients is  not 
known. A large increase in VWF released from vascular 
ECs, metaphorically a ‘VWF flood’, leaves UL-VWFMs 
not only on ECs, but also in circulation without efficient 
cleavage by ADAMTS13. These UL-VWFMs induce 
platelet activation and aggregation, but curiously without 
severe reduction of platelet counts. The elevated VWF 
levels of patient plasma often lack UL–VWFMs or high 
molecular weight (HMW)–VWFMs [80]. The propor-
tion of UL–HMW–VWFMs tended to decline in long-
term hospitalization patients in the ICU, possibly due to 
selective consumption of UL–HMW–VWFMs involved 
in platelet aggregates in TMA or to heightened cleavage 
by ADAMTS13 under high shear stress generated during 
extracorporeal membrane oxygenation (ECMO) applied to 
severely ill patients [80, 81].

In severely ill patients, additional markers for vascular EC 
damage, such as soluble (s) P-selectin, s-thrombomodulin 
(TM), and sCD40L were elevated, along with cytokines 
including TNFα, IL-6 and IL-10, but not IL-1b [82]. These 
cytokines are likely released both directly and indirectly 
from type 1 alveolar cells and alveolar resident cells, such 
as neutrophils, lymphocytes and macrophages.

Complement activation

The complement system is part of the innate immune sys-
tem. It protects against pathogens in several ways including 
opsonization, which facilitates the phagocytosis of patho-
gens, activation of leukocytes, and the production of ana-
phylatoxins (C3a and C5a). The three complement pathways 
are the classical, lectin and alternative pathways (AP) [7]. 
The classical pathway is initiated by antibody production 



461COVID‑19 microthrombosis: unusually large VWF multimers are a platform for activation of the…

1 3

and subsequent binding of antibodies to microorganisms, 
in turn triggering a cascade of several complement pro-
teins, whereas in the lectin pathway, a lectin such as man-
nose binding lectin (MBL) binds to mannose moieties on 
the surface of pathogens and initiates the complement cas-
cade through mannose associated serine protease (MASP1, 
MASP2). The final product of the complement activation 
cascade, termed a membrane attack complex (MAC/C5b-
9), results in phagocytosis of the microorganisms. In both 
the classic and lectin pathways, the central C3 convertase 
consists of two complement proteins, C4bC2a. However, the 
activation of the AP is unique and does not require either a 
pathogen recognition mechanism or C4b or C2a [7].

Figure 2 diagrams complement activation in the AP, 
according to Pangburn and Müller–Eberhard [83]. In this 
pathway, plasma C3, which has a thioester domain, is spon-
taneously hydrolyzed by H20 to form C3(H20), to which 
binds factor B, leading to proteolysis by factor D releas-
ing a 32 kDa-Ba protein and thereby generating C3(H20)
Bb, which is the initiation C3-convertase. This convertase 

then cleaves C3 into 2 fragments–C3a and metastable C3b. 
The latter further changes either to the fluid-phase C3b by 
hydrolysis or to the surface-bound C3b through covalent 
binding of a thioester bond to the cell surface [84–86].

C3b when bound to microorganisms (activator surface) 
forms C3bBb, due to the activity of C3-convertase; C3bBb 
in turn binds to properdin (P or factor P) for stabilization. 
Together they form an amplification cycle of C3 activation, 
followed by the generation of C5-convertase in the alterna-
tive pathway (AP) that generates C3bBbC3b, resulting in 
formation of C5b-9 (MAC), and leading to the death of the 
microorganism [7]. The surface-bound C3b has been well 
characterized, but the fluid-phase ‘soluble’ C3b, particularly 
its function, has been little studied in vitro, presumably due 
to its instability in vivo (Table 1).

