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In silico generated search for microRNAs (miRNAs) has been driven by methods compiling
structural features of the miRNA precursor hairpin, as well as to some degree combining
this with the analysis of RNA-seq profiles for which the miRNA typically leave the
drosha/dicer fingerprint of 1–2 ∼22 nt blocks of reads corresponding to the mature and
star miRNA. In complement to the previous methods, we present a study where we
systematically exploit these patterns of read profiles. We created two datasets comprised
of 2540 and 4795 read profiles obtained after preprocessing short RNA-seq data from
miRBase and ENCODE, respectively. Out of 4795 ENCODE read profiles, 1361 are
annotated as non-coding RNAs (ncRNAs) and of which 285 are further annotated as
miRNAs. Using deepBlockAlign (dba), we align ncRNA read profiles from ENCODE
against the miRBase read profiles (cleaned for “self-matches”) and are able to separate
ENCODE miRNAs from the other ncRNAs by a Matthews Correlation Coefficient (MCC)
of 0.8 and obtain an area under the curve of 0.93. Based on the dba score cut-off of 0.7 at
which we observed the maximum MCC of 0.8, we predict 523 novel miRNA candidates.
An additional RNA secondary structure analysis reveal that 42 of the candidates overlap
with predicted conserved secondary structure. Further analysis reveal that the 523 miRNA
candidates are located in genomic regions with MAF block (UCSC) fragmentation and poor
sequence conservation, which in part might explain why they have been overlooked in
previous efforts. We further analyzed known human and mouse miRNA read profiles and
found two distinct classes; the first containing two blocks and the second containing >2
blocks of reads. Also the latter class holds read profiles that have less well defined
arrangement of reads in comparison to the former class. On comparison of miRNA read
profiles from plants and animals, we observed kingdom specific read profiles that are
distinct in terms of both length and distribution of reads within the read profiles to each
other. All the data, as well as a server to search miRBase read profiles by uploading a BED
file, is available at http://rth.dk/resources/mirdba.

Keywords: microRNA, miRNA read profiles, RNA-seq, alignment, deepBlockAlign, read profiles

1. INTRODUCTION
MicroRNAs (miRNAs) are small, non-coding RNAs 18–24
nucleotides in length that play important roles in various biologi-
cal and metabolic processes, including signal transduction, devel-
opmental timing, cell maintenance and differentiation (Zhang
et al., 2006b). MiRNAs are involved in post-transcriptional reg-
ulation of gene expression by directly cleaving targeted mRNAs
or repressing translation (Bartel, 2004). Many in-vitro and in-
silico based approaches have been developed for the prediction
of miRNAs. In-vitro based approaches like genetic screening
approach have contributed to many founding members of miR-
NAs. However, due to low efficiency and high cost, these are
limited for wider applications. Many in-silico based approaches
have been developed based on major characteristic of miRNAs
for example hairpin-shaped stem loop structure integrated with
homology search (Wang et al., 2005; Dezulian et al., 2006) or
evolutionary conservation (Lai et al., 2003; Lim et al., 2003).
Besides, methods based on phylogenetic shadowing (Berezikov

et al., 2005), neighbor step loop search (Ohler et al., 2004), min-
imal folding free energy index (Zhang et al., 2006a) and machine
learning approaches have also been developed (Table 1). Various
plant and animal miRNAs have been identified using these com-
putational approaches. However, many of these methods have
sensitivity problems and give a number of false positive results
(Bentwich, 2005). Taken together all search methods aim to
reduce the search space in their own respective ways (Lindow and
Gorodkin, 2007).

Recent advances in high throughput sequencing have provided
a new opportunity for genome annotation including predic-
tion of novel miRNAs. Many tools like miRDeep2 (Friedländer
et al., 2012), miRDeep∗ (An et al., 2013), and miRanalyzer
(Hackenberg et al., 2011) exploit the aggregated set of RNA-
seq reads along with secondary structure potential to annotate a
genomic locus as miRNA. Indeed, these tools have great ability to
predict novel miRNA genes (Williamson et al., 2013). However,
these tools do not completely exploit the subtle differences in
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Table 1 | Major approaches for the computational prediction of micro-RNA.

Approach Programs References

Evolutionary conservation and stem loop structure miRseeker and miRscan Lai et al., 2003; Lim et al., 2003

Neighbor stem loop search - Ohler et al., 2004

Sequence based homology and stem loop structure microHARVESTER, MiRAlign Wang et al., 2005; Dezulian et al., 2006

Phylogenetic shadowing - Berezikov et al., 2005

Minimum free energy index - Zhang et al., 2006a

Machine learning methods ProMiR, mirCoS-a, MiPred Nam et al., 2005; Jiang et al., 2007; Sheng et al., 2007

RNA-seq based miRanalyzer, miRDeep2, miRDeep* Hackenberg et al., 2011; Friedländer et al., 2012; An et al.,
2013

the arrangement of reads mapped to pre-miRNA. Furthermore,
many of these tools start by identifying potential precursor locus
for miRNA based on strict rules like fixed precursor size of
110 bp or loop region of size 15 bp. This may result in uncon-
ventional miRNA patterns like miRNA-offset RNAs (moRs) that
encode for up to four distinct, stable small RNAs (Shi et al.,
2009) or plant miRNAs that have different biogenesis mecha-
nism be readily missed by these tools (Lelandais-Briere et al.,
2010). Furthermore, many microRNA-sized small RNAs have
also been reported to be commonly produced not only from
miRNA precursors but also from most other classes of structured
RNAs like snoRNA and tRNA (Kawaji et al., 2008; Taft et al.,
2009).

