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Abstract: Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, en-
zymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular an-
tioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae,
growing in stressful conditions under intense exposure to UV radiation, have developed protective
mechanisms and have been recognized as an important source of secondary metabolites and macro-
molecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal
areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial
utilization, rendering them a viable source of antioxidants. This review focuses on the progress made
concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the
literature up to December 2020. The present report presents the antioxidant potential and biogenetic
origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting
the mechanisms of antioxidative action when known.
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1. Introduction

In all aerobic organisms, oxygen is a crucial element in their metabolic pathways. A
high redox potential milieu stimulates the production of free radicals, defined as chemical
species with unpaired valence electrons [1]. The most common reactive species in biological
systems are oxygen radicals or oxygen-derived species, such as superoxide anion (O2

−),
hydrogen peroxide (H2O2), and hydroxyl radicals (·OH) [2,3], collectively named reactive
oxygen species (ROS). Still, other forms of radicals, such as nitric oxide (NO·) and transi-
tion metal ions, can also be produced. ROS are generated as products of normal cellular
functioning and oxygen metabolism and have essential functions in various important bio-
chemical processes, such as the defense against infections, vasodilation, neurotransmission,
gene regulation, and oxidative signaling [3,4].

Disturbance of the equilibria of prooxidant/antioxidant reactions in cells can lead to
redox imbalance and oxidative stress, which causes an excessive generation of ROS and
free radicals, in turn resulting in severe cellular damage (Figure 1) [3,5–9]. These molecules
further react with key organic substrates, such as DNA, RNA, proteins, and lipids, leading
to disruption of their structure or function, and consequently to the onset of diseases, such
as atherosclerosis [10], diabetes [11], rheumatoid arthritis [12], inflammatory diseases [13],
neurodegenerative diseases [14,15], aging, immune system disorders, and cancer [16,17].

The defense system of living organisms against free radicals comprises both enzymatic
and non-enzymatic antioxidants [18]. Enzymes either prevent the formation of or neutral-
ize free radicals (e.g., superoxide dismutases (SOD), catalases (CAT), lactoperoxidases, and
glutathione peroxidases (GPx)), or indirectly neutralize free radicals by supporting the
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activity of other endogenous antioxidants (e.g., glutathione reductase (GR) and glucose-
6-phosphate dehydrogenase) [19]. On the other hand, non-enzymatic antioxidants are
compounds, other than enzymes, that act on free radicals and can be either produced by the
stressed living organism or delivered through the diet, e.g., via the consumption of ascorbic
acid (vitamin C), tocopherol (vitamin E), β-carotene, flavonoids, and polyphenols [20].
The most effective and extensively used strategy to diminish oxidative stress is the sup-
plementation of exogenous antioxidants [21]. In recent years, safety and health concerns
have been raised for synthetic antioxidants. Therefore, natural antioxidants have attracted
attention and are being widely used [1]. Since 2007, antioxidants have been defined as “any
substance that delays, prevents or removes oxidative damage to a target molecule” [2].
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Oceans, covering about 70% of Earth’s surface and hosting an immense array of
macro- and microorganisms, constitute a renewable resource of potential therapeutic
agents. The diverse and antagonistic marine environment triggers the production of a
wide variety of bioactive compounds. Marine organisms have adapted remarkably to
extreme environmental conditions, such as high salinity, low or high temperature, high
pressure, low availability of nutrients, and low or high exposure to sunlight [22], and can,
therefore, provide an outstanding reservoir of bioactive compounds, many of which are
unprecedented in terrestrial organisms [23–27].

Marine algae constitute a rich source of structurally diverse natural products, often
exhibiting significant biological activities [28,29]. Algae are growing in ecosystems with
intense exposure to sunlight and high concentrations of oxygen, conditions that favor the
production of free radicals. However, the absence of oxidative damage in structural fatty
acid membranes suggests that these organisms synthesize compounds with antioxidant
activity [30]. In recent years, several studies highlight the antioxidant potential of seaweeds,
attributed to natural products belonging to different structural classes [31–36].
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A high number of compounds isolated from green, brown, and red algae (Chloro-
phyta, Ochrophyta, and Rhodophyta, respectively) have been proven to exert prominent
antioxidant activity. This review compiles the progress made concerning the discovery of
antioxidant compounds derived from marine macroalgae, covering the literature up to
December 2020. Following a brief overview of the most commonly used methods for the
evaluation of antioxidant activity, algal metabolites with antioxidant activity are presented
according to their chemical classification in five main groups, namely (1) phenolic com-
pounds, including bromophenols, phlorotannins, and flavonoids, (2) terpenoids, including
steroids & carotenoids, (3) meroterpenoids, (4) nitrogenous compounds, including peptides,
alkaloids and chlorophyll-related pigments, and (5) carbohydrates and polysaccharides.
Their structural characteristics, the assays used to evaluate their activity, and the measured
antioxidant activity levels (when reported in numerical form) are presented, while the
mechanisms of antioxidative action are discussed when known.

2. Brief Overview of the Methods Employed for the Evaluation of Antioxidant Activity

Efficient antioxidants typically have high redox potential that allows them to act as re-
ducing agents, hydrogen donors, or singlet oxygen quenchers. There are many techniques
for evaluating the antioxidant activity, including free radical scavenging, oxygen scaveng-
ing, singlet oxygen quenching, metal chelation and inhibition of oxidative enzymes [37].
Overall, in vitro antioxidant tests using free radical traps are relatively straightforward to
perform. However, antioxidant activity cannot be securely proposed based on the results
from a single assay due to the differences observed between the various test systems [38].
Huang et al. (2005) roughly classified the most important antioxidant capacity assays,
according to the reactions involved, into two types: (a) the hydrogen atom transfer (HAT)-
based reactions which quantify hydrogen atom donating capacity, and (b) the electron
transfer (ET)-based reactions which measure the reducing capacity of antioxidants [39]
(Table 1). In HAT-based assays, the antioxidant and the substrate compete for peroxyl radi-
cals. The most commonly used HAT-based assays include the oxygen radical absorbance
capacity (ORAC) [40] and the total radical trapping antioxidant potential (TRAP) [41]
assays. On the other hand, in ET-based assays the capacity of an antioxidant to reduce
an oxidant is measured. The most common ET-based assays include the determination
of the total phenolics content (TPC) using the Folin–Ciocalteu reagent [42], the trolox
equivalence antioxidant capacity (TEAC)/2,2-azino-bis(3-ethyl benzothiazoline-6-sulfonic
acid) diammonium salt (ABTS+) radical scavenging [43], the ferric reducing antioxidant
power (FRAP) [44,45], and 1,1-diphenyl-2-picrylhydrazyl (DPPH) [46,47] assays.

Antioxidant activity evaluation can also be performed in vivo in animal models,
such as in Wistar rats or mice. SOD, CAT, glutathione (GSH), GPx, oxidized low-density
lipoprotein (LDL), malondialdehyde (MDA), and GR are the major in vivo indicators of
oxidative stress that are usually monitored [48,49].

Table 1. A list of the most commonly used in vitro assays for the determination of antioxidant activity (adapted from [50]).

Hydrogen atom
transfer

(HAT)-based
assays

2,2-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radical scavenging [51]
β-carotene bleaching [52]

crocin bleaching [53]
hydrogen peroxide (H2O2) scavenging [54]

hydroxyl radical averting capacity (HORAC) [55]
hydroxyl scavenging [56]

inhibited oxygen uptake (IOU) [57]
lipid peroxidation inhibition capacity (LPIC) [58]
oxygen radical absorbance capacity (ORAC) [40]

photochemiluminescence (PCL) [59]
total radical trapping antioxidant parameter (TRAP) [41]
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Table 1. Cont.

Electron transfer
(ET)-based assays

1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging [46,47]
cupric reducing antioxidant capacity (CUPRAC) [60]

ferric reducing antioxidant power (FRAP) [44,45]
ferric thiocyanate (FTC) [61]

nitric oxide radical scavenging [62]
N,N-dimethyl-p-phenylene diamine (DMPD) radical scavenging [63]

peroxyl radical scavenging [64]
potassium ferricyanide reducing power (PFRAP) [65]

superoxide anion radical scavenging [66]
thiobarbituric acid reactive substances (TBARS) [67]

total phenolics content (TPC) using Folin-Ciocalteu reagent [42]
trolox equivalence antioxidant capacity (TEAC) using ABTS [43]

Other in vitro
methods

ascorbic acid content [68]
cellular antioxidant activity (CAA) [69]

metal chelating activity [70]
scavenging of phosphomolybdenum [71]

scavenging of xanthine oxidase [72]

3. Phenolic Compounds

Phenols comprise a class of chemical compounds containing an aromatic ring bearing a
hydroxyl group. Phenolic compounds are classified either as simple phenols or polyphenols
based on the number of phenol units in their molecule. Bromophenols (BPs) are marine
secondary metabolites containing one or several phenols with one or more bromine atoms
in their molecule. Many BPs have been isolated and identified from a variety of marine
species, including red, brown, and green algae, as well as ascidians and sponges [73].
Phlorotannins constitute another important and diverse group of naturally occurring
polyphenolic secondary metabolites, restricted though to marine algae. Table 2 presents the
phenolic compounds, including BPs, phlorotannins, and flavonoids (Figures 2–8), isolated
so far from marine macroalgae that exhibit significant antioxidant activities.

Table 2. Phenolic compounds from macroalgae with antioxidant activity.

Compound Isolation Source Assay/Activity Reference

1 Symphyocladia latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 14.0 µM [74]

2 Gloiopeltis furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 86.2 µM
ONOO− scavenging: 4.58 ± 0.01 µM [75]

3 Rhodomela confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 1.60 ± 0.04 µM
DPPH scavenging: IC50 = 50.6 ± 0.2 µM [76]

4 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 1.56 ± 0.02 µM
DPPH scavenging: IC50 = 42.3 ± 0.2 µM; 67% [76,77]

5 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales)

bleomycin-dependent DNA damage
deoxyribose assay [78]

6 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 1.62 ± 0.03 µM
DPPH scavenging: IC50 = 40.5 ± 0.2 µM; 30% [76,77]

7 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 15.5 µM [74]

8 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 7.5 µM [79]
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Compound Isolation Source Assay/Activity Reference

9 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 1.36 ± 0.01 µM
DPPH scavenging: IC50 = 38.4 ± 0.2 µM [76]

10 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 2.11 ± 0.04 µM
DPPH scavenging: IC50 = 7.43 ± 0.10 µM [76]

11 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 1.87 ± 0.02 µM
DPPH scavenging: IC50 = 20.5 ± 0.1 µM [76]

12 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 71.0 µM
DPPH scavenging: IC50 = 14.4; 18.5 µM

CUPRAC
Fe2+ chelation: IC50 = 44.7 µM

FRAP
AChE inhibition: IC50 = 13.85 nM
BChE inhibition: IC50 = 38.22 nM

[74,80]

13 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 8.07 µM;
TEAC = 2.68 mM

DPPH scavenging: IC50 = 12.4; 15.9 µM
CUPRAC

Fe2+ chelation: IC50 = 65.2 µM
FRAP

AChE inhibition: IC50 = 17.10 nM
BChE inhibition: IC50 = 40.57 nM

[80,81]

14 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 8.1 µM;
TEAC = 2.21 mM

DPPH scavenging: IC50 = 14.6; 18.5 µM
CUPRAC

Fe2+ chelation: IC50 = 54.6 µM
FRAP

AChE inhibition: IC50 = 29.88 nM
BChE inhibition: IC50 = 46.51 nM

[80,81]

15 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.31 mM
DPPH scavenging: IC50 = 5.43 µM [81]

16 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.14 mM
DPPH scavenging: IC50 = 5.70 µM [81]

17 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 27.9 µM [82]

18 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 4.37 ± 0.24 mM
DPPH scavenging: IC50 = 3.82 ± 0.01 µM [83]

19 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.06 ± 0.08 mM
DPPH scavenging: IC50 = 9.52 ± 0.04 µM [76]

20 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 24.0 µM [74]

21
Polysiphonia morrowii, Polysiphonia urceolata, R.

confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

DPPH scavenging: IC50 = 20.3 µM
cytoprotective effect against cellular oxidative

stress
HO-1 activity and expression in keratinocytes

Nrf2 expression
Nrf2 nuclear translocation

[84,85]

22 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 1.32 ± 0.02 mM
DPPH scavenging: IC50 = 58.2 ± 0.4 µM [76]
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Compound Isolation Source Assay/Activity Reference

23 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 35.8 µM [84]

24 R. confervoides, Vertebrata lanosa
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 1.09 ± 0.01 mM
CAA

CLPAA
DPPH scavenging: IC50 = 32.0 ± 0.1 µM

ORAC

[76,86]

25 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 24.7 µM [74]

26 Cladophora wrightiana
(Chlorophyta, Ulvophyceae, Cladophorales)

DPPH scavenging: 69% at 160 µM
OH scavenging
O2
− scavenging

protective effect against UVB-induced apoptosis
and DNA damage in HaCaT cells

scavenging activity against H2O2- or
UVB-generated intracellular ROS in HaCaT cells

[87]

27 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 1.86 ± 0.02 mM
DPPH scavenging: IC50 = 50.3 ± 0.3 µM [76]

28 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.11 mM
DPPH scavenging: IC50 = 23.6 µM [81]

29 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 1.98 ± 0.01 mM
DPPH scavenging: IC50 = 30.9 ± 0.1 µM [76]

30 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.35 ± 0.02 mM
DPPH scavenging: IC50 = 26.3 ± 0.2 µM [76]

31 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.87 ± 0.11 mM
DPPH scavenging: IC50 = 19.8 ± 0.1 µM [76]

32 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.07 ± 0.12 mM
DPPH scavenging: IC50 = 30.2 ± 0.2 µM [76]

33 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 16.1 ± 0.1 µM [88]

34 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.36 mM
DPPH scavenging: IC50 = 20.8 µM [81]

35 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.11 ± 0.11 mM
DPPH scavenging: IC50 = 18.6 ± 0.1 µM [76]

36 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 1.63 ± 0.01 mM
DPPH scavenging: IC50 = 50.9 ± 0.3 µM [76]

37 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.68 ± 0.12 mM
DPPH scavenging: IC50 = 8.72 ± 0.05 µM [76]

38 P. urceolata, R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.10 ± 0.13 mM
DPPH scavenging: IC50 = 9.40 ± 0.05;