In contrast, under normal physiological conditions (non-
activator surface), the surface-bound C3b is inactivated by 
complement factor I, a serine protease, in cooperation with 
two additional proteins: (1) complement factor H bound 
to sulfated glycosaminoglycan (GAG) expressed on the 

Fig. 2   Activation and amplification of the complement alternative 
pathway (AP), according to Pangburn and Müller-Eberhard [83]. In 
this pathway, plasma C3, which has a thioester domain, is spontane-
ously hydrolyzed by H20 to form C3(H20), to which binds factor B, 
leading to proteolysis by factor D releasing a 32 kDa-Ba protein and 
thereby generating C3(H20)Bb, which is the initiation C3-convertase. 
This convertase then cleaves C3 into 2 fragments–C3a and metasta-

ble C3b. The latter further changes either to the fluid-phase C3b by 
hydrolysis or to the surface-bound C3b through covalent binding of 
a thioester bond to the cell surface. The surface-bound C3b has been 
well characterized, but the fluid-phase ‘soluble’ C3b, particularly its 
function, has been little studied in vitro, presumably due to its insta-
bility in vivo (See text in detail.)
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vascular EC surface, and (2) membrane cofactor protein 
(MCP) or CD46 (figure not shown) [7, 87]. The gene muta-
tions responsible for such complement and its regulatory 
factors often induce the uncontrolled complement activation, 
termed atypical HUS [87].

NETs in COVID‑19 thrombosis

The spike (S) protein of SARS-CoV-2 binds not only to 
ACE-2, but also in vitro to heparan sulfate on the glycocalyx 
of cultured vascular ECs, to which factor H, a complement 
regulatory protein, also binds under physiological conditions 
[88]. These two ligands may compete with each other for 
binding, resulting in uncontrolled activation of the AP. This 
finding is important, but its clinical significance needs to be 
evaluated, since most patients infected with SARS-CoV-2 
have only low levels of the virus in their circulation and 
do not develop thromboses. A study updated by a French 
group indicated that severe COVID-19 patients with under-
lying TMA had mutations in complement and its regula-
tory factors that were indistinguishable from those in aHUS 
[89]. This finding is also relevant, because severe infections 
including influenza etc. are often strong inducers for TMA 
bouts in aHUS patients.

On the other hand, another recent study showed that 
human vascular ECs express little or almost no ACE-2 [90]. 
This finding may in part address why SARS-CoV-2 infec-
tion has not been confirmed by blood transfusion [91], and 
further strengthens the idea that COVID-19 endotheliopathy 
is associated with an indirect cause rather than with direct 
SARS-CoV-2 infection, as discussed above. For example, an 
anti-SARS-CoV-2 spike (S) IgG with an aberrant glycosyla-
tion site (low fucose and high galactose) on the Fc domain was 
found in severely ill COVID-19 patients [92, 93], and a similar 

antibody complexed with recombinant SARS-CoV-2 spike (S) 
protein induced platelet activation via binding of the complex 
to the platelet IgG-Fc receptor (FcγRIIA) [94]. Platelet acti-
vation was assumed to generate intracellular signal transduc-
tion to activate the platelet GPIb/IX complex, to which VWF 
binds and forms platelet thrombi in vitro. This suggests that the 
immune complex itself may activate the classic complement 
pathway. In contrast, the role of the lectin pathway in comple-
ment activation during SARS-CoV-2 infection seems clear, 
because it is initiated by the binding of mannose binding lectin 
(MBL) to the spike (S) protein of SARS-CoV-2, leading to the 
activation of MBL-associated serine protease 2 (MASP-2) [7].

In patients with COVID-19 thrombosis, plasma levels of 
NETs, TF, the thrombin–antithrombin (TAT) complex, and 
soluble (s) C5b-9 (MAC) are elevated [9, 10]. Also, neutro-
phils isolated from healthy individuals and stimulated with 
platelet-rich plasma from patients with COVID-19, but not 
with plasma devoid of platelets, efficiently release TF-bear-
ing NETs, indicating a critical role of platelets. Importantly, 
the release of NETs from neutrophils was totally abolished 
by inhibition either of complement activation with a C5aR1 
antagonist or with a thrombin inhibitor (dabigatran) or a pro-
tease-activated receptor-1 (PAR-1) inhibitor. These results 
indicate that TF-bearing NETs generated by a double-hit 
phenomenon function as a driver of COVID-19 thrombosis, 
where C5a binding to C5aR1 on the neutrophil surface gener-
ates intracellular TF, and thrombin is released from platelets 
activated by C3a through its binding to the surface receptor 
PAR-1 [9].