Several recent studies have recognized that short RNA-seq
data, when mapped back to the host genome form read cov-
erage patterns that are distinct and can be used to distinguish
between major non-coding RNAs (ncRNAs) such as miRNA,
snoRNA and tRNA (Erhard and Zimmer, 2010; Jung et al.,
2010; Langenberger et al., 2010, 2012). These read coverage pat-
terns have been referred to as “read profile” or block group (see
also Figure 2) and are composed of distinctive clusters of reads
(blocks) with similar start and/or stop position. The read profiles
are often influenced by chemical modifications like in the case of
tRNAs (Findeiß et al., 2011), or by secondary structures like in the
case of miRNAs where miR and miR∗ products mutually posi-
tion with a 3′-overhang that is characteristic for dicer cleavage
(Figure 1).

In this study, we present a novel strategy based on pair-
wise alignment of two read profiles, deepBlockAlign
(Langenberger et al., 2012) to predict putative miRNAs in the
human genome. We apply this approach on an extensive dataset
of read profiles derived from 18 short RNA-seq experiments from
ENCODE (ENCODE Consortium, 2011, 2012), and present some
putative miRNAs that showed significant similarity to read pro-
files of known miRNAs from miRBase. We also show distinct
classes of miRNA read profiles identified through alignment and
hierarchical clustering of read profiles from human and mouse.
Furthermore, we present miRNA read profiles that are specific to
animals and plants.

2. MATERIALS AND METHODS
2.1. DATASETS
We downloaded two RNA-seq datasets for the analysis of read
profiles. First dataset is comprised of short-reads mapped to

FIGURE 1 | A characteristic read profile (block group) for microRNA in

the human genome. It is dominated by two distinct clusters of reads
(blocks) with almost similar start and/or end positions. These read profiles
are in many cases influenced by secondary structures of the parent
transcript and may convey information about the processing mechanism of
the transcript like dicer cleavage in this case.

the human (hg19, Feb. 2009) genome assembly and is down-
loaded in BAM format from the ENCODE database (ENCODE
Consortium, 2011, 2012). This dataset is comprised of 18 RNA-
seq experiments performed on nine human tissues with each
having two biological replicates. It is to be noted that prior to
sequencing, these biological replicates have been grown and iso-
lated independently. In the following, we will refer to this dataset
as ENCODE dataset (Table 2). Second dataset is comprised of
short-reads mapped to 4862 distinct miRNAs from 20 organ-
isms in miRBase (Kozomara and Griffiths-Jones, 2011). The short
reads are derived from 244 GEO experiments performed on var-
ious tissues. In the following, we will refer to this dataset as
miRBase dataset (Table 3).

2.2. PREPROCESSING OF DATASET
Both datasets were subjected to two pre-processing steps. Firstly,
the mapped reads were formatted into BED format. The
formatting was done for each of the 18 experiments from
ENCODE and 20 organisms from the miRBase dataset, separately
(Figures 2A,B). Secondly, each BED format file was processed to
identify distinct accumulation of reads by assigning two reads
to the same locus, when they were separated by less than 40 nt.
We chose 40 nt as the threshold to consider two reads from sep-
arate loci based on two observations (a) most short reads are
less than 40 nt in length and two genomic loci separated by
a region of >40 nt with no mapped reads can most likely be
considered as distinct. (b) the loop region of most pre-miRNAs
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Table 2 | The ENCODE dataset is comprised of short-reads from 18

RNA-seq experiments performed on nine human tissues with each

having two replicates.

Tisa Replicate1 Replicate2

# readsb # BGsc # readsb # BGsc

Bl 49,280,641 16,437 56,439,584 19,609

Br 48,773,897 15,148 48,394,385 13,317

Bt 26,713,326 13,309 40,144,816 13,555

Cx 41,301,918 15,890 40,798,294 15,948

Ep 47,775,551 13,522 44,163,861 10,923

Es 35,965,377 12,692 33,651,242 14,697

Li 31,930,869 6158 33,939,724 10,684

Lu 38,877,787 14,511 43,732,746 15,873

Sn 37,649,014 6370 41,022,882 11,268

The dataset was downloaded from ENCODE (ENCODE Consortium, 2011) and

is composed of a uniform read length of 36 nt.
aTissues with each having two biological replicates (Bl, Blood; Br, Brain; Bt,

Breast; Cx, Cervix; Ep, Epithelium; Es, Embryonic stem cell; Li, Liver; Lu, Lung;

Sn, Skin).
bNumber of mapped reads.
cTotal number of block groups retrieved after preprocessing.

is <40 nt in length. Consecutive reads within a locus were
divided into blocks using blockbuster (with parameters: -
distance 40, -minBlockHeight 2, -minClusterHeight 10, -scale
0.5) (Langenberger et al., 2009) (Figure 2C). blockbuster
merges mapped reads into blocks based on their location in the
reference genome. Thus, stacks of reads are combined to read
blocks which is analogous to tags (set of reads) processed from
a specific locus. This strategy greatly reduces the size of the data
set and allows the application of more costly algorithms while
maintaining structural properties such as position, length and
approximate read start sites and ends. The obtained set of one
or more blocks at a locus are then called block groups (Table 2).
It is to be noted that for the ENCODE dataset, we discarded all
blocks that had read count of <10% with respect to the total
reads within its block group in order to (a) ensure all blocks
are represented by at least one read, since minimum number of
reads in a block group is set to 10 (-minClusterHeight 10); and,
(b) nullify the effect of sequencing depth during comparison of
block groups across 18 RNA-seq experiments from the ENCODE
dataset (Figure 2A). Here after, we will use the term block group
and read profile, synonymously.

Of the 3838 block groups obtained after the preprocessing
of miRBase dataset, we filtered 2540 block groups that had
more than one block and were ≤200 nt in length. The 2540
block groups were then compiled to from a database of miRNA
read profiles (Figure 2B and Table 3) abbreviated hereafter as
miRRPdb. Next, for the ENCODE dataset, we derived 58,161
genomic loci where a block group or read profile is observed
in at least one tissue (Figure 2A). For each genomic locus, we
retrieved one block group corresponding to the tissue in which
the block group had the maximum number of blocks leaving
us with 58,161 block groups. All the block groups were then

Table 3 | miRBase dataset is comprised of short-reads mapped to

4862 distinct microRNAs from 20 organisms.