9.67 ± 0.04 µM
[76,88]

39 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.45 ± 0.12 mM
DPPH scavenging: IC50 = 7.62 ± 0.01 µM [76]

40 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 43.8 µM [82]

41 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 8.5 µM [79]
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Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

42 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.87 mM
DPPH scavenging: IC50 = 5.22 µM [81]

43 Odonthalia corymbifera
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 17.3 ± 0.1 µM
Cu2+-chelation: IC50 = 61.9 ± 0.1 µM
CUPRAC: ECA0.50 = 13.6 ± 0.1 µM

DPPH scavenging: IC50 = 24.7 ± 0.0 µM
FRAP: ECA0.50 = 11.1 ± 0.1 µM

tyrosinase inhibition: IC50 = 17.3 ± 0.1 µM

[89]

44 P. morrowii
(Rhodophyta, Florideophyceae, Ceramiales)

LPS-induced ROS generation and ROS-mediated
ERK signaling in RAW 264.7 macrophages [90]

45 R. confervoides, V. lanosa
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.05 mM
CAA

CLPAA
DPPH scavenging: IC50 = 17.6 µM

ORAC

[81,86]

46 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 8.5 µM [74]

47 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.18 mM
DPPH scavenging: IC50 = 16.9 µM; 27% [77,81]

48 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 8.1 µM [74]

49 Avrainvillea sp.
(Chlorophyta, Ulvophyceae, Bryopsidales)

DPPH scavenging: strong
exogenous ROS scavenging in TPA-treated

HL-60 cells (DCFH-DA): IC50 = 6.1 µM
[91]

50 R. confervoides, V. lanosa
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.16 mM
CAA

CLPAA
DPPH scavenging: IC50 = 19.6 µM

ORAC

[81,86]

51 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.00 mM
DPPH scavenging: IC50 = 14.3 µM [81]

52 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 2.78 mM
DPPH scavenging: IC50 = 13.8 µM [81]

53 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 10.5 µM [74]

54 O. corymbifera
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: IC50 = 6.7 ± 0.1 µM
Cu2+-chelation: IC50 = 74.3 ± 0.1 µM

CUPRAC: ECA0.50 = 7.8 ± 0.1 µM
DPPH scavenging: IC50 = 13.5 ± 0.0 µM

FRAP: ECA0.50 = 10.8 ± 0.1 µM
tyrosinase inhibition: IC50 = 31.0 ± 0.1 µM

[90]

55 V. lanosa
(Rhodophyta, Florideophyceae, Ceramiales)

CAA
CLPAA
ORAC

[86]

56 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.21 mM
DPPH scavenging: IC50 = 13.6 µM [81]

57 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 19.6 ± 0.1 µM [88]
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Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

58 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 21.9 ± 0.1 µM [88]

59 S. latiuscula
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 10.2 µM [74]

60 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 8.1 µM [84]

61 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 15.1 µM [84]

62 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 6.8 µM [84]

63 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 6.1 µM [84]

64 P. urceolata
(Rhodophyta, Florideophyceae, Ceramiales) DPPH scavenging: IC50 = 7.9 µM [92]

65 R. confervoides
(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: TEAC = 3.58 mM
DPPH scavenging: IC50 = 8.90 µM [81]

66

Sargassum wightii, Sargassum tenerrimum,
Turbinaria conoides

(Ochrophyta, Phaeophyceae, Fucales)
Ishige okamurae

(Ochrophyta, Phaeophyceae, Ishigeales)
Ecklonia cava

(Ochrophyta, Phaeophyceae, Laminariales)

alkyl scavenging: IC50 = 103.5 ± 1.9 µM
DPPH scavenging: 64.71–71.07% at 200 µg/mL
H2O2 scavenging: 88.33–89.7% at 200 µg/mL

OH scavenging: IC50 = 392.5 ± 2.8;
408.5 ± 3.7 µM

O2
− scavenging: IC50 = 115.2 ± 2.5;

124.7 ± 2.4 µM
ROO scavenging: IC50 = 128.9 ± 2.2 µM
metal chelating activity: 11.40–14.38% at

200 µg/mL
H2O2-induced apoptosis, cytotoxicity, DNA

damage, mitochondrial dysfunction and ROS
generation in HaCaT keratinocytes

intracellular ROS generation (DCFH-DA) in
RAW 264.7 macrophages/V79-4 cells

Nrf2/HO-1 signaling pathway in HaCaT
keratinocytes

[93–97]

67 Gracilaria sp.
(Rhodophyta, Florideophyceae, Gracilariales)

DPPH scavenging: 83.8 ± 2.6%
XO inhibition: 64.7 ± 0.7% [98]

68 Sargassum micracanthum
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 47 µM [99]

69 E. cava
(Ochrophyta, Phaeophyceae, Laminariales)

oxidative stress-induced DNA damage in
V79-4 cells [100]

70 Ishige foliacea
(Ochrophyta, Phaeophyceae, Ishigeales)

enzyme activity (SOD, CAT, GPx)
intracellular ROS generation and lipid

peroxidation in HUVEC/pancreatic β cells
oxidative stress-induced cell death in zebrafish

embryo
streptozotocin-induced pancreatic β cell damage

in rat insulinoma cell line

[101,102]



Antioxidants 2021, 10, 1431 9 of 66

Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

71
E. cava, Ecklonia kurome, Ecklonia stolonifera,

Eisenia bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 11.5; 22.9 ± 0.52;
26 µM

OH scavenging: IC50 = 51.8 ± 2.5 µM
O2
− scavenging: IC50 = 26.5 ± 1.25; 107 µM
ROO scavenging: IC50 = 28.4 ± 1.5 µM

inhibitory effect on total ROS:
IC50 = 4.04 ± 0.04 µM

cellular membrane protein oxidation in RAW
264.7 macrophages

GSH levels in HepG2 cells/RAW
264.7 macrophages
HO-1 expression

H2O2-induced lipid peroxidation (TBARS) in
V79-4 cells

intracellular ROS generation (DCFH-DA)
and oxidative stress induced cell damage in

lung fibroblast cells
MPO activity in HL60 cells

Nrf2 nuclear translocation and activation
PM10 (particulate matter of less than 10 mm)

-induced lipid peroxidation and cytokine
expression in human epidermal

keratinocytes

[95,103–108]

72 E. stolonifera
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 8.8 ± 0.4 µM
intracellular ROS scavenging [109]

73 I. okamurae
(Ochrophyta, Phaeophyceae, Ishigeales)

alkyl scavenging: IC50 = 18.8 ± 1.2 µM
DPPH scavenging: IC50 = 10.5 ± 0.5 µM

OH scavenging: IC50 = 27.1 ± 0.9 µM
O2
− scavenging: IC50 = 16.7 ± 0.6 µM

H2O2-induced oxidative stress-induced ROS
generation (DCFH-DA) in murine

hippocampal neuronal cells
intracellular Ca2+ level

lipid peroxidation assay (TBARS)
membrane protein oxidation

MPO activity
PM2.5 (fine particulate matter with a

diameter ≤2.5 µm) -induced ROS generation
in human keratinocytes

PM2.5-induced DNA damage, endoplasmic
reticulum stress and autophagy,

mitochondrial damage, apoptosis via MAPK
signaling pathways

[97,110,111]

74 E. cava
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 18.6 ± 1.0 µM
OH scavenging: IC50 = 39.6± 2.1 µM

O2
− scavenging: IC50 = 21.9 ± 1.8 µM

ROO scavenging: IC50 = 22.7 ± 1.5 µM
cellular membrane protein oxidation in RAW

264.7 cells
GSH levels in RAW 264.7 cells

intracellular ROS generation (DCFH-DA)
MPO activity in HL60 cells

[95]
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Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

75 E. cava, E. kurome, E. stolonifera, E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 6.2 ± 0.4; 8.28 ± 0.45;
13 µM

OH scavenging: IC50 = 28.6 ±2.5 µM
O2
− scavenging: IC50 = 7.6; 16.2 ±1.0 µM

ROO scavenging: IC50 = 14.5 ±1.8 µM
apoptosis in Hep3B cells

cellular membrane protein oxidation in RAW
264.7 cells

detection of apoptosis-related proteins
GSH levels in RAW 264.7 cells

intracellular ROS generation (DCFH-DA) in
RAW 264.7 cells

MPO activity in HL60 cells
PM10 (particulate matter of less than 10 mm)

-induced lipid peroxidation and cytokine
expression in human epidermal keratinocytes
rotenone-induced oxidative stress in SH-SY5Y

cells

[95,107–109,
112,113]

76 Fucus spiralis
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: Q50 = 0.090 ± 0.002 µmol [114]

77 E. cava
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 0.60; 14.7 ± 1.2 µM
OH scavenging: IC50 = 3.5 ± 1.55 µM
O2
− scavenging: IC50 = 18.6 ± 1.5 µM

ROO scavenging: IC50 = 18.1 ± 1.0 µM
cellular membrane protein oxidation in RAW

264.7 cells
GSH levels in RAW 264.7 cells

intracellular ROS generation (DCFH-DA)
intracellular ROS detection in UVB-irradiated

HaCaT keratinocytes
MPO activity in HL60 cells

[95,115,116]

78 Fucus vesiculosus
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 16.1 ± 1.0 µM
O2
− scavenging: IC50 > 401.6 µM

ORAC: 3.3 ± 0.3 units at 1 µg/mL
[117]

79 E. cava, E. kurome, E. stolonifera, E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

alkyl scavenging: IC50 = 3.9 µM
DPPH scavenging: IC50 = 4.7 ± 0.3; 10.3; 12;

17.7 ± 0.8 µM
OH scavenging: IC50 = 21.4; 39.2± 1.8 µM

O2
− scavenging: IC50 = 8.4 µM;

IC50 = 21.6 ± 2.2 µM
ROO scavenging: IC50 = 21.4 ± 2.1 µM

total ROS generation: IC50 = 3.80 ± 0.09 µM
intracellular ROS generation (DCFH-DA) in

RAW 264.7 macrophages/Vero cells/zebrafish
system

[95,105,108,
109,118]
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Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

80

I. okamurae
(Ochrophyta, Phaeophyceae, Ishigeales)

E. cava, E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

Grateloupia elliptica
(Rhodophyta, Florideophyceae, Halymeniales)

ABTS+ scavenging: IC50 = 37.1 ± 2.8 µM
alkyl scavenging: IC50 = 17.3 ± 1.0 µM

DPPH scavenging: IC50 = 8.69 ± 0.35; 9.1 ± 0.4;
28; 66.5 ± 0.5 µM

OH scavenging: IC50 = 28.7 ± 1.1; 29.7 ± 1.5 µM
O2
− scavenging: IC50 = 15.4 ± 0.9; 15.9 ± 1.3 µM

ROO scavenging: IC50 = 17.1 ± 2.2 µM
singlet oxygen (1O2) quenching:

QC50 = 30.7 ± 2.4 µM
cellular membrane protein oxidation in RAW

264.7 macrophages
GSH levels in RAW 264.7 macrophages
high-glucose-induced oxidative stress

intracellular ROS generation (DCFH-DA) in
UVB-irradiated HaCaT keratinocytes

MPO activity in HL60 cells

[95,97,119–
121]

81 E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging: IC50 = 43.3 ± 2.3 µM
DPPH scavenging: IC50 = 103.0 ± 3.5 µM

singlet oxygen (1O2) quenching:
QC50 = 35.7 ± 2.4 µM

[119]

82 E. cava, E. kurome, E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging: IC50 = 43.4 ± 2.0 µM
DPPH scavenging: IC50 = 15.0; 95.9 ± 3.2 µM

O2
− scavenging: IC50 = 6.5 µM

singlet oxygen (1O2) quenching:
QC50 = 49.4 ± 1.7 µM

H2O2-induced DNA damage
intracellular ROS generation in Vero cells

[108,119]

83 E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

DPPH scavenging: IC50 = 0.86 ± 0.02 µM
ONOO− scavenging: 1.80 ± 0.01 µM

total ROS: 6.45 ± 0.04 µM
[122]

84 E. cava
(Ochrophyta, Phaeophyceae, Laminariales)

alkyl scavenging: IC50 = 2.07 ± 1.00 µM
DPPH scavenging: IC50 = 0.51 µM

OH scavenging: IC50 = 75.6µM
O2
− scavenging: IC50 = 57.2 µM

intracellular ROS generation (DCFH-DA) in
H2O2-treated Vero cells

[123]

85 F. spiralis
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: Q50 = 0.087 ± 0.004 µmol [114]

86 F. vesiculosus
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 19.3 ± 2.7 µM
O2
− scavenging: IC50 > 334.9 µM

ORAC: 3.5 ± 0.2 units at 1 µg/mL
[117]

87 F. vesiculosus
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 15.8 ± 1.5 µM
O2
− scavenging: IC50 > 175.6 µM

ORAC: 3.2 ± 0.2 units at 1 µg/mL
[117]

88 Acanthophora spicifera
(Rhodophyta, Florideophyceae, Ceramiales)

lipid peroxidation and inhibition of the
generation of MDA in rat liver:

IC50 = 1.0 × 10−2 µM
[124]
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Table 2. Cont.

Compound Isolation Source Assay/Activity Reference

89 A. spicifera
(Rhodophyta, Florideophyceae, Ceramiales)

lipid peroxidation and inhibition of the
generation of MDA in rat liver:

IC50 = 1.5 × 10−2 µM
[124]

ABTS+: 2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; AChE: acetylcholinesterase; BChE: butyrylcholinesterase;
CAA: cellular antioxidant activity; CAT: catalase; CLPAA: cellular lipid peroxidation antioxidant activity; CUPRAC: cupric reducing antiox-
idant capacity; DCFH-DA: cell-based 2′,7′-dichlorodihydrofluorescein diacetate antioxidant assay; DPPH: 1,1-diphenyl-2-picrylhydrazyl
free radical; ECA0.50: effective concentration for absorbance of 0.50; FRAP: ferric reducing antioxidant power; GSH: glutathione; GPx:
glutathione peroxidase; HO-1: heme oxygenase-1; H2O2: hydrogen peroxide; IC50: half maximal inhibitory concentration; LPS: lipopolysac-
charide; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MPO: myeloperoxidase; Nrf2: nuclear factor erythroid
2-related factor 2; OH: hydroxyl; ONOO−: peroxynitrite; O2

−: superoxide anion; ORAC: oxygen radical absorbance capacity; Q50: amount
of phenolics (in µg) necessary to obtain 50% of inhibition in the DPPH assay; QC50: half maximal quenching concentration; ROO: peroxyl;
ROS: reactive oxygen species; SH-SY5Y: human dopaminergic neuronal cell line; SOD: superoxide dismutase; TBARS: thiobarbituric acid
reactive substances; TEAC: trolox equivalence antioxidant capacity; TPA: 12-O-tetradecanoylphorbol 13-acetate; V79-4: Chinese hamster
lung fibroblast cell line; XO: xanthine oxidase.