Table 1   Comparison of activation and regulation for the complement alternative pathway (AP) in non-COVID-19 and COVID-19

AP alternative pathway, EC endothelial cell, UL-VWFM unusually large von Willebrand factor multimer

C3b binding Non-COVID-19 COVID-19

Platform Activator surface (microor-
ganisms etc.)

Non-activator surface (vascu-
lar ECs)

UL-VWFMs anchored to 
vascular ECs

Mode C3b covalently binds via thioester groups to sugar chains or 
amino acids containing hydroxyl groups

S-protein of SARS-CoV-2 
binds to the glyocalyx of 
vascular ECs, that competes 
with Factor H binding

Non-covalent binding of C3b 
to the unfolded VWF-A2 
domain

Ca2 + -dependency No No Yes
Regulation Tic-over EC-bound C3b is inactivated 

by complement and its 
regulatory factors

SARS-CoV-2 infection 1. SARS-CoV-2 infection
2. Cytokine storm
3. Release of UL-VWFMs 
4. Suppression of 

ADAMTS13
Complement AP Activation Inhibition Activation Activation
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Activation and amplification 
of the alternative complement pathway 
in congenital deficiency of ADAMTS13 
activity

Congenital TTP (cTTP), termed Upshaw-Schulman syn-
drome, is a hereditary deficiency of ADAMTS13 activity 
caused by biallelic ADAMTS13 gene mutations [95–97]. 
A hallmark of cTTP is severe neonatal hemolytic jaundice 
necessitating exchange blood transfusions, that is gener-
ated under high shear stress induced by shrinkage of the 
patent ductus arteriosus, usually within 2–3 days after 
birth [98]. Beyond this period, these patients exhibit either 
the early- or late-onset phenotype of TTP bouts [99, 100]. 
In both, however, there is often severe renal dysfunction 
during the acute phase [14–16]. Kidney biopsies revealed 
deposits of complement C3 and C5b-9 in the renal cor-
tex [14]. Moreover, in these patients, the plasma level of 
sC5b-9 was remarkably increased during the acute phase 
[15], even without the accompanying gene mutations of 
complement and its regulatory factors responsible for 
atypical HUS [16, 17], while ex vivo assays showed that 
patient serum induced C3 and C5b-9 deposits on cultured 
vascular ECs. These deposits were eliminated by spiking 
cTTP serum with recombinant ADAMTS13, indicating 
that in these patients, complement is activated via the AP 
on the surface of vascular ECs　[16].

Additional evidence of a relationship between VWF 
and complement is that the A domain of VWF shares the 
primary sequence homology with complement factor B 
[18–20]. When factor B binds to C3b followed by cleavage 
by factor D, the complex becomes C3-convertase (C3bBb) 
with release of Ba. The Bb moiety consists of the N-ter-
minal VWF-A (homologous) domain and the C-terminal 
serine protease domain. Competition assays and mass 
spectrometry showed that the recombinant (factor B) 
VWF-A domains are responsible for binding to C3b [19]. 
However, in spite of a high sequence homology between 
both A-domains, it had been uncertain whether C3b can 
bind to the VWF-A domain, but that was shown by Bettoni 
et al. [16] (below).