Orga # readsb # miRc # block groups

Alld Filtere

Ame 475,288 (1) 159 109 96

Ath 472,5021 (8) 275 303 173

Bfl 37,217 (1) 113 71 34

Bmo 2,021,309 (3) 384 264 194

Cbr 17,442 (1) 115 81 25

Cel 1,048,509 (6) 184 130 93

Cqu 379,978 (1) 68 61 29

Cre 1082 (1) 28 19 11

Crm 9988 (1) 95 63 19

Cte 50,659 (1) 118 72 8

Dme 35,664,132 (50) 237 48 45

Hsa 81,138,802 (79) 1279 801 550

Mmu 913,716,590 (82) 749 688 624

Nve 2711 (1) 34 17 2

Osa 1,506,288 (4) 440 540 288

Ppc 11,176 (1) 113 66 5

Ppt 503,573 (3) 4224 285 148

Rco 147 (25) 13 2 0

Spu 6458 (1) 38 25 7

Tca 4,861,929 (2) 196 193 189

Total 1,046,178,299 4862 3838 2540

Dataset was downloaded from miRBase (Kozomara and Griffiths-Jones, 2011).
aAme, A. mellifera; Ath, A. thaliana; Bfl, B. floridae; Bmo, B. mori; Cbr, C. brig-

gsae; Cel, C. elegans; Cqu, C. quinquefasciatus; Cre, C. reinhardtii; Crm, C.

remanei; Cte, C. teleta; Dme, D. melanogaster; Hsa, H. sapiens; Mmu, M. mus-

culus; Nve, N. vectensis; Osa, O. sativa; Ppc, P. pacificus; Ppt, P. patens; Rco, R.

communis; Spu, S. purpuratus; Tca, T. castaneum.
bNumber of mapped reads. Total number of GEO experiments are given in brack-

ets. Some experiments are comprised of reads from multiple organisms.
cTotal number of distinct miRNAs with mapped reads.
d Total number of block groups or miRNAs retrieved after preprocessing.
eBlock groups with >1 block and ≤200 nt in length that are compiled to form a

database of miRNA read profiles (miRRPdb).

compared to known annotation [1049 miRNA from miRBase
v16 (Kozomara and Griffiths-Jones, 2011), 513 tRNA loci from
gtRNAdb (Chan and Lowe, 2009), 402 snoRNA, 1794 scRNA,
2007 snRNA loci and 722 other RNAs from UCSC annotation
(Karolchik et al., 2004)]. Block groups were also compared with
8811 ncRNA annotations from Rfam (Gardner et al., 2011). All
the block groups whose coordinate overlapped at ≥1 nt with
that of known annotations were designated as “annotated” block
groups (Table 4). Similarly, block groups were compared with
coordinates of exon, intron, 5′ UTR and 3′ UTR region down-
loaded from UCSC (Karolchik et al., 2004) and were annotated
accordingly, if overlapping at >50% else designated as from inter-
genic region. If a block group overlaps to more than two genomic
regions, then the region with maximum overlap is assigned to it.
Of the 58,161 block groups, we filtered 4795 block groups that
had more than one block and were ≤200 nt in length. Out of 4795
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FIGURE 2 | Preprocessing of ENCODE and miRBase datasets. (A) In
ENCODE dataset, reads mapped to human genome from each of the 18
RNA-seq experiments were subjected to preprocessing to obtain closely
spaced set of reads termed here as “block group”. Block groups thus
obtained were compiled so as to identify a set of distinct genomic loci that
have a block group in at least one experiment. Next, for each locus, we
retrieved one block group corresponding to the experiment in which the block

group has maximum number of blocks leaving us with 58,161 block groups.
(B) In miRBase dataset, reads mapped to microRNAs from each of the 20
organisms were subjected to preprocessing and block groups thus obtained
were compiled as miRNA read profile database (miRRPdb). (C) Given a set of
mapped reads in BED format, we derive closely spaced stack of reads termed
here as “block group” using blockbuster (Langenberger et al., 2009). Each
block group or read profile is composed of one or more blocks of reads.

Table 4 | Annotation status of 58,161 block groups obtained after

preprocessing of ENCODE dataset and their alignment to miRRPdb.

Annotation # block groups # miRRPdb hits(%)c

Alla Filterb

miRNA 571 285 223 (78)

snoRNA 468 255 3 (1)

tRNA 625 496 7 (1)

snRNA 395 143 6 (4)

scRNA 187 46 3 (7)

others 277 136 8 (6)

unannotated 55,638 3434 523 (15)

Total 58,161 4795 773 (16)

aBlock groups obtained after preprocessing and are overlapping to non-coding

RNA annotation.
bBlock groups with >1 block and ≤200 nt in length.
cBlock groups that have significant alignment score (≥0.7) to miRNA read profile

database (miRRPdb).

block groups, 1361 were annotated, and the rest 3434 were unan-
notated, see Table 4. We used the 1361 annotated block groups as
benchmark dataset to evaluate the prediction performance of our
method.

2.3. PERFORMANCE EVALUATION
The performance of the proposed method for the prediction of
miRNA is evaluated based on sensitivity, specificity and MCC
that are computed using a confusion matrix (2 × 2 contin-
gency table). The confusion matrix is essentially composed of
four components (a) number of miRNA that are correctly pre-
dicted as miRNA (True Positive, TP), (b) number of miRNA
that are incorrectly predicted as non-miRNA (False Negative,
FN), (c) number of non-miRNA that are incorrectly predicted
as miRNA (False Positive, FP); and, (d) number of non-miRNA
that are correctly predicted as non-miRNA (True Negatives,
TN). The sensitivity measures the proportion of true positives
(TP) out of total number of positives (miRNAs) in the bench-
mark dataset (TP/TP + FN). Like-wise, specificity measures the
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proportion of true negatives (TN) out of total number of neg-
atives (non-miRNAs) in the benchmark dataset [TN/(TN +
FP)]. The MCC is a discrete version of Pearson’s correla-
tion coefficient and is widely used in machine learning to
measure the quality of (two-class) binary classifications. It is
computed as