Recent studies reveal BPs to be one of the most promising candidates in the prevention
of diseases associated with free radical attack [73]. Hitherto, more than 60 BPs, mainly
isolated from marine red algae, have been reported to exert antioxidant activity in vitro.
Their antioxidant activity has been primarily determined by the DPPH radical scavenging
method. In general, the BPs shown in Table 2 exhibited better activity than that of butylated
hydroxytoluene (BHT, IC50 = 82.1 µM), a synthetic antioxidant often used as positive
control, with BPs isolated from the red algae Polysiphonia urceolata, Rhodomela confervoides
and Symphyocladia latiuscula, as well as the green alga Avrainvillea sp. possessing the highest
activities in the DPPH assay (IC50 < 10.0 µM).

Previous studies have shown that the non-brominated phenolic compounds 5-(hydr-
oxylmethyl)-2-methoxybenzene-1,3-diol (2) and 3,4-dihydroxy-benzoic acid (DBA, 26) exert
antioxidant activity [75,77,87]. Specifically, DBA (26) was found to reduce the levels of
intracellular ROS generated by H2O2 or UVB treatment of the human HaCaT keratinocytes
cells, thus protecting the cells from UVB-induced oxidative stress [87].

A series of BPs (3, 4, 6, 9–11, 13–16, 18, 19, 21, 22, 24, 27–32, 34–39, 42, 45, 47, 50–52,
56, 65) have been isolated from the red alga R. confervoides [76,77,81,83,85]. Among them,
compounds 10, 15, 16, 18, 19, 37, 38, 39, 42, and 65 exerted the highest antioxidant activity
with IC50 values of 7.43, 5.43, 5.70, 3.82, 9.52, 8.72, 9.40, 7.62, 5.22, and 8.90 µM, respectively,
with all but 37 and 38 bearing a 2,3-dibromo-4,5-dihydroxy-benzyl skeleton. In particular,
rhodomelin A (18) displayed the highest scavenging activity towards DPPH radical with
an IC50 value of 3.82 µM. The 2,3-dibromo-4,5-dihydroxy-benzyl unit appears to be a
structural element positively influencing antioxidant activity. Moreover, it seems that the
antioxidant activity may have a close connection to the number of hydroxyl groups in the
molecule [74]. Additionally, the presence of two successive hydroxyl groups in the benzene
ring appears to be necessary for increased levels of antioxidant activity to be displayed.
This conclusion is supported by the higher IC50 values exerted by BPs lacking the second
free hydroxyl group by having a methoxyl group instead (e.g., 3, 22, 27, and 36 with IC50
values of 50.6, 58.2, 50.3 and 50.9 µM, respectively). For example, compound 22, with
an IC50 value of 58.2 µM, bearing only one hydroxyl substituent, is less active than 21
(IC50 = 20.3 µM) that possesses the characteristic 4,5-dihydroxy-benzyl group [84,88]. On
the other hand, a short and hydrophilic side chain leads to lower activities (e.g., compounds
4, 6, 9, and 11 with IC50 values of 42.3, 40.5, 38.4, and 22.5 µM, as compared to compounds
10, 13, 14, 15, 16, 18, and 19 with IC50 values of 7.43, 12.4, 14.6, 5.43, 5.70, 3.82, and 9.52 µM,
respectively).
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Ryu et al. (2019) found that 3-bromo-4,5-dihydroxy-benzaldehyde (21) protects human
keratinocytes from oxidative stress by upregulating extracellular signal-regulated kinase
(ERK) and protein kinase B (Akt), which allows nuclear factor erythroid 2-related factor 2
(Nrf2) to induce the transcription of the antioxidant enzyme heme oxygenase (HO-1) [85].

BPs 8 and 41, as well as the biphenyl BPs 46, 48, 53, and 59, isolated from the red
alga S. latiuscula, all being fully substituted, showed particularly high radical scavenging
activity, with IC50 values of 7.5, 8.5, 8.5, 8.1, 10.5, and 10.2 µM, respectively, significantly
higher than that of L-ascorbic acid (IC50 = 15.3 µM), employed as positive control [74,79].
The structurally similar avrainvilleol (49), isolated from the green alga Avrainvillea sp., also
exerted high antioxidant activity with an IC50 value of 6.1 µM [91]. The DPPH radical-
scavenging activities of the bis-phenols 46, 48, 53, and 59 are noticeably higher than those
of the mono-phenols 1, 7, 8, 12, 20, 25, and 41 with IC50 values of 14.0, 15.5, 7.5, 14.4, 24.0,
24.7, and 8.5 µM, respectively. Apparently, DPPH scavenging activity is directly related to
the overall number of phenol units in the molecules (e.g., 45 and 47 vs. 65 and 14 vs. 56,
with IC50 values of 17.6 and 16.9 vs. 8.90, and 18.5 vs. 13.6 µM, respectively). Compounds
having the same number of phenolic hydroxyl groups, such as compounds 28 and 34, or 45
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and 47 exhibit similar DPPH radical scavenging activity (23.6 and 20.8, or 17.6 and 16.9 µM,
respectively) [76,81].
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Furthermore, a series of BPs isolated from the red alga P. urceolata (23, 33, 38, 57,
58, 60–64) was shown to exhibit significant DPPH radical scavenging activity [84,88,92].
Among them, compounds 60, 62, 63, and 64, bearing four hydroxyl groups in their
molecules, were the most active with IC50 values of 8.1, 6.8, 6.1, and 7.9 µM, respectively.
Moreover, in this case, the necessity for the presence of two successive hydroxyl groups
in the benzene ring is evident for the display of enhanced antioxidant activity. Another
important factor for enhanced activity is the conjugation of the benzene rings, as evidenced
by comparing compounds 57 and 63. The conjugation in the dihydrophenanthrene skeleton
results to a reduction in the IC50 values from 19.6 µM for 57 to 6.1 µM for 63.

The degree of bromination does not appear to affect the antioxidant activity in a con-
sistent manner. For example, in the case of BPs 12 and 13 the IC50 values were comparable
(14.4 and 12.4 µM, respectively). In the case of 19 and 20 (IC50 values 9.52 and 24.0 µM,
respectively), it appears that the extra bromine atom in 20 reduces the antioxidant activity,
while in the cases of 24 and 25, 45, and 46, as well as 47 and 48 it appears that the presence
of an additional bromine atom increases the activity. Moreover, by comparing the IC50
values of 37 and 38 (8.72 and 9.40 µM, respectively), it appears that the site of bromination
is of no decisive importance.

Choi et al. (2018) showed that bis (3-bromo-4,5-dihydroxybenzyl) ether (BDDE, 44),
isolated from Polysiphonia morrowii, suppresses the lipopolysaccharide (LPS)-induced ROS
generation in RAW 264.7 macrophage cells. In turn, inhibition of LPS-induced ROS genera-
tion by BDDE (44) caused ERK inactivation and an inflammatory reaction [90]. Therefore,
BBDE (44) inhibits LPS-induced inflammation by inhibiting the ROS-mediated ERK signal-
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ing pathway in RAW 264.7 macrophage cells and thus can be useful for the treatment of
inflammatory diseases [90].

Phlorotannins, exclusively found in macroalgae, are oligomers or polymers of phloro-
glucinol (1,3,5-trihydroxybenzene, PGU, 66) that can be classified according to the linkage
of PGU units [125,126]. Park et al. (2019) suggested that PGU (66) is able to protect HaCaT
keratinocytes against oxidative stress-induced DNA damage and apoptosis through the
activation of the Nrf2/HO-1 signaling pathway [96].
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Until now, numerous phlorotannins purified from brown seaweeds, especially from
Ecklonia sp., have been proven to exert antioxidant activities and protective effects against
H2O2-induced cell damage [93,95,104–106,108,110]. In particular, eckol (71), eckstolonol
(72), diphlorethohydroxycarmalol (DPHC, 73), 7-phloroglucinol-eckol (74), dieckol (75),
fucodiphloroethol G (77), phlorofucofuroeckol-A (79) 6,6′-bieckol (80), 6,8′-bieckol (81),
8,8′-bieckol (82), 974-B (83), and 2,7”-phloroglucinol-6,6′-bieckol (84), isolated from Eisenia
bicyclis, Ecklonia cava, Ecklonia stolonifera, and Ishige okamurae, have shown potent antioxidant
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activity as determined by the DPPH radical scavenging method, with IC50 values of 11.5, 8.8,
10.5, 18.6, 6.2, 0.60, 4.7, 8.69, 15.0, 0.86, and 0.51µM, respectively [95,97,104,108,109,115,122,123].
Among them, fucodiphloroethol G (77), compound 83, and 2,7”-phloroglucinol-6,6′-bieckol
(84) are the most effective, with IC50 values in the nanomolar range [115,122,123].
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Eckol (71) suppresses the production of intracellular ROS and increases GSH levels in
HepG2 cells [103], while dieckol (75) induces apoptosis in human hepatocellular carcinoma
Hep3B cells via the activation of both death receptor and mitochondrial-dependent path-
ways, by activating caspases-3, -7, -8, -9, and poly(ADP-ribose) polymerase (PARP) [113].
Moreover, eckol (71), phlorofucofuroeckol A (79), dieckol (75), and 8,8′-bieckol (82) have
shown potent inhibition of phospholipid peroxidation at a concentration of 1 µM in a
liposome system [108]. Lee et al. (2018) showed that both eckol (71) and dieckol (75)
attenuated PM10 (particulate matter of less than 10 mm) -induced lipid peroxidation and
cytokine expression in human epidermal keratinocytes [107]. Similarly, Zhen et al. (2019)
showed that DPHC (73) blocked PM2.5 (fine particulate matter with a diameter ≤2.5 µm)
-induced ROS generation in human keratinocytes [111]. Specifically, DPHC (73) protected
cells against PM2.5-induced DNA damage, endoplasmic reticulum stress, and autophagy,
and inhibited lipid peroxidation, protein carbonylation, and increased epidermal height
in HR-1 hairless mice exposed to PM2.5. Moreover, DPHC (73) attenuated PM2.5-induced
apoptosis and mitogen-activated protein kinase (MAPK) protein expression [111]. In the
study of Heo et al. (2012), the neuroprotective effect of DPHC (73) against H2O2-induced
oxidative stress in murine hippocampal neuronal cells HT22 was investigated and it was
found that DPHC protected cells from H2O2-induced neurotoxicity by restoring cell viabil-
ity [110]. Specifically, DPHC (73) slightly reduced the expression of Bax induced by H2O2,
but recovered the expression of Bcl-xL, as well as caspase-9 and -3 mediated PARP cleav-
age by H2O2, while it effectively inhibited intracellular ROS and lipid peroxidation in a
dose-dependent manner and suppressed the elevation of H2O2-induced Ca2+ release [110].

On the other hand, the protective effects of 6,6′-bieckol (80) against high-glucose-
induced oxidative stress were investigated using human umbilical vein endothelial cells
(HUVECs) susceptible to oxidative stress [121]. It was found that 6,6′-bieckol (80) sig-
nificantly inhibited the high-glucose treatment-induced HUVECs’ cell death. Moreover,
compound 80 dose-dependently decreased thiobarbituric acid reactive substances (TBARS),
intracellular ROS generation, and nitric oxide levels that were increased by high glucose.
High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS),
cyclooxygenase 2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but
treatment with 6,6′-bieckol (80) reduced their overexpression.

The structure–activity relationship of phlorotannins, although not fully elucidated,
suggests that the hydroxyl group availability influences phlorotannins’ antioxidant capacity
to a far greater extent than polymerization and the size of the molecule.

Flavonoids are another important class of polyphenolic secondary metabolites often
exhibiting potent antioxidant activity, found predominantly in plants and fungi, but also to
a lesser degree in algae. The flavonoids acanthophorin A (88) and acanthophorin B (89),
isolated from the red alga Acanthophora spicifera, were shown to exert significant antioxidant
activity by preventing lipid peroxidation and inhibiting the generation of MDA in liver
homogenates of rat in vitro. Compounds 88 and 89, with IC50 values 1.0 × 10−2 and
1.5 × 10−2 µM, respectively, displayed almost 10,000 times higher activity than vitamin E
(IC50 = 160 µM) [124].

4. Terpenoids

Terpenoids, also called isoprenoids, represent a diverse class of naturally occurring sec-
ondary metabolites composed of isoprene units. Terpenoids, often possessing multicyclic
structures with various functional groups [127], are ubiquitous, found in almost all classes
of living organisms, including macroalgae. Table 3 presents the terpenoids possessing
significant antioxidant activities isolated so far from marine macroalgae (Figures 9–12).
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Table 3. Terpenoids from macroalgae with antioxidant activity.