Under the flow of medium lacking ADAMTS13, con-
fluent cell cultures of vascular ECs from human umbilical 
cord (HUVECs) released UL-VWFMs that formed strings 
anchored on the cell surface [52]. Washed platelets, subse-
quently added, adhered to these EC-anchored UL-VWFMs 
like a bead necklace. However, added ADAMTS13 imme-
diately cleaved these UL-VWFMs. In addition, TNFα, 
IL-8, and a complex of IL-6 and sIL-6R, like hista-
mine, induced UL-VWFM release from HUVECs. Curi-
ously, IL-6 alone at a high concentration did not induce 
UL-VWFM release and rather significantly inhibited 

ADAMTS13 activity under flow conditions [101]. The 
inhibition mechanism is still unclear, but none occurred 
under non-flow static conditions, suggesting that inhibi-
tion by IL-6 occurs in a conformation-dependent manner 
through interaction either with VWF or ADAMTS13. This 
finding is extremely important and further indicates that 
under a cytokine storm with high concentrations of several 
cytokines, the hyperactive UL-VWFMs are not efficiently 
cleaved by ADAMTS13 and accumulate on the vascular 
EC surface via anchors, providing a platform for both 
platelet thrombosis and activation of the AP.

In 2013, long before the emergence of COVID-19, Turner 
and Moake [102] reported an extremely fascinating result, in 
which under ex vivo flow and in the absence of exogenous 
ADAMTS13, HUVECs upon stimulation with histamine 
released several members of the AP and their regulatory 
factors, which then bound to UL-VWFMs simultaneously 
released from and anchored onto HUVECs. These proteins 
included C3, factor B, factor D, properdin, C5, factor H, 
factor I, but notably not C4 [102]. This observation also 
raised a question on the role on EC-derived ADAMTS13 in 
regulating VWF multimeric size. In addition, in 2017 Bet-
toni et al. [16] demonstrated a consistent result, in which 
‘soluble’ C3b can bind to the A2 domain of monomeric 
VWF coated onto microtiter wells under static conditions, 
and after normal human serum addition to the wells, form 
C3-/C5-convertase, in a Ca2+-dependent manner, that differs 
from a Ca2+-independent activation process of the AP on 
C3b covalently bound to cell surfaces [85, 86] (compari-
son shown in Table 1). More importantly, they also showed 
that the ‘soluble’ C3b bound neither to plasma-derived nor 
to recombinant multimeric VWF under static conditions, 
indicating that C3b binding to VWF depends on the VWF 
conformation [16]. Since both the classical and the lectin 
pathways require C4b to form C3- or C5-convertase, but the 
AP does not, complement activation in a VWF-dependent 
manner must be via the AP.

UL‑VWFMs are involved in activation 
of the alternative complement pathway 
on the micro‑vasculatures during COVID‑19 
thrombosis

Under physiological conditions, C3b bound covalently to 
the vascular ECs is inactivated by complement factor I, 
a serine protease, in cooperation with complement fac-
tor H bound to sulfated glycosaminoglycan (GAG) on the 
vascular ECs [7]. Factor H can also bind to the A1-A2 
domain of VWF under high shear stress, promoting the 
enhanced proteolysis of VWF by ADAMTS13 [40]. In the 
absence of ADAMTS13, however, factor H bound to VWF 
fails to dysregulate AP activation presumably due to the 
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physiologically different positional relationship of C3b 
and FH. Taking these scenarios together with the experi-
mental data discussed above, a model of VWF-dependent 
complement activation of the AP during COVID-19 can be 
proposed as shown in Fig. 3. First, SARS-CoV-2 invades 
the lung alveoli from the respiratory tract and infects type 

2 alveolar epithelial cells and macrophages. This causes 
release of cytokines from resident cells, such as mac-
rophages, CD4-T lymphocytes and neutrophils. Inflam-
matory cytokines further stimulate release of cytokines 
from blood cells and vascular ECs, generating a cytokine 
storm [103]. Consequently, IL-8, TNFα, and a complex of 
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IL-6 and its soluble receptor (sIL-6R) stimulate vascular 
ECs, and induce exocytosis of UL-VWFMs from WPBs. 
Under high shear flow, UL-VWFMs undergo a conforma-
tional change, allowing ADAMTS13 more accessibility; 
however, IL-6 interferes with this interaction, resulting in 
inhibition of ADAMTS13 activity [101]. This inhibitory 
effect could also be heightened by the binding of TSP-1 
and/or PF4 to VWF-A2 domain [34, 35]. In such microen-
vironments, the 3-loop domains (A1-A2-A3) of VWF are 
exposed on the molecular surface. The A1-loop domain 
binds to the heparan sulfate of syndecan-1 on the vascular 
EC surface [30], while the A2 domain binds to C3b gen-
erated by AP activation, without interference of factor H, 
as mentioned.