MCC = (TP × TN) − (FP × FN)√
(TP + FP)(TP + FN) (TN + FP)(TN + FN)

(1)

2.4. PREDICTION OF PUTATIVE miRNA
In an earlier study, we have developed a tool named
deepBlockAlign for the alignment of two read profiles
(Langenberger et al., 2012). deepBlockAlign normalizes
the read counts by the total reads within a block group followed
by a two-tier strategy to align read profiles. The alignment
score from deepBlockAlign ranges from 0, suggesting
perfect dissimilarity, to 1 for perfect similarity between the
two read profiles. It is to be noted that in the absence of any
statistical power or background distribution to evaluate the
significance of deepBlockAlign scores (since “background”
transcription still has to be defined) (Langenberger et al.,
2012), we have used deepBlockAlign to compare the
1361 annotated read profiles from ENCODE dataset against
miRRPdb in order to identify a meaningful discriminative
dba score (see section 3.1 below). Based on the derived dba
score, we align 3434 unannotated read profiles from ENCODE

dataset against miRRPdb and identify novel genomic regions
that have read profiles similar to those of known miRNAs
(Figure 3A).

2.5. PREDICTION OF miRNA FAMILIES
To predict distinct classes of miRNA based on their read pro-
files, we performed cluster analysis on 550 human and 624 mouse
read profiles from miRRPdb, separately. In cluster analysis, we
first perform all vs. all alignment of all block groups using
deepBlockAlign to generate a square matrix of alignment
scores. Second, the R package pvclust (Suzuki and Shimodaira,
2006) is used for hierarchical clustering of block groups based on
their alignment scores (Figure 3B). pvclust computes the p-
value for each cluster in hierarchical clustering using multiscale
bootstrap resampling and indicates how strong the cluster is sup-
ported by the data. We select all the clusters comprised of at least
15 read profiles at a p-value of <0.05, as families of miRNAs that
share similar read profiles. To predict any organism specific read
profile class, we also performed the cluster analysis on all 2540
read profiles from miRRPdb.

3. RESULTS
3.1. BENCHMARKING
To benchmark the prediction performance of our proposed
method for the prediction of putative miRNAs, we aligned
1361 annotated read profiles (285 miRNA and 1076 other ncR-
NAs; Table 4) from ENCODE dataset against miRRPdb using

FIGURE 3 | Search strategy. (A) To predict putative miRNA candidates,
we align 4795 read profiles from ENCODE dataset against miRNA read
profile database (miRRPdb) that comprise of 2540 block groups using
deepBlockAlign. We retrieve top scoring alignment for each query as
putative miRNA, if the score is above the threshold of 0.7. (B) To predict
distinct classes of miRNA based on their read profiles, all 2540 read
profiles from miRRPdb were aligned against each other using

deepBlockAlign to generate an alignment score matrix. Next, we
perform hierarchical clustering of block groups based on their alignment
score using pvclust. pvclust computes the p-value for each cluster in
hierarchical clustering using multiscale bootstrap resampling and indicates
how strong the cluster is supported by the data. We select all the
clusters with p < 0.05 that represent families of microRNAs that share
similar read profiles.
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deepBlockAlign. For each of the 1361 query read profiles,
we selected one read profile from miRRPdb which showed high-
est alignment score as potential hit for the query read profile.
We observed two completely distinct distributions of the align-
ment scores (Figure 4A), one from alignment of both query and
subject read profiles as miRNA (miRNA–miRNA) and another
from alignment of any other ncRNA except miRNA as query and
miRNA as subject read profile (other-miRNA). ROC curve analy-
sis using R package ROCR (Sing et al., 2005) showed a high AUC
of 0.93 suggesting that miRNA read profiles have characteristic
features that are distinct from read profiles of other ncRNAs and
can be employed for confident prediction of miRNA. (Figure 4B).
Indeed, most miRNA–miRNA read profile alignments (223 out
of 285) showed an alignment score of ≥0.7 whereas most other-
miRNA read profile alignment scores (1049 out of 1076) were
<0.7. As the False Positive Rate (FPR) tend to increase above the
alignment score of 0.7 (yellow-green intersection) in Figure 4B,
we chose 0.7 as the default cut-off alignment score to consider
an alignment between unannotated with miRNA read profile
as significant and unannotated read profile as putative miRNA
candidate.

We further estimated the MCC (Matthews et al., 1975), sen-
sitivity and specificity of the method based on the confusion
matrix created for 1361 alignments at a cut-off read profile align-
ment score of 0.7. The MCC is computed using a confusion
matrix that is composed of four components (a) 223 miRNA–
miRNA read profile alignments with score ≥0.7 as True Positives
(TP), (b) 62 miRNA–miRNA read profile alignments with score
<0.7 as False Negatives (FN), (c) 1049 other-miRNA read pro-
file alignments with score <0.7 as True Negatives (TN); and,
(d) 27 other-miRNA read profile alignments with score ≥0.7 as
False Positives (FP). Based on the confusion matrix, the sensitiv-
ity, specificity and MCC of 0.78, 0.97 and 0.80, respectively was

observed. We also performed the 5-fold cross validation by split-
ting the benchmark dataset (1361 annotated read profiles) into
five equal and evenly distributed (similar ratio of miRNA and
non-miRNA read profiles) datasets. For each of the five rounds
of cross-validation, we aligned four of the five datasets against
miRRPdb and derived the optimal cut-off of alignment score at
which maximum MCC is observed. Using the derived cut-off, the
performance of the method is evaluated on the remaining fifth
dataset. We observed a mean MCC of 0.80 ± 0.02 and an AUC
of 0.93 ± 0.02. A mean cut-off score of 0.7 was observed dur-
ing the cross-validation and is used hereafter for all the further
analysis. In the light of recent reports that many microRNA-
sized small RNAs are commonly produced not only from miRNA
precursors but also from other classes of structured RNAs like
snoRNA and tRNA (Kawaji et al., 2008; Taft et al., 2009), the
above measures can be regarded as a reasonable estimate of the
performance of this approach in the prediction of novel miRNA
candidates.