Compound Isolation Source Assay/Activity Reference

90 Plocamium sp.
(Rhodophyta, Florideophyceae, Plocamiales)

DPPH scavenging: IC50 = 0.05 ± 0.01 mM
H2O2 scavenging: IC50 = 5.58 ± 1.11 mM
NO scavenging: IC50 = 4.18 ± 0.22 mM
reducing power (Fe3+ to Fe2+ reduction)

[128]

91 Ulva fasciata
(Chlorophyta, Ulvophyceae, Ulvales)

ABTS+ scavenging: 66.8 ± 1.5% at 50 µM
DPPH scavenging: IC50 = 13.74 ± 1.38 mM [129]

92 Pyropia orbicularis
(Rhodophyta, Bangiophyceae, Bangiales)

activation of antioxidant responses during
desiccation [130]

93 U. fasciata
(Chlorophyta, Ulvophyceae, Ulvales)

ABTS+ scavenging
DPPH scavenging: IC50 = 80.56 ± 2.43 mM [129]

94 U. fasciata
(Chlorophyta, Ulvophyceae, Ulvales)

ABTS+ scavenging
DPPH scavenging: IC50 = 23.60 ± 1.15 mM [129]

95 U. fasciata
(Chlorophyta, Ulvophyceae, Ulvales)

ABTS+ scavenging
DPPH scavenging: IC50 = 20.83 ± 0.92 mM [129]

96 U. fasciata
(Chlorophyta, Ulvophyceae, Ulvales)

ABTS+ scavenging: 78 ± 1.9% at 50 µM
DPPH scavenging: IC50 = 10.24 ± 0.98 mM [129]

97 Laurencia tristicha
(Rhodophyta, Florideophyceae, Ceramiales)

alcohol-induced oxidative injury in rats
enzyme activity (SOD, CAT, GPx)

D-galactose-induced oxidation in mice
endogenous apoptosis-related genes’ expression

(BAX, cytochrome c, cytochrome P450, BCL-2,
Caspase-9 and Caspase-3)

GSH content
lipid peroxidation

[131,132]

98 Laurencia dendroidea
(Rhodophyta, Florideophyceae, Ceramiales)

DPPH scavenging: 30.3% at 2.12 mM
H2O2 scavenging [133]

99 L. dendroidea
(Rhodophyta, Florideophyceae, Ceramiales)

DPPH scavenging: 27.5% at 2.12 mM
H2O2 scavenging [133]

100 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging IC50 = 1.18 ± 0.07 mM
DPPH scavenging: IC50 = 1.08 ± 0.07 mM [134]

101 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 0.72 ± 0.09 mM
DPPH scavenging: IC50 = 0.75 ± 0.03 mM [134]

102 Cystoseira trinodis
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: 24.19 ± 1.15% inhibition at
2 mM [135]

103 C. trinodis
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: 27.50 ± 1.30% inhibition at
2 mM [135]

104

C. trinodis
(Ochrophyta, Phaeophyceae, Fucales)

E. stolonifera, E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging: 24.05 ± 2.38% inhibition at
2 mM

intracellular ROS generation (DCFH-DA)
intracellular GSH levels in t-BHP- and

tacrine-treated HepG2 cells
t-BHP- and tacrine-induced oxidative stress in

HepG2 cells

[135,136]

105 C. trinodis
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: 26.37 ± 0.20% inhibition at
2 mM [135]

106 C. trinodis
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: 20.41 ± 0.13% inhibition at
2 mM [135]

107 Caulerpa racemosa
(Chlorophyta, Ulvophyceae, Bryopsidales)

Alkyl scavenging: IC50 = 0.66 ± 0.05 mM
OH scavenging: IC50 = 0.29 ± 0.05 mM [137]
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Table 3. Cont.

Compound Isolation Source Assay/Activity Reference

108 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging IC50 = 0.37 ± 0.02 mM
DPPH scavenging: IC50 = 0.31 ± 0.02 mM [134]

109 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 0.37 ± 0.02 mM
DPPH scavenging: IC50 = 0.34 ± 0.06 mM [134]

110 Gracilaria salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.09 mM
DPPH scavenging: IC50 = 1.33 mM [138]

111 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.24 mM
DPPH scavenging: IC50 = 1.56 mM [138]

112 from plants and microalgae, but also from
macroalgae

enzyme activity (CAT, SOD, GPx and GSH
reductase)

GSH and TBARS levels in hepatic tissue of
lycopene-treated rats

[139]

113 from plants and microalgae, but also from
macroalgae

intracellular ROS generation in LPS-stimulated
RAW 264.7 macrophages

LPS- and IFN-γ-induced NO generation in RAW
264.7 macrophages

TPA-induced O2
− generation in differentiated

human promyelocytic HL-60 cells

[140–142]

114 from plants and microalgae, but also from
macroalgae

LPS- and IFN-γ-induced NO generation in RAW
264.7 macrophages

TPA-induced O2
− generation in differentiated

human promyelocytic HL-60 cells

[141,142]

115 from plants and microalgae, but also from
macroalgae

LPS- and IFN-γ-induced NO generation in RAW
264.7 macrophages

TPA-induced O2
− generation in differentiated

human promyelocytic HL-60 cells

[141,142]

116 from plants and microalgae, but also from
macroalgae

radical scavenging
enzyme (SOD2, CAT, and GPx1) regulation in

irradiated cells
intracellular ROS generation (DCFH-DA) in

acetaldehyde-treated SH-SY5Y cells
LPS- and IFN-γ-induced NO generation in RAW

264.7 macrophages
Nrf2/HO-1 antioxidant pathway

Nrf2 dissociation and nuclear translocation
Nrf2 expression regulation in irradiated cells
Nrf2-regulated enzymes expression (HO-1,

NQO-1, and GST-α1)
PI3K/Akt and ERK signaling pathway

regulation
ROS-induced oxidative stress in a rat deep-burn

model
regulation of free radical production

(XO/reduced form of Nox)
Sp1/NR1 signaling pathway regulation

TPA-induced O2
− generation in differentiated

human promyelocytic HL-60 cells Akt/CREB
and p38 kinase/MAPK signaling pathway in

acetaldehyde-treated SH-SY5Y cells

[141–152]

117 from plants and microalgae, but also from
macroalgae

ROO scavenging (ORAC/ESR)
caspase-3/7 activation

Nrf2/ARE signaling in RAW 264.7 macrophages
[153]
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Table 3. Cont.

Compound Isolation Source Assay/Activity Reference

118 from various species of Ochrophyta

ABTS+ scavenging: 72.06 ± 0.70% inhibition
at 2 mM

β-carotene bleaching: 95% inhibition at
150 µg/mL

DPPH scavenging: IC50 = 19.6, 206.4 µM
Fe2+ chelation: IC50 = 1.52 mM

FRAP: 15.2 µg TE; 24.62 mg ascorbic acid
eqs/g at 1.5 mM

OH scavenging: IC50 = 51.6 µM
O2
− scavenging

ROO scavenging (ORAC/ESR)
caspase-3/7 activation

high glucose-induced oxidative stress in
HUVEC and zebrafish model

H2O2-induced intracellular ROS and
cytotoxicity in fibroblast cells

H2O2-induced neuronal apoptosis in
SH-SY5Y cells

intracellular ROS generation in SH-SY5Y
cells (DCFH-DA)

LPS- and IFN-γ-induced NO generation and
Nrf2/ARE signaling in RAW

264.7 macrophages
oxidative DNA damage

PI3-K/Akt cascade/ERK signaling
square wave voltammetry

TPA-induced O2
− generation in

differentiated HL-60 cells

[142,153–162]

119 Laminaria japonica
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging
DPPH scavenging

OH scavenging
O2
− scavenging

[162]

120 L. japonica
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging
DPPH scavenging

OH scavenging
O2
− scavenging

[162]

121 L. japonica
(Ochrophyta, Phaeophyceae, Laminariales)

ABTS+ scavenging
DPPH scavenging

OH scavenging
O2
− scavenging

[162]

122 from plants and microalgae, but also from
macroalgae

ABTS+ scavenging: IC50 = 25.4 µM
DPPH scavenging: IC50 = 68.9 µM [163]

123 Undariopsis peterseniana
(Ochrophyta, Phaeophyceae, Laminariales) oxidative stress-mediated apoptosis [164]

124 Sargassum horneri
(Ochrophyta, Phaeophyceae, Fucales)

alkyl scavenging (ESR): IC50: 0.22 ± 0.02 mM
AAPH-induced intracellular ROS in Vero

cells
AAPH-induced lipid peroxidation in

zebrafish models in vivo
NF-κB, MAPK and oxidative stress

regulation in RAW 264.7 macrophages
Nrf2/HO-1 pathways regulation

[165,166]

AAPH: 2,2′-azobis(2-amidinopropane) dihydrochloride; ABTS+: 2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt;
Akt: protein kinase B; ARE: antioxidant response element; CAT: catalase; DCFH-DA: cell-based 2′,7′-dichlorodihydrofluorescein diacetate
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antioxidant assay; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; ESR: electron spin resonance; FRAP: ferric reducing antioxidant power;
GSH: glutathione; GPx: glutathione peroxidase; HO-1: heme oxygenase-1; H2O2: hydrogen peroxide; HUVEC: human umbilical vein
endothelial cells; OH: hydroxyl; IC50: half maximal inhibitory concentration; IFN-γ: interferon γ; LPS: lipopolysaccharide; MAPK: mitogen-
activated protein kinase; NADPH: nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear factor kappa-light-chain-enhancer of
activated B cells, NO.: nitric oxide; Nox: NADPH oxidase; Nrf2: nuclear factor erythroid 2-related factor 2; O2

−: superoxide anion; ORAC:
oxygen radical absorbance capacity; PI3-K: phosphatidylinositol 3-kinase; ROS: reactive oxygen species; SH-SY5Y: human dopaminergic
neuronal cell line; SOD: superoxide dismutase; TBARS: thiobarbituric acid reactive substances; t-BHP: tert-butyl hydroperoxide; TE: trolox
equivalents; TPA: 12-O-tetradecanoylphorbol 13-acetate; XO: xanthine oxidase.
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Compared to phenolic compounds, as presented in Table 2, it is evident that ter-
penoids are less active, since their IC50 values in the DPPH radical scavenging assay are
mostly within the mM range. The most active compounds reported are the halogenated
monoterpene (1E,3R,4S,5E,7Z)-1-bromo-3,4,8-trichloro-7-(dichloro-methyl)-3-methyl- octa-
1,5,7-triene (90), isolated from the red alga Plocamium sp., and the carotenoids fucoxanthin
(118) and violaxanthin (122), isolated from various macroalgae, with IC50 values of 50.0,
19.6, and 68.9 µM, respectively [128,159,163].

Alarif et al. (2015) isolated a series of C-29 steroids (102–106), along with fucoxanthin
(118), from the brown alga Cystoseira trinodis and all compounds were evaluated for their
antioxidant activity [135]. Steroids 102–106 showed moderate antioxidant activity (20.4 to
27.5%) in the ABST assay, while compound 118 exhibited significant levels of activity
(72.1%).

Fucosterol (104), frequently isolated from brown algae, was confirmed to exert antiox-
idant activity on hepatic cells via an increase in the hepatic levels of GSH and a decrease in
ROS production, therefore preventing hepatic damage and the resultant increase in alanine
transaminase and aspartate transaminase activities [136]. Hence, fucosterol is considered
an effective hepatoprotective agent that could be useful for preventive therapies against
oxidative stress-related hepatotoxicity.

Moreover, the abeo-oleanenes 110 and 111 were isolated from the red alga Gracilaria
salicornia and their antioxidant activity was evaluated employing the DPPH and ABTS+

radical scavenging assays [138]. Compound 110 exhibited higher radical scavenging
activities (DPPH IC50 = 1.33 mM; ABTS+ IC50 = 1.09 mM), when compared to those
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displayed by compound 111 (DPPH IC50 = 1.56 mM; ABTS+ IC50 = 1.24 mM) and α-
tocopherol that was used as positive control (DPPH IC50 = 1.46 mM; ABTS+ IC50 = 1.72 mM).

Antioxidants 2021, 10, x FOR PEER REVIEW 25 of 67 
 

 
Figure 10. Chemical structures of compounds 102–111. 

Fucosterol (104), frequently isolated from brown algae, was confirmed to exert anti-
oxidant activity on hepatic cells via an increase in the hepatic levels of GSH and a decrease 
in ROS production, therefore preventing hepatic damage and the resultant increase in al-
anine transaminase and aspartate transaminase activities [136]. Hence, fucosterol is con-
sidered an effective hepatoprotective agent that could be useful for preventive therapies 
against oxidative stress-related hepatotoxicity. 

Figure 10. Chemical structures of compounds 102–111.

Among terpenoids, carotenoids, a family of lipophilic pigments synthesized by plants,
algae, fungi, and microorganisms, but not animals, exhibit high levels of antioxidant
activity. In red, brown, and green algae, carotenoids play a key role in their protection
against photo-oxidative processes [6]. Their antioxidant action is based on their singlet
oxygen quenching properties and their free radicals scavenging ability, which mainly
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depends on the number of conjugated double bonds, the nature of substituents and the
end groups of the carotenoids [6].

In marine macroalgae, β-carotene (113), lutein (114), zeaxanthin (115), astaxanthin
(116), neoxanthin (117), fucoxanthin (118), and violaxanthin (122) are known to be among
the major carotenoids encountered [167]. Astaxanthin (116) acts as a safeguard against
oxidative damage through various mechanisms, such as singlet oxygen quenching, radical
scavenging, inhibition of lipid peroxidation, and regulation of gene expression related to
oxidative stress [144,148,168–171]. The exact mechanisms of action of astaxanthin have
been extensively studied, since it has been proven to confer protective effects against
neurological diseases, as well as in treating and preventing skin diseases [171–173].

Specifically, astaxanthin (116) activates the phosphatidylinositol 3-kinase (PI3K)/Akt
and ERK signaling pathways, and thus facilitates the dissociation and nuclear translocation
of Nrf2, which leads to upregulation of the expression of Nrf2-regulated enzymes (e.g.,
HO-1, NQO-1, and GST-α1) [147]. Astaxanthin (116) inhibits the production of intracellular
ROS by negatively regulating the Sp1/NR1 signaling pathway [149,150] and modulating
the expression of oxidative stress-responsive enzymes, such as HO-1, which is a marker of
oxidative stress and a regulatory mechanism involved in cell adaptation against oxidative
damage [143]. In addition, astaxanthin activates the Nrf2/HO-1 antioxidant pathway by
generating small amounts of ROS [145,146]. In agreement with these studies, Xue et al.
(2017) observed that astaxanthin upregulated Nrf2 expression, as well as Nrf2-targeted
proteins HO-1 and antioxidative enzymes SOD2, CAT, and GPx1 in irradiated cells [151].
Thus, astaxanthin (116) exerts noteworthy antioxidant activities via both direct radical
scavenging, and activation of the cellular antioxidant defense system through modulation
of the Nrf2 pathway. Furthermore, a recent study in a rat deep-burn model demonstrated
astaxanthin’s protective role in early burn-wound progression by controlling ROS-induced
oxidative stress. In that case, the regulation of free radical production is due to the influence
of xanthine oxidase and the reduced form of nicotinamide adenine dinucleotide phosphate
oxidase, both contributing to the generation of ROS [144].
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Fucoxanthin (118), often isolated from brown algae, is an oxo-carotenoid with an
allenic carbon moiety and a 5,6-monoepoxide in its structure, acknowledged as an efficient
quencher of singlet oxygen in photooxidation [174–176]. The antioxidant activity of fucox-
anthin (118) is mediated through various mechanisms, such as singlet oxygen quenching,
radical scavenging, and inhibition of lipid peroxidation. Fucoxanthin (118) has been shown
to exert the best in vitro bioactivities among carotenoids in inhibiting overexpression of
vascular endothelial growth factor, resisting senescence, improving phagocytic function,
and clearing intracellular ROS in retinal pigment epithelium cells, protecting the retina
against photoinduced damage [156].