In summary, C3b bound to UL-VWFM anchored on 
the EC surface binds factor B, which is proteolyzed by 
factor D, and then binding of properdin, as a stabilizer, to 
the C3b moiety results in the formation of C3-convertase 
in the AP. Subsequent activation through the AP (C5-con-
vertase) (C3bBbC3b) produces C5b, to which C6 ~ C9 

bind, finally forming C5b-9 (MAC), which in turn causes 
EC activation together with endotheliopathy,

UL-VWFM is a major constituent of WPBs, which 
also contain IL-8, Ang-2, t-PA, etc. [21, 22], as described 
above. The secretion of IL-8 into the circulation enhances 
UL-VWFM release and also accelerates binding of C3b to 
UL-VWFM on the vascular EC surface, promoting plate-
let thrombi formation. The released t-PA generates plasmin 
under microenvironments in which TM on the vascular EC 
surface undergoes shedding. Physiologically, TM binds to 
thrombin to form a complex, inhibiting thrombin activity, 
but activating protein C and thrombin-activatable fibrinoly-
sis inhibitor (TAFI) to TAFIa (carboxypeptidase), which can 
proteolytically inactivate both C3a and C5a. The shedding 
of TM loses the antithrombotic function of vascular ECs, 
turning them into the thrombogenic surface. Further, both 
VWF and Ang-2 are constituents of WPBs and co-operate 
in vascular angiogenesis, where VWF signals via αIIbβ3-
integrins to promote smooth muscle proliferation, and Ang-2 
via VEGFR2 signaling for endothelial cell migration/prolif-
eration [104, 105]. Thus, the imbalance between these two 
signals may in part address why fragile blood vessels, as in 
‘intussusceptive angiogenesis’ in the lung, are formed during 
longer hospitalization of COVID-19 patients [62].

Conclusions

NETs are an important driver for COVID-19 immunothrom-
bosis [10], more profoundly in concert with complement 
activation; thus the plasma levels of activated complement 
components are excellent indicators for the disease sever-
ity [11]. In this setting, both classical and lectin pathways 
of complement activation are well characterized [7], but 
the AP has been poorly understood. Binding of the spike 
(S) protein of SARS-CoV-2 to heparan sulfate on vascular 
ECs [88] indicates competition for binding with factor H, 
thus mediating activation of the AP. However, a majority 
of infected patients do not develop thrombosis, emphasiz-
ing the requirement of the amplification mechanism for AP 
activation. Such absence of blood-born infection of SARS-
CoV-2 might be because human vascular ECs apparently 
express little or almost no ACE-2 [91].

A low ADAMTS13/VWF ratio has been an independent 
indicator of COVID-19 severity apart from complement acti-
vation [12–14]. Whereas, amplification of AP activation is 
a phenomenon lately recognized in congenital deficiency of 
ADAMTS13 activity [15, 16]. Although COVID-19 patients 
do not show severe deficiency of plasma ADAMTS13 
activity, during a cytokine storm, large amounts of VWF 
are released and ADAMTS13 activity is suppressed spe-
cifically by IL-6 under the high shear stress generated in 
microenvironments in concert with binding of TSP-1 and 