Furthermore, we compared the performance of our method to
an already available tool, miRanalyzer that detect miRNAs using
short RNA-seq data (Hackenberg et al., 2011). We chose miR-
analyzer because it is one of the widely used tool for miRNA
prediction using RNA-seq data, has a prediction performance
comparable to other miRNA prediction tools such as miRD-
eep2 (Williamson et al., 2013) and can be readily applied on our
benchmark dataset of mapped reads. We evaluated the perfor-
mance of miRanalyzer on the mapped reads corresponding to
1361 annotated read profiles from our ENCODE dataset using
both the default and model mode of miRanalyzer. In default
mode, miRanalyzer made predictions by first mapping reads to
known miRNAs from miRBase followed by using random for-
est model for the remaining set of reads. In model mode, all the
predictions are exclusively based on random forest model. We

A B

FIGURE 4 | Performance evaluation of the proposed method for the

prediction of putative miRNAs using alignment of read profiles. (A)

Density distribution of deepBlockAlign alignment scores for 285 miRNA
(orange) and 1076 other ncRNA (black) read profiles from ENCODE dataset
against miRNA read profile database (miRRPdb), respectively. We observed
two distinct score distributions comprised of most miRNAs (223 out of 285)

that have an alignment score of ≥0.7 and most of the other ncRNAs (1049
out of 1076) with score <0.7 against miRRPdb. (B) ROC curve analysis of the
prediction performance. A high AUC of 0.93 was observed suggesting that
miRNA read profiles have characteristic features that are distinct from read
profiles of other ncRNAs and can be employed for confident miRNA
prediction.
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observed an AUC of 0.94 and 0.95 for the former and later mode
(Supplementary document available at the web page, http://rth.

dk/resources/mirdba). Out of 223 known miRNAs that were cor-
rectly predicted by our method, 160 and 208 were also predicted
by miRanalyzer using default and model mode. The high perfor-
mance using the model mode is not surprising since the models
have been trained using random forest on the secondary structure
features of the same set of known miRNAs within the bench-
mark dataset. It is to be noted that while computing the AUC,
we considered only those ncRNAs, out of 1361 ncRNAs, that have
corresponding reads mapped by the miRanalyzer. When comput-
ing the AUC for all the 1361 ncRNAs irrespective of their mapping
status, we observed a low AUC of 0.64 and 0.68 for the two modes,
respectively.

To further evaluate the performance of our method, we ana-
lyzed the short RNA-seq data corresponding to Human HeLa
cells (GSE10829) that was used to benchmark the performance
of miRanalyzer. We observed an AUC of 0.92 for the dataset
which is approximately the same AUC of 0.93 observed for 1361
read profiles from the ENCODE dataset. Considering that our
method has not implemented any specific miRNA characteris-
tic feature such as hairpin loop size or length of pre-miRNA,
it is intriguing that we obtain a high scoring performance of
0.92 in AUC on the original miRanalyzer dataset. In this con-
text, the performance of miRanalyzer on the HeLa dataset has
been reported as an AUC of 0.98. Taken together, we observed
comparable performance of our method to that of miRanalyzer
suggesting that reasonably confident prediction of miRNAs can
be performed based on alignment of read profiles. Furthermore,
since many of the miRNAs were predicted exclusively by either of
the two methods, the diversity in the two prediction approaches
can potentially be applied for an enhanced scheme based on the
two methods.

3.2. IDENTIFICATION OF NEWLY ADDED miRNA ENTRIES IN miRBase
Since, we used miRBase Release 16 to annotate read profiles from
the ENCODE dataset, we checked how many of the newly added
miRNAs in miRBase Release 19 are identified by our approach.
A total of 558 new human miRNAs has been added in the miR-
Base since release 16. We observed that out of 558, 49 miRNAs
are represented as read profiles in our ENCODE dataset. Of
these 49 miRNAs, 35 were observed to a have significant align-
ment score (≥0.7) with miRRPdb, suggesting that the read profile
based search can identify most of the newly added miRNAs given
that their expression is sufficiently captured during the RNA-seq
experiments.

3.3. PUTATIVE microRNAs
To predict putative miRNA candidates, we aligned 3434 unanno-
tated read profiles from the ENCODE dataset against miRRPdb
using deepBlockAlign. We retrieved 523 alignments with an
alignment score of ≥0.7 between an unannotated and miRNA
read profile from miRRPdb. Figure 5 shows one such align-
ment between an unannotated read profile from chr17:20841720-
20841781(+) and a read profile of hsa-mir-519b. We can observe
high similarity between the two read profiles characterized by
similar number, size and distance between the read blocks.

Furthermore, the relative arrangement of reads is also very simi-
lar between the two, as illustrated through the “Block alignment”.
We also checked for the consensus RNA secondary structure by
extracting the Multiz alignment (Blanchette et al., 2004) corre-
sponding to the unannotated region from the UCSC browser
(Figure 5D). The consensus RNA structure is predicted using the
PETfold webserver (Seemann et al., 2011), and it showed a highly
conserved hairpin loop structure characteristic for miRNA sec-
ondary structure. This further suggests that this region potentially
can harbor a miRNA. The unannotated status of this region was
checked by searching for possible annotations in miRBase, UCSC
tracks of ENCODE/GENCODE (Version 7, 10, and 12), RefSeq,
tRNA and snoRNAs.