The study of Taira et al. (2017) demonstrated that fucoxanthin (118), through the
Nrf2 activation, exerts either cytoprotective activity or induction of apoptosis, depending
on the concentrations employed [153]. At a low concentration range (1–4 µM), fucoxanthin
provides a cytoprotective effect due to its antioxidant activity, as exerted by its peroxyl
radical scavenging capacity, involving the antioxidant HO-1 protein expression increase
through the activation of the Nrf2/ARE pathway. On the other hand, high concentration
(>10µM) treatment of cells induces apoptosis with caspase -3/7 activation during the
suppression of anti-apoptotic proteins, such as Bcl-xL and pAkt.

Besides, the cytoprotective effect of fucoxanthin (118) has been investigated against
H2O2-induced cell damage [154,158]. It was shown that fucoxanthin effectively inhibited
intracellular ROS formation, DNA damage, and apoptosis induced by H2O2. Finally, the
protective effect of fucoxanthin was investigated against UVB-induced cell injury in human
fibroblasts and showed significant decrease in intracellular ROS formation and increase in
cell survival rate in a dose-dependent manner [155].

Comparative studies of the radical scavenging efficiency of fucoxanthin (118) and its
stereoisomers (119–121) isolated from Laminaria japonica have also been conducted [162]. All
three stereoisomers had stronger hydroxyl radical scavenging activities than α-tocopherol
but showed weaker scavenging activities toward DPPH and superoxide radical, while their
radical scavenging activities were not remarkably different, indicating that the differences
in the geometry of the double bonds had very little effect on their activity.

Recently, the monoterpenoid (−)-loliolide (124) was proven to effectively reduce
2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced ROS, cell death, and
lipid peroxidation in Vero cells and zebrafish embryos in a dose-dependent manner [165].
Moreover, a study conducted by Jayawardena et al. (2019) elaborated the anti-inflammatory
effect of Sargassum horneri ethanolic extract containing (−)-loliolide on LPS-stimulated
RAW 264.7 macrophages via suppression of NF-κB and MAPK and reduction of oxidative
stress through the Nrf2/HO-1 pathway [166].

5. Meroterpenoids

Meroterpenoids are natural products of mixed biosynthesis containing a terpenoid
part that exhibit a variety of biological activities. Metabolites belonging to this class
that display antioxidant activity have been isolated from various macroalgae (Table 4,
Figures 13–19), the majority of which belong to the phylum Ochrophyta, and especially to
the genera Cystoseira and Sargassum.

Table 4. Meroterpenoids from macroalgae with antioxidant activity.

Compound Isolation Source Assay/Activity Reference

125 Cymopolia barbata
(Chlorophyta, Ulvophyceae, Dasycladales)

DPPH scavenging: strong
exogenous ROS scavenging in TPA-treated

HL-60 cells (DCFH-DA): IC50 = 4.0 µM
[91]

126 C. barbata
(Chlorophyta, Ulvophyceae, Dasycladales)

DPPH scavenging: strong
exogenous ROS scavenging in TPA-treated

HL-60 cells (DCFH-DA): IC50 >14.6 µM
[91]
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Compound Isolation Source Assay/Activity Reference

127 Cystoseira crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging: 94.1% at 230 µM

O2
− generation (PCL assay)

TBARS assay: 66.8% inhibition at 164 µM

[177]

128 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging activity: 92.5% at 230 µM

O2
− generation (PCL assay)

TBARS assay: 66.5% inhibition at 164 µM

[177]

129 Cystoseira usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 33.3 ± 2.3 µM; 0.78 TE [178]

130 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 51.6 ± 4.8 µM; 0.50 TE [178]

131 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 44.7 ± 1.1 µM; 0.58 TE [178]

132 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 55.9 ± 9.9 µM; 0.46 TE [178]

133 Dictyopteris undulata
(Ochrophyta, Phaeophyceae, Dictyotales) DPPH scavenging: IC50 = 71 µM [179]

134 D. undulata
(Ochrophyta, Phaeophyceae, Dictyotales)

expression of phase-2 enzymes (i.e., NQO1, GSH
S-transferase, HO-1 and PRDX4)

Nrf2/ARE signaling pathway
oxidative stress in HT22 hippocampal neuronal

cells

[180]

135 D. undulata
(Ochrophyta, Phaeophyceae, Dictyotales) DPPH scavenging: IC50 = 121 µM [179]

136 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.88 ± 0.02 mM
DPPH scavenging: IC50 = 1.51 ± 0.01 mM [181]

137 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.96 ± 0.01 mM
DPPH scavenging: IC50 = 1.85 ± 0.02 mM [181]

138 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.57 ± 0.02 mM
DPPH scavenging: IC50 = 1.33 ± 0.01 mM [181]

139 D. undulata
(Ochrophyta, Phaeophyceae, Dictyotales) DPPH scavenging: IC50 = 145 µM [179]

140 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.50 mM
DPPH scavenging: IC50 = 1.40 mM [182]

141 G. salicornia
(Rhodophyta, Florideophyceae, Gracilariales)

ABTS+ scavenging: IC50 = 1.33 mM
DPPH scavenging: IC50 = 1.17 mM [182]

142 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 25.5 µM
lipid peroxidation in rat liver: IC50 = 0.26 µM [183]

143 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 3.0% at 0.23 mM
lipid peroxidation in rat liver: IC50 = 2.22 µM [184]

144 Cystoseira abies-marina
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 29% at 1.06 mM [185]

145 C. abies-marina
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 30% at 1.02 mM [185]
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146 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging: 94.4% at 230 µM
O2
− radical generation (PCL assay)

TBARS: 70.8% inhibition at 164 µM

[177]

147 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.14 mM
DPPH scavenging: 95.4% at 230 µM

O2
− radical generation (PCL assay): 1.35
TBARS: 71.8% inhibition at 164 µM

[177]

148 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging: 96.1% at 230 µM
O2
− radical generation (PCL assay)

TBARS: 68.9% inhibition at 164 µM

[177]

149 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging: 95.5% at 230 µM
O2
− radical generation (PCL assay)

TBARS: 70.3% inhibition at 164 µM

[177]

150 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.37 mM
DPPH scavenging: 95.5% at 230 µM

O2
− radical generation (PCL assay): 1.39
TBARS: 72.2% inhibition at 164 µM

[177]

151 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.09 mM
DPPH scavenging: 95.7% at 230 µM

O2
− radical generation (PCL assay): 0.72
TBARS: 71.1% inhibition at 164 µM

[177]

152 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.09 mM
DPPH scavenging: 96.4% at 230 µM

O2
− radical generation (PCL assay): 0.59
TBARS: 73.7% inhibition at 164 µM

[177]

153 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.09 mM
DPPH scavenging: 96.7% at 230 µM

O2
− radical generation (PCL assay): 0.51
TBARS: 73.4% inhibition at 164 µM

[177]

154 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.08 mM
DPPH scavenging: 65.4% at 230 µM

O2
− radical generation (PCL assay): 1.06
TBARS: 74.9% inhibition at 164 µM

[177]

155 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.28 mM
DPPH scavenging: 95.8% at 230 µM

O2
− radical generation (PCL assay): 0.79
TBARS: 74.6% inhibition at 164 µM

[177]

156 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.77 TE [186]

157 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 24.5 ± 1.6 µM; 1.06 TE [178]

158 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.77 TE [186]

159 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: IC50 = 26.3 ± 2.3 µM; 0.98 TE [178]

160 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.87 TE [186]
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161 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 33.1 ± 5.1 µM;
0.78 TE [178]

162 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.67 TE [186]

163 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.81 TE [186]

164 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 43.1 ± 3.1 µM;
0.60 TE [178]

165 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.53 TE [186]

166 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.37 TE [186]

167 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.66 TE [186]

168 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.45 TE [186]

169 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.65 TE [186]

170 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.50 TE [186]

171 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales) ABTS+ scavenging: 0.62 TE [186]

172 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 24.4 ± 0.9 µM;
1.06 TE [178]

173 C. usneoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 22.5 ± 2.1 µM;
1.15 TE [178]

174 Sargassum siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.54 µM [187]

175
Sargassum elegans, S. siliquastrum, Sargassum

thunbergii
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 0.40; 46.9 µM
ONOO scavenging: 78.03% at 23.4 µM

ONOO− derived from SIN-1 scavenging:
100% at 23.4 µM

electrochemistry-guided isolation of
antioxidant metabolites (using square wave

and cyclic voltammetry methods)

[157,187–189]

176 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 52.6% inhibition at
143.6 µM

lipid peroxidation in rat liver: IC50 = 63.6 µM
[184]

177 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 32.3% inhibition at
144.0 µM

lipid peroxidation in rat liver: IC50 = 1.66 µM
[184]

178 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.27 µM [187]

179 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.25 µM [187]

180 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.68 µM [187]
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181 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.64 µM [187]

182 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.62 µM [187]

183 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 0.21 µM [187]

184 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 23.3 µM [187]

185 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 26.1 µM [187]

186 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 25.4 µM [187]

187 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 37.9 µM [187]

188 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 35.4 µM [187]

189 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 18.7 µM [187]

190 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 25.9 µM [187]

191 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 30.4 µM [187]

192 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 47.9 µM [187]

193 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 26.3 µM [187]

194 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 25.1 µM [187]

195 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 933.3 µM
lipid peroxidation in rat liver: IC50 = 2.33 µM [183]

196 S. elegans
(Ochrophyta, Phaeophyceae, Fucales)

electrochemistry-guided isolation of
antioxidant metabolites (using square wave

and cyclic voltammetry methods)
[157]

197 S. elegans, S. micracanthum, S. thunbergii
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 63.6; 100.2 µM;
69.82% at 250 µM

ONOO scavenging: 64.18% at 23.6 µM
ONOO− derived from SIN-1 scavenging

activity: 75.39% at 23.6 µM
electrochemistry-guided isolation of

antioxidant metabolites (using square wave
and cyclic voltammetry methods)

[157,188–190]

198 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging
DPPH scavenging: 29.0% at 230 µM

O2
− generation (PCL assay)

TBARS: 43.3% inhibition at 164 µM

[177]

199 C. crinita
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: TEAC = 0.30 mM
DPPH scavenging: 38.6% at 230 µM

O2
− generation (PCL assay): 1.41

TBARS: 54.4% inhibition at 164 µM

[177]
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200 C. barbata
(Ochrophyta, Phaeophyceae, Fucales)

antioxidant activity against ROS and reactive
nitrogen species

[141,183,184,
189]

201 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 90.0% at 0.29 mM [191]

202 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 87.4% at 0.29 mM [191]

203 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

H2O2-induced lipid peroxidation in HT
1080 cells

intracellular GSH level in HT 1080 cells
intracellular ROS generation (DCFH-DA) in

HT 1080 cells

[192]

204 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 90.5% at 0.24 mM [191]

205 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 89.6% at 0.23 mM
H2O2-induced lipid peroxidation in HT

1080 cells
intracellular GSH level in HT 1080 cells

intracellular ROS generation (DCFH-DA) in
HT 1080 cells: 67.2% decrease at 11.7 µM

[191,192]

206 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 87.3% at 0.23 mM
H2O2-induced lipid peroxidation in HT

1080 cells
intracellular GSH level in HT 1080 cells

intracellular ROS generation (DCFH-DA) in
HT 1080 cells: 87.2% decrease at 11.7 µM

[191,192]

207 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 88.2% at 0.23 mM [191]

208 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 90.4% at 0.23 mM
expression of osteoclastic marker gene in

RANKL-stimulated RAW264.7 cells (TRAP,
CTSK, MMP9 and CTR)

NF-κB activation in RANKL-stimulated
RAW264.7 cells

osteoclast differentiation in
RANKL-stimulated RAW264.7 cells

phosphorylation of MAPKs in
RANKL-stimulated RAW264.7 cells

[191,193]

209 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: 89.2% at 0.23 mM
H2O2-induced lipid peroxidation in HT

1080 cells
intracellular GSH level in HT 1080 cells

intracellular ROS generation (DCFH-DA
assay) in HT 1080 cells

[191,192]

210 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 87.8% at 0.23 mM [191]

211 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 90.4% at 0.23 mM [191]

212 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 89.1% at 0.23 mM [191]
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213 S. micracanthum
(Ochrophyta, Phaeophyceae, Fucales)

NADPH-dependent lipid peroxidation in rat
microsomes: IC50 = 0.65 µM [194]

214 S. micracanthum, S. thunbergii
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 75.4 µM; 78.85% at
250 µM

ONOO scavenging: 92.69% at 23.6 µM
ONOO− derived from SIN-1 scavenging: 99.51%

at 23.6 µM

[188–190]

215 S. thunbergii
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: IC50 = 82.9 µM [189]

216 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

H2O2-induced lipid peroxidation in HT
1080 cells: 43.2% at 112.0 µM

intracellular GSH level in HT 1080 cells
intracellular ROS generation (DCFH-DA) in HT

1080 cells

[192]

217 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales)

H2O2-induced lipid peroxidation in HT
1080 cells: 38.9% at 112.0 µM

intracellular GSH level in HT 1080 cells
intracellular ROS generation (DCFH-DA) in HT

1080 cells

[192]

218 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 88.8% at 0.24 mM [191]

219 S. thunbergii
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 67.8 µM
ONOO scavenging: 60.0% at 11.3 µM

ONOO− derived from SIN-1 scavenging: 98.6%
at 11.3 µM

[195]

220 S. thunbergii
(Ochrophyta, Phaeophyceae, Fucales)

DPPH scavenging: IC50 = 70.0 µM
ONOO scavenging: 57.1% at 11.3 µM

ONOO− derived from SIN-1 scavenging: 90.6%
at 11.3 µM

[195]

221 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 90.1% at 0.24 mM [191]

222 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 88.7% at 0.23 mM [191]

223 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 89.2% at 0.24 mM [191]

224 S. siliquastrum
(Ochrophyta, Phaeophyceae, Fucales) DPPH scavenging: 88.7% at 0.24 mM [191]

ABTS+: 2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; ARE: antioxidant response element; CTR: calcitonin
receptor; CTSK: cathepsin K; DCFH-DA: cell-based 2′,7′-dichlorodihydrofluorescein diacetate antioxidant assay; DPPH: 1,1-diphenyl-
2-picrylhydrazyl free radical; GSH: glutathione; HO-1: heme oxygenase-1; HT 1080: human fibrosarcoma cell line; IC50: half maximal
inhibitory concentration; MMP9: matrix metalloproteinase 9; NADPH: nicotinamide adenine dinucleotide phosphate; NQO1: NADPH
quinone oxidoreductase 1; Nrf2: nuclear factor erythroid 2-related factor 2; ONOO−: peroxynitrite; O2

−: superoxide anion; PCL:
photochemiluminescence; PRDX4: peroxyredoxin 4; RANKL: receptor activator of NF-κB ligand; ROS: reactive oxygen species; SIN-1:
3-morpholinosydnonimine; SOD: superoxide dismutase; TBARS: thiobarbituric acid reactive substances; TE: trolox equivalents; TEAC:
trolox equivalence antioxidant capacity; TPA: 12-O-tetradecanoylphorbol 13-acetate; TRAP: tartrate-resistant acid phosphatase.