Fig. 3   The role of UL-VWFMs in activation of the alternative com-
plement pathway (AP) in the microvasculatures during COVID-19 
thrombosis. SARS-CoV-2 invades lung alveoli from the respiratory 
tract and infects type 2 alveolar pneumocytes and macrophages. This 
causes release of cytokines from resident cells, such as macrophages, 
CD4-T lymphocytes and neutrophils. Inflammatory cytokines fur-
ther stimulate release of cytokines from blood cells and vascular 
ECs, generating a cytokine storm. Consequently, IL-8, TNFα, and a 
complex of IL-6 and its soluble receptor (sIL-6R) stimulate vascu-
lar ECs, and induce exocytosis of UL-VWFMs from Weibel-Palade 
Bodies (WPBs). Under a high shear flow, UL-VWFMs undergo a 
conformational change, allowing ADAMTS13 more accessibility; 
however, IL-6 interferes with this interaction, resulting in inhibition 
of ADAMTS13 activity. In such microenvironments, the A1-loop 
domain of VWF binds platelets, forming platelet aggregates with or 
without involving resident megakaryocytes. The activated platelets 
release PF4 and TSP-1 from the α-granules, both of which bind to 
the A2-domain of VWF and block cleavage by ADAMTS13. The 
A1-loop domain of VWF binds to the heparan sulfate of syndecan-1 
on the vascular EC surface, while the A2 domain binds to C3b gener-
ated by the AP activation. C3b bound to UL-VWFM anchored on the 
EC surface binds factor B, which is proteolyzed by factor D. Then 
binding of properdin to the C3b moiety as a stabilizer results in the 
formation of C3-convertase in the AP. Subsequent activation through 
the AP (C5-convertase) (C3bBbC3b) produces C5b, to which C6 ~ C9 
bind, finally forming C5b-9 (MAC), which in turn activates endothe-
lial cells (EC) together with endotheliopathy, UL-VWFM is a major 
constituent of WPBs, which also contain IL-8, Ang-2, t-PA, etc. The 
secretion of IL-8 into the circulation enhances UL-VWFM release 
and accelerates C3b binding to UL-VWFM on the vascular EC sur-
face, promoting platelet thrombi formation. The released t-PA gen-
erates plasmin under microenvironments in which thrombomodulin 
(TM) on the vascular EC surface undergoes shedding. TM binds to 
thrombin to form a complex that inhibits thrombin activity, but acti-
vates protein C and thrombin-activatable fibrinolysis inhibitor (TAFI) 
to TAFIa (carboxypeptidase), which can proteolytically inactivate 
both C3a and C5a. Shedding of TM loses the antithrombotic function 
of vascular ECs, turning them into the thrombogenic surface

◂
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PF4 which bind to the VWF-A2 domain, where VWF func-
tions as a platform for AP activation and amplification. This 
hypothesis is suggested by historical reviews concerning the 
common decent of VWF and complement factor B [18–20], 
and appears to fit with the direction of current therapeutic 
options. Further, recent studies on SARS-CoV-2 vaccine-
induced thrombotic thrombocytopenia have focused on its 
association with PF4, ADAMTS13 and complement acti-
vation. In particular, autoantibodies against PF4 resulting 
in increased stability of UL-VWFMs have been implicated 
in vaccine-induced thrombosis (VITT), although a possible 
role of the alternative complement pathway in VITT has not 
been characterized [77, 78].

In sum, the clinical and experimental data on blood clot-
ting disorders together with the clinical data on COVID-
19 point to the complex scheme outlined in Fig. 3 whereby 
infection with SARS-CoV-2 in the lungs induces a cytokine 
storm that in turn acts on the vascular endothelium to release 
VWF and other proteins such as t-PA from vascular ECs, 
at the same time inhibiting secretion and function of the 
protease ADAMTS13, that normally cleaves UL-VWFMs. 
The alternative complement pathway is activated, further 
promoting release of VWF, t-PA and thrombomodulin from 
vascular ECs. The end result of the combination of excess 
UL-VWFMs tethered to the vascular endothelial surface plus 
elevated concentrations of several clotting factors is wide-
spread microthrombosis.
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