3.4. PUTATIVE miRNAs ARE LOCATED IN REGIONS THAT HAVE SHORT
OR POORLY CONSERVED MAF BLOCKS

Secondary structure conservation across evolutionary tree is con-
sidered a compelling evidence for the biological function of a
RNA. Therefore, many tools like Evofold (Pedersen et al., 2006),
RNAAlifold (Bernhart et al., 2008), PETfold (Seemann et al.,
2008), and RNAz (Gruber et al., 2010) integrate sequence con-
servation across multiple organisms (Multiz alignments) with
RNA folding algorithms for reliable prediction of RNA sec-
ondary structure like hairpin loop structure of miRNA. A Multiz
alignment represents multiple sequence alignments across a set
of species along with measures of evolutionary conservation
(Blanchette et al., 2004). For comparative analysis, we retrieved
46-way and 13-way Multiz alignments corresponding to both
523 miRNA candidates and 223 known miRNAs from UCSC
(Karolchik et al., 2004) and our in house compilation of Multiz
alignments, respectively. The in house 13-way Multiz alignments
have been made on 13 representative organisms in the evolution-
ary tree (Anthon et al., in preparation). As expected, we observed
less MAF block fragmentation over the location of 523 miRNA
candidates for the 13-way alignment in comparison to the 46-way
alignment, see Figure 6.

For the 13-way alignment, we observed that 272 out of the
523 candidates have too short Multiz alignments (<50 nt) in
comparison to 49 out of 223 for known miRNAs (Figure 6).
Furthermore, Multiz alignments from putative miRNAs were
observed to have a significantly lower average pairwise iden-
tity in comparison to that from known miRNAs (Figure 6). A
similar pattern of either short or a significantly lower average
pairwise identity in Multiz alignments from putative miRNA in
comparison to known miRNAs was observed for 46-way Multiz
alignments. In this context, absence of well-defined Multiz align-
ments may well contribute to many of these putative miRNAs not
being identified through methods based on a set of aligned RNA
sequences for the prediction of non-coding RNAs (Gorodkin
et al., 2010).

3.5. SECONDARY STRUCTURE ANALYSIS OF PUTATIVE miRNAs
To independently analyze the 523 miRNA candidate regions for
secondary structure, we processed all the corresponding Multiz
blocks for quality such as length and average pairwise identity.
Interestingly only 278 Multiz alignments have length ≥45 nt
and we therefore only carried out prediction on these. Since,
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FIGURE 5 | A putative miRNA predicted by alignment of read profiles.

(A) Alignment between an unannotated and miRNA read profile (block
group) computed using deepBlockAlign. The alignment is obtained
while aligning unannotated read profiles from ENCODE dataset against the
miRRPdb. The unannotated region has a similar read profile to that of
miRNA characterized by similar arrangement of reads as evident from
block alignment and similar size and distance between the read blocks,
leading to a high alignment score of 0.82. (B) The read profile for the

unannotated region [chr17:20841720–20841781(+)] in UCSC’s bigWig
format. (C) Consensus RNA secondary structure computed using Multiz
alignment with high conservation (Blanchette et al., 2004) from six
vertebrate genomes corresponding to the unannotated region. The
structure has been predicted using PETfold (Seemann et al., 2011) and
has a characteristic hair-pin loop structure of miRNAs. (D) Multiz alignment
(Blanchette et al., 2004) across six vertebrate genomes for the predicted
consensus RNA secondary structure.

miRNAs usually are ∼22 nt in length, a Multiz alignment of
length <45 can seldom harbor a miRNA hairpin loop struc-
ture. Therefore, for the remaining 245 Multiz alignments no
attempt to predict RNA secondary structures using sequences
from multiple organisms was made. To predict the secondary
structure using multiple sequences, we employed two widely used
tools, CMfinder (Yao et al., 2006) and RNAz (Gruber et al.,
2010), respectively. CMfinder is an expectation maximization
algorithm that uses covariance models to predict secondary struc-
ture motifs for a set of unaligned sequences (Yao et al., 2006).
On the other hand, RNAz is a support vector machine (SVM)
based method that evaluates evolutionary conserved pre-aligned
set of sequences with thermodynamic stability of RNA secondary
structure to detect structural ncRNAs (Gruber et al., 2010). Thus
by using these two tools, we aimed to predict secondary struc-
ture for regions that are relatively conserved (pre-aligned, RNAz)
and regions that are not so well conserved in terms of sequence
(unaligned, CMfinder). These methods also complement each
other well (Gorodkin et al., 2010).

We used 13-way Multiz alignments corresponding to 278
miRNA candidates as input and considered a P-score from

CMfinder ≥50 (FDR, False Discovery Rate of 0.27) (Seemann
et al., in Preparation) and a P-value from RNAz >0.9 (z-score
< −3 and FDR 0.1) (Gruber et al., 2010) as significant. Based
on these thresholds, we predicted conserved RNA secondary
structure motifs in 42 putative miRNA candidate regions by
CMfinder (17 candidates), RNAz (39 candidates), or by both
(14 candidates) CMfinder and RNAz. Out of these 42 putative
miRNA candidates, 33 were also predicted as miRNA by miR-
analyzer (Hackenberg et al., 2011). Interestingly, for 39 putative
miRNA regions predicted to have conserved secondary structure
by RNAz, we observed a significantly higher pairwise sequence
identity in comparison to rest of the 474 putative miRNA regions
(Wilcoxon test, P-value < 0.05). This observation again points
to the dependency of tools like RNAz on pre-aligned set of
sequences for ncRNA prediction as discussed in the previous sec-
tion. We also observed 13 candidate regions where despite high
average pairwise identify of ≥90% in Multiz alignments, no con-
served RNA secondary structure was predicted. In conclusion,
we obtain 523 novel miRNA candidates of which 42 are further
supported by a predicted conserved hairpin loop RNA secondary
structure.
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FIGURE 6 | The length and average pairwise identity for Multiz

alignments corresponding to known and putative miRNAs. (A) In
comparison to known miRNAs, most putative miRNAs have Multiz
alignment [46-way downloaded from UCSC (Karolchik et al., 2004)] of
length <50 nt and rest have a significantly low average pairwise identity
(p-value = 2.9e-19, Kolmogorov–Smirnov test). (B) For the in house 13-way
Multiz alignments (Anthon et al., in preparation), the same pattern was
observed with putative miRNAs either have Multiz alignments that are
short (<50 nt) or have a significantly lower average pairwise identity in
comparison to known miRNAs (p-value = 1.2e-28, Kolmogorov–Smirnov
test). This suggests that absence of well-defined Multiz alignments may
contribute to many of these putative miRNAs not being identified through
methods based on a set of aligned RNA sequences for ncRNA prediction
(Gorodkin et al., 2010).