Overall, meroterpenoids from marine macroalgae have exhibited moderate to remark-
able antioxidant activity. Specifically, the brominated compound cymopol (125), isolated
from the green alga Cymopolia barbata, exerted noticeably high DPPH scavenging activity
with an IC50 value of 4.0 µM [91].

De los Reyes et al. (2013, 2016) described the isolation of meroditerpenoids 129–132
and 156–173 that have shown radical scavenging activity from the brown alga Cystoseira
usneoides [178,186]. The most active compounds were cystodiones A (173), B (172), G
(162), and H (158), cystomexicone B (129), amentadione (156), amentadione 1′-methyl ether
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(157), 6-cis-amentadione 1′-methyl ether (159), and 11-hydroxyamentadione (160), which
exhibited antioxidant activity in the ABTS assay in the range of 77–115% compared to
Trolox that was used as a standard.
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Additionally, Fisch et al. (2003) reported a number of triprenyltoluquinol derivatives
(127, 128, 146–155), isolated from the brown alga Cystoseira crinita, that showed very high
levels of radical scavenging at a concentration of 230 µM (92.5–96.7% as compared to 95.2%
scavenging for α-tocopherol) [177]. In contrast, the co-occurring quinones 197 and 198
showed DPPH radical scavenging activities significantly less than that of α-tocopherol and
the hydroquinones, but still comparable to that of BHT, i.e., 29.0% for 197 and 38.6% for
198 as compared to 35.6% scavenging observed for BHT at a concentration of 230 µM. The
observed differences in the values obtained in the DPPH assay for the tested compounds
were attributed to the existence of small impurities in the samples (e.g., due to autoxidation)
and the handling of small amounts rather than to structural variations. On the other hand,
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in the TBARS assay, potent inhibition of linolenic acid methyl ester peroxidation was
observed for all hydroquinones, i.e., 66.5–74.9% inhibition for compounds 127, 128, and
146–155 at a concentration of 164 µM. These activities were comparable to those of α-
tocopherol (72.7%) and BHT (69.3%). Additionally, these compounds showed activities
between 13% (153) and 59% (149) of α-tocopherol in the TEAC test and between 40% (152)
and 112% (198) of α-tocopherol in the PCL assay [177].
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Jung et al. (2008) isolated an array of meroterpenoids (174, 175, 178–194) from the
brown alga Sargassum siliquastrum which exhibited moderate to significant radical scav-
enging activity in the DPPH assay with IC50 values ranging from 0.21 to 47.9 µM (for
compounds 183 and 192, respectively) [187]. The observed more than 200-fold increase in
the radical scavenging activity of the isonahocols (174, 175, 178–183 with IC50 values of
0.54, 0.40, 0.27, 0.25, 0.64, 0.68, 0.62, and 0.21 µM, respectively) in comparison to that of the
nahocols (184–194 with IC50 values of 23.3, 26.1, 25.4, 37.9, 35.4, 18.7, 25.9, 30.4, 47.9, 26.3,
and 25.1 µM, respectively) indicated the pivotal role of the second free hydroxyl group in
the phenol ring for enhanced radical scavenging activity. Along this trend, the absence of a
free phenolic hydroxyl group resulted in lack of scavenging activity [187].

Another investigation conducted by Jang et al. (2005) reported the isolation of meroter-
penoids belonging to the subclasses of chromenes and chromenols (201, 202, 204–212, 218,
221–224) from the brown alga S. siliquastrum that exhibited over 87% radical scavenging
activity at a concentration of 0.23 to 0.29 mM (0.1 mg/mL) [191]. Moreover, the antioxi-
dant activity of compounds 205, 206, and 209, along with that of 203, 216, and 217, was
evaluated in various assays, including scavenging effects on the generation of intracellular
ROS, increments of intracellular GSH levels, and inhibitory effects on lipid peroxidation in
human fibrosarcoma HT 1080 cells [192]. All tested compounds significantly decreased the
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generation of intracellular ROS, while increasing the levels of intracellular GSH at a con-
centration of 5 µg/mL, and inhibited H2O2-induced lipid peroxidation at a concentration
of 50 µg/mL.

In an effort to elucidate the mechanism of antioxidant activity of zonarol (134), Shimizu
et al. (2015) studied its effect on neuronal cells and proved that zonarol protects them from
oxidative stress by activating the Nrf2/ARE pathway and inducing phase-2 enzymes [180].

Moreover, Yoon et al. (2013) elucidated the role of sargachromanol G (208), isolated
from the brown alga S. siliquastrum, in receptor activator of NF-κB ligand (RANKL)-
induced osteoclast formation [193]. Compound 208 was found to inhibit RANKL-induced
osteoclast differentiation from RAW264.7 cells without signs of cytotoxicity. Additionally,
the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase
(TRAP), cathepsin K (CTSK), matrix metalloproteinase 9 (MMP9), and calcitonin receptor
(CTR), was also strongly inhibited. It was concluded that sargachromanol G inhibits
RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α protein
degradation, and therefore the phosphorylation of mitogen activated protein kinases (p38,
JNK, and ERK).

6. Nitrogenous Compounds

So far, a number of nitrogenous compounds, including peptides, alkaloids, and
chlorophyll-related pigments (Figures 20 and 21), isolated from marine macroalgae have
shown antioxidant activity (Table 5).

Table 5. Nitrogenous compounds from macroalgae with antioxidant activity.

Compound Isolation Source Assay/Activity Reference

225 Porphyra yezoensis
(Rhodophyta, Bangiophyceae, Bangiales)

DPPH scavenging: IC50 = 185.2 ± 3.2 µM
ORAC: 51 ± 7% TE

Nrf2-regulated antioxidant response in
UVA-treated fibroblasts (1BR)

[196,197]

226 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 399.0 ± 1.1 µM
ORAC: 17 ± 7% TE

Nrf2-regulated antioxidant response in
UVA-treated fibroblasts (1BR)

[196]

227 P. yezoensis
(Rhodophyta, Bangiophyceae, Bangiales) DPPH scavenging: IC50 = 30.8 µM [197]

228 P. yezoensis
(Rhodophyta, Bangiophyceae, Bangiales)

TBARS: 85.2% inhibition
FTC: 84.1% inhibition [198]

229 P. yezoensis
(Rhodophyta, Bangiophyceae, Bangiales)

TBARS: 94.4% inhibition
FTC: 89.1% inhibition [198]

230 Martensia fragilis
(Rhodophyta, Florideophyceae, Ceramiales)

DPPH scavenging: moderate
exogenous ROS scavenging in TPA-treated

HL-60 cells (DCFH-DA): IC50 = 11 µM
[91]

231 Dictyota coriacea
(Ochrophyta, Phaeophyceae, Dictyotales)

H2O2-induced oxidative damage and toxicity in
neuron-like PC12 cell

Nrf2/ARE signaling pathway
[199]

232 Porphyra dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 3.79 ± 0.11 µmol TE/µM [200]

233 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 3.14 ± 0.32 µmol TE/µM [200]

234 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 0.09 ± 0.00 µmol TE/µM [200]
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Table 5. Cont.

Compound Isolation Source Assay/Activity Reference

235 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 2.85 ± 0.42 µmol TE/µM [200]

236 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 2.50 ± 0.16 µmol TE/µM [200]

237 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 4.27 ± 0.15 µmol TE/µM [200]

238 P. dioica
(Rhodophyta, Bangiophyceae, Bangiales) ORAC: 0.92 ± 0.10 µmol TE/µM [200]

239 Porphyra sp.
(Rhodophyta, Bangiophyceae, Bangiales)

ROO scavenging (CBA): 0.048 ± 0.003 mmol
TE/g [201]

240 Enteromorpha prolifera
(Chlorophyta, Ulvophyceae, Ulvales)

DPPH scavenging: 88.6 ± 1.3% at 168.7 µM
reducing power: 60% at 843.6 µM
ROO scavenging: 50% at 843.6 µM

TPC: 21.4 ± 0.1 mg GAE/g

[202]

241 from plants and microalgae, but also from
macroalgae

β-carotene bleaching: 49.63% at 56.0 µM
DPPH scavenging: 13.89% at 56.0 µM

Fe2+ chelation: 55% at 200 µM
lipid peroxidation: 95% at 100 µM

ROO scavenging capacity: 308

[141,203–
205]

242 E. bicyclis
(Ochrophyta, Phaeophyceae, Laminariales)

FTC
TBARS [206]

CBA: crocin bleaching activity; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; FTC: ferric thiocyanate; GAE: gallic acid equivalents;
Nrf2: nuclear factor erythroid 2-related factor 2; ORAC: oxygen radical absorbance capacity; ROO: peroxyl; TBARS: thiobarbituric acid
reactive substances; TE: trolox equivalents; TPC: total phenolics content.

Peptides and alkaloids 225–239, isolated from Gloiopeltis furcata, Porphyra sp., and
Martensia fragilis, have demonstrated moderate to significant antioxidant activity [91,196–200].
Specifically, mycosporine-like amino acids 225–227 exhibited markedly lower free radical
scavenging activities compared to those of ascorbic acid and Trolox [196,197], although
heat treatment of porphyra 334 (225) at temperatures over 100 ◦C afforded its dehydrated
form (227) and resulted in more than a 100-fold increase in the DPPH radical scavenging
activity (IC50 =10.1 µg/mL for 227 vs. >1000 µg/mL for 225) [197].

The histidine-related dipeptides carnosine (228) and anserine (229) were shown to
exert comparable antioxidant activities, as measured by ferric thiocyanate and TBARS
(85.2% and 84.1% inhibition for 228 and 94.4% and 89.1% inhibition for 229, respectively),
to those of α-tocopherol (88.2% and 86.7%, respectively) and BHT (99.8% and 98.2%,
respectively) [198]. Moreover, Cermeno et al. (2019) isolated a series of bioactive peptides
(232–238) from Porphyra dioica that displayed significant antioxidant activity as assessed
using the ORAC assay [200]. It appears that peptides containing tyrosine in their structure
(compounds 232, 233, 235, and 237) possessed higher levels of antioxidant activity.

In an effort to elucidate the mechanism of action of dictyospiromide (231), neuron-
like PC12 cells were treated with H2O2, and its cytoprotective effect against the induced
oxidative damage was evaluated [199]. Treatment with dictyospiromide increased cell
survival in a dose-dependent manner and reduced H2O2-induced lactate dehydrogenase
(LDH) production at a concentration as low as 0.5 µM. Additionally, compound 231 was
investigated regarding its implication in the Nrf2/ARE signaling pathway, which regulates
the expression of genes involved in cellular antioxidant defense. It was found that dic-
tyospiromide (231) exhibited a cytoprotective antioxidant effect in PC12 cells that involved
activation of the Nrf2/ARE signaling pathway and enhanced expression of HO-1.
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Chlorophylls are natural pigments with a well-known antioxidant activity. Although
their radical scavenging activities are reported to be low [203], their inhibitory action in
lipid peroxidation was found to be 95% at concentrations as low as 100 µM [204]. However,
knowledge is limited regarding the yield of chlorophyll metabolites, their absorption and
transportation processes, their metabolic pathways, and their precise oxidation mecha-
nisms. At the in vitro level, only few researchers have studied the stability of chlorophylls
during digestion and subsequent absorption through intestinal cells. The major outcome is
that chlorophylls α and β are transformed into their corresponding pheophorbides and
pheophytins and are absorbed at similar rates to those of carotenoids. Further, it has been
shown that pheophorbide a is transported at the intestinal level by a protein-mediated
mechanism, with scavenger receptor class B type 1 (SR-BI) being a plausible transporter.
These results have been confirmed at the in vivo level, using mice as the experimental
model, showing a preferential accumulation of pheophorbide in the liver along with
multiple other chlorophyll compounds [205].

The characteristic pigments of the light harvesting proteins phycoerythrobilin (239),
pheophorbide a (240), chlorophyll β (241) and pyropheophytin α (242) have been found
to exert antioxidant activity [141,201–206]. It seems that the porphyrin ring system is
important for the expression of antioxidative activity in the dark. Indeed, phycoerythrobilin
(239) showed potent antioxidant activity in in vitro experiments and significantly inhibited
the release of β-hexosaminidase in rat basophilic leukemia cells [207], suggesting that
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phycoerythrobilin exhibits anti-inflammatory activity. Pheophorbide a (240) demonstrated
antioxidant activity (88.6 ± 1.3% DPPH scavenging) higher than that of α-tocopherol, and
comparable to that of butylated hydroxyanisol (BHA, 85.3 ± 0.2% DPPH scavenging) at a
concentration of 0.1 mg/mL [202], while pyropheophytin α (242) demonstrated antioxidant
activity higher than that of α-tocopherol [206].

7. Carbohydrates and Polysaccharides

Carbohydrates ranging in size from simple monosaccharides to high molecular weight
polysaccharides isolated from marine macroalgae often exert antioxidant activities [208,209]
(Table 6, Figure 22).

Table 6. Carbohydrates and polysaccharides from macroalgae with antioxidant activity.

Compound Isolation Source MW/Sulfate Content Assay/Activity Reference

243 from a plethora of macroalgae -

free radicals (DPPH, OH, NO, O2,)
scavenging

enzyme activity (a-glucosidase, AChE,
BChE)

[210]

244
Laurencia undulata

(Rhodophyta, Florideophyceae,
Ceramiales)

-

alkyl scavenging: IC50 = 43.7 µM
DPPH scavenging: IC50 = 39.3 µM

OH scavenging: IC50 = 27.4 µM
O2
− scavenging: IC50 = 39.4 µM

gene expression levels of GSH and
SOD

intracellular ROS levels (DCFH-DA)
in RAW264.7 cells

membrane protein oxidation
MPO activity

protein expression of MMP2 and
MMP9

[211]

245
L. undulata

(Rhodophyta, Florideophyceae,
Ceramiales)

-

alkyl scavenging: IC50 = 32.3 µM
DPPH scavenging: IC50 = 41.8µM
OH scavenging: IC50 = 22.7 µM
O2
− scavenging: IC50 = 33.6 µM

gene expression levels of GSH and
SOD

intracellular ROS levels (DCFH-DA)
in RAW264.7 cells

membrane protein oxidation
MPO activity

protein expression of MMP2 and
MMP9

[211]

246
enzymatically produced from

commercially available
polysaccharides

n.d.

OH scavenging
O2
− scavenging

erythrocyte hemolysis inhibiting
lipid peroxidation

metal chelating activity

[212]

247
enzymatically produced from

commercially available
polysaccharides

n.d.

OH scavenging
O2
− scavenging

erythrocyte hemolysis inhibiting
lipid peroxidation

metal chelating activity

[212]
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Table 6. Cont.

Compound Isolation Source MW/Sulfate Content Assay/Activity Reference

248
F. vesiculosus

(Ochrophyta, Phaeophyceae,
Fucales)

170 kDa/44.10 ± 0.16%

OH scavenging:
IC50 = 0.157 ± 0.005 mg/mL

O2
− scavenging:

IC50 = 0.058 ± 0.011 mg/mL
liver microsomal lipid peroxidation:

IC50 = 1.250 ± 0.174 mg/mL

[213]

249
Cystoseira sedoides

(Ochrophyta, Phaeophyceae,
Fucales)

642 kDa/16.3% DPPH scavenging:
IC50 = 0.96 ± 0.01 mg/mL [214]

250
Cystoseira compressa

(Ochrophyta, Phaeophyceae,
Fucales)

545 kDa/16.6% DPPH scavenging:
IC50 = 0.84 ± 0.06 mg/mL [214]

251
C. crinita

(Ochrophyta, Phaeophyceae,
Fucales)

339 kDa/15.7% DPPH scavenging:
IC50 = 0.76 ± 0.04 mg/mL [214]

252
Padina gymnospora

(Ochrophyta, Phaeophyceae,
Dictyotales)

200 kDa/18.40 ± 0.28%

OH scavenging
O2
− scavenging:

IC50 = 0.243 ± 0.014 mg/mL
liver microsomal lipid peroxidation:

IC50 = 2.753 ± 0.051 mg/mL

[213]

253
P. gymnospora

(Ochrophyta, Phaeophyceae,
Dictyotales)

18 kDa/27.57 ± 0.17%

OH scavenging:
IC50 = 0.353 ± 0.036 mg/mL

O2
− scavenging:

IC50 = 0.243 ± 0.013 mg/mL
liver microsomal lipid peroxidation:

IC50 = 23.887 ± 5.975 mg/mL

[213]

254
L. japonica

(Ochrophyta, Phaeophyceae,
Laminariales)

742 kDa/16.5% OH scavenging: IC50 = 0.60 mg/mL
O2
− scavenging: IC50 = 0.43 mg/mL [215]

255
L. japonica

(Ochrophyta, Phaeophyceae,
Laminariales)

175.9 kDa/33.5% OH scavenging: IC50 = 0.85 mg/mL
O2
− scavenging: IC50 = 0.53 mg/mL [215]

256
Undaria pinnatifida

(Ochrophyta, Phaeophyceae,
Laminariales)

10 kDa/n.d.
DPPH scavenging: 8.77 ± 1.24 TE

(µg/mL)
OH scavenging: 86.98 ± 1.16%

[216]

257
U. pinnatifida

(Ochrophyta, Phaeophyceae,
Laminariales)

300 kDa/20.01 ± 0.82%
DPPH scavenging: 9.01 ± 1.93 TE

(µg/mL)
OH scavenging: 74.32 ± 1.41%

[216]

258
F. vesiculosus

(Ochrophyta, Phaeophyceae,
Fucales)

n.d./21.1 ± 1.7%

ABTS+ scavenging
DPPH scavenging

lipid oxidation
differential pulse voltammetry

[217]

259
F. vesiculosus

(Ochrophyta, Phaeophyceae,
Fucales)

n.d./21.2 ± 0.8%

ABTS+ scavenging
DPPH scavenging

lipid oxidation
differential pulse voltammetry

[217]

260
F. vesiculosus

(Ochrophyta, Phaeophyceae,
Fucales)

n.d./27.0%

DPPH scavenging:
IC50 = 0.035 ± 0.002 mg/mL

reducing power:
RC0.5AU = 1.48 mg/mL

[218]
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Table 6. Cont.

Compound Isolation Source MW/Sulfate Content Assay/Activity Reference

261
Sargassum binderi

(Ochrophyta, Phaeophyceae,
Fucales)

n.d./n.d.

DPPH scavenging:
IC50 = 2.01 ± 0.29 mg/mL

OH scavenging: 60.95 ± 0.69%
O2
− scavenging: 26.78 ± 1.90%

reducing power: 0.60 ± 0.08 mg
GAE/100 g

[219]

262 hydrolyzed from commercially
available polysaccharides 5–30 kDa/n.d. LPS-induced ROS generation in RAW

264.7 macrophages [220]

263 not specified n.d./n.d.
HO-1, SOD1, Nrf2 and

Keap1 expression in human
keratinocytes

[221]

264
U. pinnatifida

(Ochrophyta, Phaeophyceae,
Laminariales)

n.d./n.d.

DPPH scavenging
metal chelating activity

NO scavenging
OH scavenging
reducing power

arthritis-induced physical changes in
rats

[222]

265
Eucheuma spinosa

(Rhodophyta, Florideophyceae,
Gigartinales)

n.d./27.60 ± 0.12%

OH scavenging:
IC50 = 0.281 ± 0.072 mg/mL

O2
− scavenging:

IC50 = 0.332 ± 0.080 mg/mL
liver microsomal lipid peroxidation:

IC50 = 0.830 ± 0.063 mg/mL

[213]

266
Eucheuma cottonii

(Rhodophyta, Florideophyceae,
Gigartinales)

n.d./17.90 ± 0.05%

OH scavenging:
IC50 = 0.335 ± 0.016 mg/mL

O2
− scavenging:

IC50 = 0.112 ± 0.003 mg/mL
liver microsomal lipid peroxidation:

IC50 = 0.323 ± 0.011 mg/mL

[213]

267

Gigartina acicularis, Gigartina
pisillata

(Rhodophyta, Florideophyceae,
Gigartinales)

n.d./33.38 ± 0.06%

OH scavenging:
IC50 = 0.357 ± 0.120 mg/mL

O2
− scavenging:

IC50 = 0.046 ± 0.001 mg/mL
liver microsomal lipid peroxidation:

IC50 = 2.697 ± 0.267 mg/mL

[213]

268
Porphyra haitanensis

(Rhodophyta, Bangiophyceae,
Bangiales)

n.d./17.7%
OH scavenging: IC50 = 6.55 mg/mL
O2
− scavenging: ~60% at 2.5 µg/mL

reducing power: 0.42 at 6.17 mg/mL
[223]

269
Ulva pertusa

(Chlorophyta, Ulvophyceae,
Ulvales)

n.d./19.5%

OH scavenging
O2
− scavenging: IC50 = 20.0 µg/mL

metal chelating assay
reducing power

[224]

270
U. pertusa

(Chlorophyta, Ulvophyceae,
Ulvales)

151.7 kDa/n.d.

Fe2+ chelation
OH scavenging: IC50 > 1 mg/mL

O2
− scavenging: IC50 = 22.1 µg/mL

reducing power

[225]
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Table 6. Cont.

Compound Isolation Source MW/Sulfate Content Assay/Activity Reference

271
U. pertusa

(Chlorophyta, Ulvophyceae,
Ulvales)

n.d./n.d.

Fe2+ chelation: 10% to 20% at
0.31–1.88 mg/mL

OH scavenging: 3.3–37% at
0.25–1.52 mg/mL

O2
− scavenging: IC50 = 9.17 µg/mL

reducing power

[226]

AChE: acetylcholinesterase; BChE: butyrylcholinesterase; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; GAE: gallic acid equivalents;
GSH: glutathione; HO-1: heme oxygenase-1; LPS: lipopolysaccharide; MMP: matrix metalloproteinase; MPO: myeloperoxidase; n.d.: not
determined; NO: nitric oxide; Nrf2: nuclear factor erythroid 2-related factor 2; OH: hydroxyl; O2

−: superoxide anion; RC0.5AU: reducing
capacity at 0.5 absorbance unit; ROS: reactive oxygen species; SOD: superoxide dismutase; TE: trolox equivalents.

The simplest sugar alcohol isolated from a plethora of macroalgae is mannitol (243),
representing up to 9%, 47%, and 59% of the dry algal weight in Chlorophyta, Rhodophyta
and Ochrophyta, respectively [210]. Antioxidant activity evaluation by enzymes (α-
glucosidase, acetyl (AChE) and butyrylcholinesterase (BuChE)) and free radicals (DPPH,
NO, OH, and O2

−) revealed that higher contents of mannitol are closely related with
cholinesterases and DPPH radical scavenging, and to a lesser extent are responsible for
α-glucosidase inhibition, OH, O2

−, and NO scavenging.
Two simple glucosides, floridoside (244) and D-isofloridoside (245), have been isolated

from the red alga Laurencia undulata and their free radical scavenging activity, inhibition of
intracellular ROS levels, the level of membrane protein oxidation, myeloperoxidase (MPO)
activity inhibition, gene expression levels of GSH and SOD, and protein expression of
MMP2 and MMP9 have been determined [211]. It was found that both floridoside (244) and
D-isofloridoside (245) possess significant antioxidant capacity and are potential inhibitors
of MMP2 and MMP9.

Marine macroalgae are the most important source of non-animal sulfated polysac-
charides (SPs), with the main categories being fucoidans isolated from brown algae, car-
rageenans and porphyrans isolated from red algae and ulvans isolated from green algae.
SPs possess excellent in vitro antioxidant activity, including both radical scavenging ca-
pacity and metal chelating ability [212,227,228]. The antioxidant activity of SPs directly
related to their structural features, such as degree of sulfation, molecular weight (MW),
type of major sugar, and glycosidic branching [212,225,229]. For example, low MW SPs
have shown potent antioxidant activity, stronger than that of high MW SPs [230]. The
rationale for this is that low MW SPs may be incorporated into the cells more efficiently
and donate proton effectively compared to high MW SPs.

Alginate oligosaccharide (AO, 246) and fucoidan oligosaccharide (FO, 247) were
enzymatically produced from commercially available polysaccharides and their antioxidant
activity was studied [212]. AO (246) had the highest hydroxyl radical scavenging activity
as compared to FO (247), while in the Fe2+ chelation assay, FO exhibited good chelation in
contrast to AO that hardly displayed any activity.

Fucoidans of diverse MW and sulfation degree (247–264) have been isolated from
various brown algae and/or chemically modified and their antioxidant activity has been
tested employing OH and O2

− scavenging, erythrocyte hemolysis inhibition, metal chela-
tion, and anti-lipid peroxidation assays [212–215]. In the study of Zhao et al. (2008) two
fractions of different MW, namely 742 kDa (254) and 175.9 kDa (255), were obtained from
fucoidans extracted from L. japonica and evaluated for their OH and O2

− scavenging ac-
tivity, with the higher MW fraction exhibiting higher levels of activity [215]. Following
radical process degradation, an ascophyllan-like fraction rich in glucuronic acid and a
fraction rich in galactose and mannose were confirmed as responsible for the oxygen free
radical scavenging activity [215]. On the contrary, Koh et al. (2019) reported on the higher
antioxidant capacity of low MW (10 kDa) fucoidan (256) from Undaria pinnatifida (close to
that of BHA) as compared to a high MW (300 kDa) fucoidan (257) [216].
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Additionally, Rodriguez-Jasso et al. (2014) isolated fucose-containing sulfated polysac-
charides from Fucus vesiculosus using either microwave-assisted extraction (258) or autohy-
drolysis (259) and their antioxidant activity was determined [217]. Both samples presented
similar sulfate contents (~21%), as well as comparable antioxidant potential as evaluated by
DPPH and ABTS+ scavenging, and lipid oxidation inhibition methods. Differences in the
antioxidant potential could be observed only when using a differential pulse voltammetry
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technique, pointing to structural variations of the fucans obtained by the two different
methods.

Several studies have reported the in vitro and in vivo antioxidant efficacy of fu-
coidan [231]. Kim et al. (2012) have demonstrated that low MW fucoidan (262) might
block NO, as well as ROS production, suppressing therefore oxidative stress and MAPKs in
RAW264.7 cells [220]. Additionally, fucoidan (263) was found to reduce the oxidative stress
through Nrf2/ERK signaling mediated regulation of HO-1 and SOD1 expression in human
keratinocytes [221]. More recently, Phull et al. (2017) have demonstrated that fucoidans
derived from U. pinnatifida (264) exhibit significant in vitro and in vivo anti-arthritic re-
sponses in rabbit articular chondrocytes and rats, respectively. Moreover, administration
of fucoidan to arthritic rats ameliorated the clinical symptoms and led to the overall
improvement of their health [222].

Rocha de Souza et al. (2007) reported on the isolation of iota (ι)- (265), kappa (κ)- (266),
and lambda (λ)- (267) carrageenans from various red algae and their antioxidant activity as
evaluated by the scavenging of OH and O2

− radicals, and lipid peroxidation assays [213].
The results of the study indicated that, among the different carrageenans, λ-carrageenan
(267) exhibited the highest antioxidant and free radical scavenging activity. Thus, a positive
correlation between sulfate content and antioxidant activity was evidenced.