3.6. TWO DISTINCT CLASSES OF READ PROFILES IN HUMAN AND
MOUSE

On independent clustering of 550 and 624 human and mouse
known read profiles from miRRPdb, we observed two well-
separated tree nodes comprised of three constituent clusters of
read profiles for both human and mouse, respectively (Figure 7).
In mouse, 503 out of 624 (81%) read profiles were represented
in the three clusters. In contrast, only 190 out of 550 (38%) read
profiles were represented in the three clusters from human. This

might well be due to the sequencing depth in RNA-seq experi-
ments from mouse, which is one order of magnitude higher in
comparison to human, see Table 3 for details. Higher sequenc-
ing depth helps by including only well-defined read blocks while
excluding background read noise during preprocessing step (see
section 2) thereby leading to well-defined clusters of read profiles.

Nevertheless, in both human and mouse, we observed two
classes of read profiles. The first was comprised of characteris-
tic miRNA-like read profiles which had two read blocks with low
entropy (Figure 7A) and the second was comprised of read pro-
files with a significantly high number of read blocks (p-value <

0.05, Fisher’s exact test) and entropy (p-value < 0.05, Fisher’s
exact test). Entropy is a measure of the degree of randomness
in the arrangement of reads within a read profile (Langenberger
et al., 2012, holds the details). An earlier study showed simi-
lar findings in Ciona intestinalis where half of the miRNA loci
encoded upto four distinct, stable small RNAs. The additional
RNAs were shown to be generated from sequences immediately
adjacent to the predicted ∼60 nt pre-miRNA (Shi et al., 2009).
Figure 7B illustrates three example of read profiles that have more
than two read blocks, first example has expression in loop region
that is interestingly even higher in comparison to that of miR∗ and
other two examples with expression from region partially over-
lapping to miR–miR∗, a pattern similar to those of miRNA-offset
RNAs (moRs) albeit different in not being completely adjacent to
the miR–miR∗ (Shi et al., 2009).

3.7. READ PROFILES SPECIFIC TO PLANTS AND ANIMALS
We also performed alignment and hierarchical clustering of all
2540 read profiles in miRRPdb leaving us with 11 distinct clusters
of miRNA read profiles (Figure 8). We observed an interesting
pattern of read profile distribution across different organisms,
while four cluster of read profiles (cluster 361, 371, 335, and
396) were mostly observed in animals (hsa, H. sapiens and mmu,
M. musculus), three clusters (cluster 389, 386, and 301) were
almost exclusively observed in plants (osa, O. sativa and ath, A.
thaliana). The rest of the read profiles clusters were observed
across both plant and animals. Next, we compared the length
and entropy of the read profiles observed specifically in plant
and animals. While almost all of the animal specific read profiles
were of 60–90 nucleotides in length, plant specific read profiles
were either short (<60 nt) or long (≥90 nt) in length. A higher
average length of plant pre-miRNA in comparison to human pre-
miRNAs has also been observed in an earlier study (Lindow and
Gorodkin, 2007) Plant specific read profiles were also observed
to have a significantly higher entropy in comparison to those
from animals (p-value < 0.05, Kolmogorov–Smirnov test). This
observation may be attributed to the different biogenesis mech-
anism of miRNAs in plants and animals (Lelandais-Briere et al.,
2010).

3.8. WEB SERVER FOR miRNA IDENTIFICATION BASED ON SIMILARITY
SEARCH TO miRRPdb

Based on our proposed method, we developed a web server to
predict putative miRNA candidates. The web server is available
at http://rth.dk/resources/mirdba and facilitate users to align a
query read profile against the database of miRNA read profiles
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(miRRPdb). The standard input is a set of reads mapped to a
genomic region of interest in BED format. Users can also adjust
several optional parameters that may affect the prediction results,
although the default setting is optimal in many cases. The read
profile alignment results are presented in a user friendly graphical
format and are composed of top two read profiles in miRRPdb
that have an alignment score of ≥0.7 (default threshold derived
based on benchmarking, see section 3.1) with the query read
profile. It should be noted that the alignment score is only an
indicator toward similarity of two read profiles. Further checks
like similarity in RNA secondary structure should be done to
strengthen the prediction results. The alignment of read profiles
is visualized using programs developed in PERL, Latex, and R.
There is also an option to visualize the read profiles in the UCSC
genome browser.

4. DISCUSSION
MiRNAs are important regulators of various biological and
metabolic processes and computational prediction of miRNA on
a genome wide scale is an active research area. We have presented
a novel strategy based on alignment of read profiles generated
from short RNA-seq data to predict novel miRNA candidates.
The alignment of read profiles was performed using a previ-
ously published tool, deepBlockAlign. The applicability of
the proposed method has been demonstrated by using two short
RNA-seq datasets (ENCODE and miRBase datasets). Totals of
4795 and 2540 read profiles were retrieved after preprocessing
of ENCODE and miRBase datasets, respectively. 2540 read pro-
files from miRBase were then compiled to form a database of
miRNA read profiles (miRRPdb). Upon alignment of 1361 anno-
tated (285 miRNA and 1024 other ncRNA) read profiles from

A B

FIGURE 7 | Clusters of read profiles obtained after hierarchical clustering

of 550 and 624 read profiles from Human and Mouse, respectively. (A)