Acetylation, phosphorylation and benzoylation of porphyran (268) extracted from the
red alga Porphyra haitanensis afforded derivatives with improved antioxidant activity, as
evaluated in superoxide radical, hydroxyl radical and reducing power assays [223]. In a
previous study, Zhang et al. (2003) obtained through anion-exchange column chromatog-
raphy three sulfated polysaccharide fractions with variable sulfate content (17.4%, 20.5%
and 33.5%) from the same red algal species and investigated their in vitro antioxidant
activities [229]. All three showed strong scavenging effect on superoxide radical and much
weaker effect on hydroxyl free radical, while lipid peroxide in the rat liver microsome was
significantly inhibited. In two subsequent studies the fractions with sulfate contents 17.4%
and 20.5% were evaluated in vivo in aging mice [48,49]. In both cases, intraperitoneal
administration significantly decreased lipid peroxidation in a dose-dependent manner,
while at the same time increasing total antioxidant capacity and the activity of SOD and
GPx in all organs of the aging mice.

Ulvans of diverse sulfation degree and MW (269–271) have been isolated from the
green alga Ulva pertusa and/or chemically modified and their antioxidant activity was
tested employing OH and O2

− radical scavenging, reducing power and metal chelating
assays [224–226]. Specifically, Qi et al. (2005) extracted ulvan (269) with 19.5% sulfate
content and chemically prepared derivatives of higher sulfate content ranging from 23.5%
to 32.8%. Upon evaluation of their O2

− radical and OH radical scavenging activity, it was
observed that the derivatives displayed higher levels of activity, ranging from 91.7% to
95.5% at a concentration as low as 23.0 µg/mL for O2

− radical scavenging and with IC50
values ranging from 0.46 to 1.43 mg/mL for OH radical scavenging [224].

In another study, Qi et al. (2005) initially extracted ulvan (270) from U. pertusa, and sub-
sequently, three derivatives of different MW were prepared by H2O2 degradation and their
antioxidant activities, including OH and O2

− radical scavenging activity, reducing power
and metal chelating ability, were investigated [225]. The MW of the natural and degraded
ulvans were calculated at 151.7, 28.2, 58.0, and 64.5, kDa, respectively. All polysaccharides
exhibited significant OH and O2

− radical scavenging capacity at all concentrations tested
with similar IC50 values at about >1 mg/mL and 22.1 µg/mL, respectively. Among the
natural ulvan and the obtained derivatives, the lowest MW one showed the strongest
reducing power and metal chelating ability. The results indicated that MW had a signifi-
cant effect on the antioxidant activity of ulvan, with low MW ulvan exerting the strongest
antioxidant activity. In a further study, Qi et al. (2006) prepared derivatives of ulvan (262)
after acetylation and benzoylation, which exhibited higher levels of antioxidant activity, as
determined using in vitro assays, including scavenging activity against superoxide and
hydroxyl radicals, reducing power, and chelating ability [226].
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8. Miscellaneous Compounds

A number of compounds (272–301, Figures 23 and 24) isolated from marine macroal-
gae, displaying various structures that do not belong to the previously described classes,
have also exhibited levels of antioxidant activity worth mentioning (Table 7).

Table 7. Miscellaneous compounds from macroalgae with antioxidant activity.

Compound Isolation Source Assay/Activity Reference

272 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 290.5 ± 1.5 µM
ONOO− scavenging: IC50 = 8.45 ± 0.46 µM

AChE inhibition: IC50 = 94.4 ± 1.7 µM
BChE inhibition: IC50 = 242.0 ± 4.8 µM

[75]

273 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 > 274.4
ONOO− scavenging: IC50 = 218.7 ± 1.5 µM

AChE inhibition: IC50 = 31.2 ± 1.0 µM
BChE inhibition: IC50 = 526.7 ± 6.1 µM

[75]

274 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 > 195.0 µM
ONOO− scavenging: IC50 = 28.5 ± 0.0 µM

AChE inhibition: IC50 = 33.9 ± 0.9 µM
BChE inhibition: IC50 > 390.0 µM

[75]

275
Cystoseira sp.

(Ochrophyta, Phaeophyceae, Fucales)
guglone-induced oxidative stress and

intracellular ROS measurement in Caenorhabditis
elegans

[141,232]

276 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 > 179.6 µM
ONOO− scavenging: IC50 = 58.3 ± 0.3 µM

AChE inhibition: IC50 = 44.9 ± 1.4 µM
BChE inhibition: IC50 = 57.1 ± 2.7 µM

[75]

277 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 > 165.3 µM
ONOO− scavenging: IC50 = 52.4 ± 0.2 µM

AChE inhibition: IC50 = 38.1 ± 1.4 µM
BChE inhibition: IC50 = 21.7 ± 1.1 µM

[75]

278 L. undulata
(Rhodophyta, Florideophyceae, Ceramiales)

alkyl scavenging: IC50 = 45.0 ± 1.6 µM
DPPH scavenging: IC50 = 27.1 ± 1.1 µM

OH scavenging: IC50 = 22.8 ± 0.8 µM
O2
− scavenging: IC50 = 33.5 ± 1.3 µM

gene expression of enzymes GSH and SOD
intracellular ROS levels (DCFH–DA) in

RAW264.7 cells
membrane protein oxidation

MPO activity

[233]

279 G. furcata
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 > 220.9 µM
ONOO− scavenging: IC50 = 206.6 ± 1.0 µM

AChE inhibition: IC50 = 13.6 ± 0.5 µM
BChE inhibition: IC50 = 420.1 ± 7.8 µM

[75]

280 Kappaphycus alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 3.63 ± 0.55 mM
DPPH scavenging: IC50 = 3.53 ± 0.05 mM [234]

281 K. alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 1.96 ± 0.51 mM
DPPH scavenging: IC50 = 1.75 ± 0.20 mM [234]

282 Jania rubens
(Rhodophyta, Florideophyceae, Corallinales)

ABTS+ scavenging: IC50 = 1.48 mM
DPPH scavenging: IC50 = 0.80 mM [235]
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Table 7. Cont.

Compound Isolation Source Assay/Activity Reference

283 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 2.89 ± 0.04 mM
DPPH scavenging: IC50 = 2.44 ± 0.11 mM

Fe2+ chelation: IC50 = 3.64 ± 0.08 mM
[236]

284 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 3.76 ± 0.08 mM
DPPH scavenging: IC50 = 3.26 ± 0.04 mM

Fe2+ chelation: IC50 = 4.65 ± 0.08 mM
[236]

285 K. alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 0.67 ± 0.25 mM
DPPH scavenging: IC50 = 0.61 ± 0.06 mM [234]

286 Gracilaria opuntia
(Rhodophyta, Florideophyceae, Gracilariales

ABTS+ scavenging: IC50 = 0.50 mM
DPPH scavenging: IC50 = 0.41 mM [237]

287

C. trinodis
(Ochrophyta, Phaeophyceae, Fucales)

most probably as a contamination from Laurencia
sp.

(Rhodophyta, Florideophyceae, Ceramiales)

ABTS+ scavenging: 26.01 ± 0.01% [135]

288 K. alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 1.30 ± 0.48 mM
DPPH scavenging: IC50 = 0.97 ± 0.07 mM [238]

289 K. alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 2.28 mM
DPPH scavenging: IC50 = 2.02 mM [235]

290 K. alvarezii
(Rhodophyta, Florideophyceae, Gigartinales)

ABTS+ scavenging: IC50 = 1.42 mM
DPPH scavenging: IC50 = 2.50 mM [235]

291 Spatoglossum variabile
(Ochrophyta, Phaeophyceae, Dictyotales) O2

− scavenging: IC50 = 22.2 µM [239]

292 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 1.28 ± 0.00 mM
DPPH scavenging: IC50 = 1.05 ± 0.03 mM [240]

293 Hypnea musciformis
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 231.2 ± 2.0 µM
Fe2+ chelation: IC50 = 667.9 ± 0.8 µM

lipid peroxidation (TBARS):
1.34 ± 0.01 MDAEQ/kg at 0.1 µg/mL

[241]

294 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 1.81 ± 0.03 mM
DPPH scavenging: IC50 = 1.2 ± 0.05 mM

Fe2+ chelation: IC50 = 2.28 ± 0.03 mM
[236]

295 T. conoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 2.00 mM
DPPH scavenging: IC50 = 1.71 mM [242]

296 T. conoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 1.39 mM
DPPH scavenging: IC50 = 1.29 mM [242]

297 H. musciformis
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 25.0 ± 0.5 µM
Fe2+ chelation: IC50 = 350.7 ± 0.5 µM

lipid peroxidation (TBARS):
0.88 ± 0.01 MDAEQ/kg at 0.1 µg/mL

[241]

298 H. musciformis
(Rhodophyta, Florideophyceae, Gigartinales)

DPPH scavenging: IC50 = 322.4 ± 1.1 µM
Fe2+ chelation: IC50 = 5115.3 ± 2.1 µM

lipid peroxidation (TBARS):
0.76 ± 0.01 MDAEQ/kg at 0.1 µg/mL

[241]

299 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 0.81 ± 0.04 mM
DPPH scavenging: IC50 = 0.64 ± 0.02 mM

Fe2+ chelation: IC50 = 1.42 ± 0.02 mM
[236]

300 S. wightii
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 0.79 ± 0.03 mM
DPPH scavenging: IC50 = 0.67 ± 0.03 mM [240]
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Table 7. Cont.

Compound Isolation Source Assay/Activity Reference

301 T. conoides
(Ochrophyta, Phaeophyceae, Fucales)

ABTS+ scavenging: IC50 = 2.18 mM
DPPH scavenging: IC50 = 1.95 mM [242]

ABTS+: 2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; AChE: acetylcholinesterase; BChE: butyrylcholinesterase;
DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; IC50: half maximal inhibitory concentration; MDAEQ/kg: malondialdehyde equivalent
compounds formed per kg sample; ONOO−: peroxynitrite; O2

−: superoxide anion; TBARS: thiobarbituric acid reactive substances.
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Among these, the most active compounds, exerting significant DPPH radical scav-
enging capacity, were compounds 278 (5-hydroxymethyl-2-furfural, 5-HMF), 291 (Z-4′-
chloroaurone), and 297, with IC50 values at 27.1, 22.2, and 25.0 µM, respectively [233,239,241].
In particular, 5-HMF (278), isolated from L. undulata, exhibited significant antioxidant activ-
ities, as evaluated by its in vitro free radical species (including alkyl, DPPH, OH, and O2

−

radicals) scavenging, intracellular ROS scavenging, membrane protein oxidation, MPO
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inhibition, as well as gene expression of the antioxidative enzymes GSH and SOD [233].
Overall, 5-HMF (278) displayed antioxidant activity, by scavenging overproducing free
radicals and decreasing the activity of MPO or increasing the activity of GSH and SOD
antioxidant enzymes in certain biological pathways.

Fang et al. (2010) isolated the non-polar compounds 272–274, 276, 277, and 279 from
the red alga G. furcata and evaluated their antioxidant activities as inhibitors of AChE
and BChE and as scavengers of DPPH radical and ONOO− [75]. All isolated compounds
exhibited moderate AChE inhibitory activity with IC50 values ranging between 13.6 and
94.4 µM, whereas compounds 276 and 277 showed mild BChE inhibitory activity with
IC50 values 57.1 and 21.7 µM, respectively. Only compound 272 showed substantial
DPPH radical scavenging activity, while compounds 272 and 274 showed potent ONOO−

scavenging activity.
Compounds 280–286, 288–290, 292–296, and 298–301 exhibited moderate DPPH radi-

cal scavenging capacities, with IC50 values in the mM range, with activities comparable to ei-
therα-tocopherol (IC50 = 1.46 mM), or BHT and BHA (IC50 ~ 1.30–1.54 mM) [234–238,240–242].
Structure–activity relationship analysis revealed that the antioxidant activities of com-
pounds 293, 297, and 298 were directly proportional to their steric freedom and hydropho-
bicity [241].

9. Conclusions

The marine environment harbors diverse biological species that can provide a vast
repertoire of molecules with therapeutic properties. Forced to tolerate extreme environmen-
tal conditions, marine organisms produce structurally unique molecules as an adaptive
strategy to survive in their biotopes. In particular, macroalgae contain a plethora of an-
tioxidative compounds, such as bromophenols, phlorotannins, pigments, terpenoids, and
polysaccharides, in order to protect themselves from free radicals, the production of which
is favored in sublittoral zones with intense exposure to sunlight and high concentrations
of oxygen.

Structural elements, such as the number of phenol rings, the number of free hydroxyl
groups and conjugated systems, are in general accepted as enhancing the antioxidant
activity observed. Among the metabolites presented in the current review, the most ac-
tive belong to the classes of phenols and polyphenols, as well as meroterpenoids, with
bromophenols and phlorotannins exerting the highest activities. In particular, the bro-
mophenol rhodomelin A (18) isolated from the red alga R. confervoides, the phlorotannins
fucodiphloroethol G (77), phlorofucofuroeckol-A (79), 974-B (83), and 2,7”-phloroglucinol-
6,6′-bieckol (84) purified from brown seaweeds especially of the genus Ecklonia, as well as
the meroterpenoids 174, 175, and 178–183 isolated from brown algae of the genus Sargassum
exerted noticeably high DPPH scavenging activity.

Nevertheless, the most studied antioxidant compounds are the natural pigments
astaxanthin (116) and fucoxanthin (118), belonging to the class of carotenoids, ubiquitous
in marine macroalgae. Their antioxidant action is based on their singlet oxygen quenching
properties and their free radicals scavenging ability, which mainly depends on the number
of conjugated double bonds and end groups. The antioxidant activity of fucoxanthin (118)
has also been evaluated in vivo. Dietary intake of fucoxanthin significantly reduced lipid
hydroperoxide levels of liver and abdominal white adipose tissue of obese/diabetes KK-Ay

mice [243]. Fucoxanthin supplementation also significantly reduced the blood glucose
level and hepatic lipid contents of the mice. Promising results were also observed in
experiments on rats fed a high fat diet supplemented with fucoxanthin that improved
the antioxidant capacity, depleted by a high fat diet, by activating the Nrf2 pathway and
its downstream target gene NQO1 [244]. Therefore, supplementation of the diet with
fucoxanthin, especially of those who consume high fat in their diet, may benefit them by
reducing the risk of oxidative stress.

Although emerging evidence points to a diversity of actions and effects, which are
intricate and independent from any antioxidant chemical nature, there is an urgent need
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for deciphering the role of chemical structure on the antioxidant behavior of molecules.
Moreover, constraints imposed by experimental protocols should always be taken into
consideration when dealing with a lack of biological context in regard to results, so as to
discriminate between the in vitro and in vivo scenarios. In this regard, the development of
novel antioxidant activity detecting protocols prompts further investigations.
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