Two distinct and well-separated tree nodes were observed for both plant and
animals (red and blue). For better representation, the count of read profiles
within each cluster are shown on top of the corresponding branch. In
comparison to read profiles in first node, read profiles in second node were
characterized by a significantly high number of read blocks (p-value =
4.3e-115, Fisher’s exact test) and entropy (p-value = 0.005, Fisher’s exact

test, blue shade bars). An earlier study has shown similar finding in Ciona
intestinalis where half of the miRNA loci encode upto four distinct, stable
small RNAs (Shi et al., 2009). (B) Three example read profiles with more than
two read blocks, (i) beside expression in miR–miR∗ , loop region also showed
expression even higher in comparison to miR∗. (ii and iii) many reads are
observed from region partially overlapping to miR–miR∗, a pattern similar to
those of miRNA-offset RNAs (moRs) albeit different in not being completely
adjacent to the miR–miR∗ (Shi et al., 2009).
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FIGURE 8 | Distinct clusters of read profiles observed for animals and

plants. (A) Four clusters of read profiles (black box) are mostly observed in
H. sapiens and M. musculus (animal specific). In contrast, three clusters
(gray box) are mostly observed in O. sativa and A. thaliana (plant specific).
(B) While almost all of the animal specific read profiles are of 60–90
nucleotides in length, plant specific read profiles were either short (<60 nt)
or long (≥90 nt) in length. (C) Plant specific read profiles were also
observed to have a significantly higher entropy in comparison to those from
animals (p-value < 0.05, Kolmogorov–Smirnov test). This observation may
be attributed to the different biogenesis mechanism of miRNAs in plants
and animals (Lelandais-Briere et al., 2010).

the ENCODE dataset against miRRPdb, we observed two clearly
distinct distributions, one comprised of deepBlockAlign
scores between non-miRNA against miRNA read profiles and
another comprised of scores between miRNA against miRNA read
profiles.

Based on this, we computed the deepBlockAlign score
that best separates the two distributions, yielding a classifica-
tion of 0.8 using MCC with sensitivity, specificity and an area
under the curve (ROC) of 0.78, 0.97, and 0.93, respectively. When
benchmarking against a representative tool for miRNA predic-
tion based on small RNA-seq data, miRanalyzer (Hackenberg
et al., 2011), we observed comparable performance between the
two methods on both our dataset as well as the dataset used

to benchmark miRanalyzer. Since our method is only based on
alignment of read profiles, it has some notable advantages: (a)
it can predict putative miRNAs in genomic regions that are
devoid of RNA secondary structure information either due to
low sequence conservation across multiple organisms that many
tools like RNAz (Gruber et al., 2010) require or due to inherent
limitation of tools based on single sequence to predict a RNA
secondary structure. In this context, many mRNA regions that
were predicted to form large, single stranded loops by RNAfold
(Gruber et al., 2008) have been shown to form highly base-paired
regions using experimental methods (Zheng et al., 2010; Li et al.,
2012). (b) it also provides the most similar read profile to a
query read profile with respect to arrangement and expression
of reads. This can be a useful information, especially when the
most similar read profile from miRRPdb is comprised of reads
derived from only one experiment, and; (c) similarity search of
read profiles can be applied to identify lineage specific miRNA
read profiles (see section 3.7) and for the classification of miRNA
read profiles based on arrangement of reads (see section 3.6).
In total, our method based on alignment of read profiles can
be a suitable complement to the other tools such as miRana-
lyzer and miRDeep that also use short RNA-seq data for miRNA
prediction.

Using the proposed method on 3434 uannotated read profiles
from ENCODE data set, we predicted 523 unannotated read pro-
files as putative miRNAs. On RNA secondary structure analysis,
42 of these putative miRNAs were observed to have conserved
RNA secondary structure. Furthermore, many of the 523 puta-
tive miRNAs were characterized by either short or remarkably low
average pairwise identity in corresponding Multiz alignments.
Since many RNA secondary structure prediction methods use
a set of pre-aligned sequences for ncRNA prediction, absence
of well-defined Multiz alignments can contribute to the lack of
secondary structure predictions overlapping with many of our
miRNA candidates. Global screen of ncRNA candidates using
multiple sequence alignment has also been suggested to fail in
regions of low sequence similarity (Torarinsson et al., 2006,
2008).

We have shown an unannotated genomic region that share
read profile similar to a miRNA along with a characteristic
hairpin loop RNA secondary structure with a 3′ overhang. On
cluster analysis of read profiles from human and mouse sepa-
rately, we observed two distinct clusters of read profiles, one with
read profiles that have two read blocks and low entropy cor-
responding to miR–miR∗ and the other with read profiles that
have more than two blocks and a significantly higher entropy
in comparison to the former. Many of these additional read
blocks were observed in regions adjacent or partially overlapping
to miR–miR∗ and can be possible candidates for miRNA-offset
RNAs (moRs).

On cluster analysis of all 2540 read profiles from 18 differ-
ent organisms in miRRPdb, we observed 11 distinct clusters of
read profiles. Interestingly, four of these read profile clusters were
mostly observed in animals and another three read profile clusters
were mostly observed in plants. The remaining four read profile
clusters were observed in both plant and animals. Furthermore,
most of the plant specific read profiles were either too
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short (<60 nt) or long (≥90 nt) in comparison to animal spe-
cific read profiles. Besides, plant read profiles were also observed
to have a significantly higher entropy in comparison to the animal
read profiles.

Further work includes analysis of miRNA read profiles that
have more than two read blocks for potential miRNA-offset miR-
NAs. In this context, these miRNAs can also be wrongly annotated
as miRNA in miRBase. A meta tool integrating the predictions of
methods such as miRanalyzer, miRDeep2 and our method would
also be useful for the identification of miRNA candidates that are
supported by diverse set of prediction approaches. It would also
be of wide interest to classify miRNAs based on read profile pat-
terns that are specific to a given tissue, pathological condition or
organism. In this context, closer inspection of plant and animal

specific read profiles may also reveal novel and organism specific
features in their miRNA read profiles.
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